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ABSTRACT

Very often, building contractors and civil engineers design and build high-rise buildings
oblivious of the maximum possible displacement that each floor can displace due to ~
vibrations. Apparently, building contractors and engineers lay much emphasis on the
foundation to the neglect of slabs of each floor of the high-rise building. If the maximum
displacement of a high-rise building is known before hand, building experts can run
simulations on the building to know the safest amount of load to use on each slab
construction that can minimize cost, and yet provide the needed resistance it is designed
for.

The structural and sectional drawings of Unity Hall, my case study, were analyzed and
the volume of each floor slab computed. The result was multiplied by the density of
reinforced concrete to obtain the mass of each slab of the building. The column constants
were also computed for use in our problem solving process. The results were then
formulated as a symmetric positive generalized eigenvalue problem in terms of mass and
stiffness matrices under free vibration and a tridiagonal system under forced vibration.
The problem was solved to obtain the maximum possible displacement of each floor of
the building. A second solution is obtained by including live load to each floor of the
building. The Numerical stability theorem was used to confirm the stability or otherwise
of the algorithms employed in this project.

Under free vibration and live load absent, all displacement values fall below 0.5m which
shows that the model maintains its linearity under free vibration. However, when live

load is present, all displacement values fall below 1.6m, showing that the presence of live
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load reduces linearity of the model under free vibration. This goes to suggest that the
linearity of the model is compromised when live load is included under free vibration.

Under forced vibration, our model maintains its linearity up to an earthquake of
magnitude 1.0 when live load is absent and 1.25 when live load is present. This also
confirms that, the presence of students has some effect on the linearity of the model under
forced vibration. Above the stipulated magnitudes of 1.0 and 1.25 when live load is
absent and present réspectively, displacements exceeds 0.5m and 1.6m meaning the
linearity assumption becomes no longer tenable and failure of the building becomes

eminent.

In spite of the stated magnitude thresholds, it must be noted that if the frequency of the
incoming wave coincides with one of the natural frequencies of the building, the
amplitude of displacement becomes large, signaling the occurrence of resonance. Where
as displacements below 0.5m when live load absent, and 1.6m when live load present,
will cause the building to crack, the resonance scenario will cause the building to fail

woefully, even to the extent of collapse.
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CHAPTER ONE
1.0 INTRODUCTION
Earthquakes are reported quite often in our time. The intensity of earthquakes is gradually )
increasing with their accompanying destruction. This is more so because the world
believes proper land management is achieved when more buildings are compacted into a
single or groups of high-rise buildings. Effective though as this may seem, earthquakes
has given the world a second thought. This is because if a high-rise building should fall
on the epicenter of a quake, the damage is bound to be very enormous as compared to a
semi-detached building, for example.
But of particular interest to scientists and engineers is why some high-rise buildings fall
under minor earthquake magnitudes while others do not, in spite of the fact that they are
of very similar architecture and probably same constructs. This area of research has gain
popularity by engineers since the 1989 earthquake in the Marina District of San
Francisco, which left some high-rise buildings collapse while others did not. Collapsing
buildings are known to cause about eighty percent 80% of earthquake deaths worldwide
(Patrick L. Abott, 2006). This calls for immediate attention on our buildings in case of

earthquakes especially the high-rise buildings.

1.1 BACKGROUND TO THE STUDY
Earthquakes have been with humanity since time immemorial on this earth. Since 1906
when the off coast of Equador was hit by a devastating earthquake of magnitude 8.8 on

the Richter scale with an accompanying heavy loss of lives and property, the world has
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not relented on its effort to minimize the effect of inevitable future earthquakes.
However, all research work in this field has been skewed towards forecasting earthquakes
from occurring or knowing before hand when one is bound to occur. In spite of all their
effort, the world still experience series of them without their notice Prominent among
them was that of the ancient city of Bam in south-eastern Iran, when seventy percent of
the city’s buildings and about 41,000 people perished representing a third of Bam’s
population (Microsoft Encarta, 2005).

In our quest to manage our lands judiciously, high-rise buildings, which are known
world-wide to be an effective means of curbing the sprouting of estate houses that occupy
vast land space that could have been used more profitably. For instance, ten estate houses
built for ten separate families can be fused into a one high-rise building of say, ten
storeys which will accommodate the same number of families as well as the same land
area as one estate house.

Laudable as this idea is, earthquakes are the only threat that makes developers uncertain
as to which building style to adapt. This is because in the event of collapse of a high-rise
building during earthquake, the degree of disaster will be much higher than a cluster of
estate houses. This is so because it is highly impossible for all the cluster of estate houses
to fall on the epicenter of an earthquake. High-rise buildings are known to have a higher
risk to earthquakes as compared to low buildings because if a single high-rise building
falls on the epicenter of an earthquake the loss will be enormous. Efforts in managing and
formulating rules that will prevent such buildings from falling in the event of an

earthquake have been the headache of many researchers.



Fortunately however, the Mathematical approach has reduced the cost of such research
by almost 90% and is even more confident and precise approach than the other means
such as the Social Scientists’ approach which base most of their findings on available '-
data on disaster pattern of an area. The mathematical approach makes use of Generalized
Eigenvalue problems, Simple Harmonic Motion principles, Mathematical Modeling,

Differential Equations, and Computational algorithms like the Cholesky factorization.

Almost all eigenvalue problems arising in structural and vibration engineering are of the
form Kx = AMx , where M is a symmetric positive definite matrix called the mass matrix,
and X is a symmetric matrix called the stiffness matrix. This is called symmetric positive

generalized eigenvalue problem

All machines and structures, such as bridges, buildings, and aircraft, possessing mass and
stiffness experience vibration to some degree, and their design requires consideration of
their oscillatory behavior. Free vibration takes place when a system oscillates due to the
forces inherent in the system and without any external forces. Under free vibration such a
system vibrates at one or more of its natural frequencies, which are properties of the
dynamic system, and depends on the associated mass and stiffness distribution. For
forced vibrations, systems oscillate under the excitation of external forces. When such

excitation is oscillatory, the system is also forced to vibrate at the excitation frequency.



1.2 DISASTER MANAGEMENT

Almost everyday we witness in the newspaper or on the television, reports of disasters
around the world. A disaster is the product of a hazard such as earthquake, flood or
windstorm coinciding with a vulnerable situation, which might include communities,
cities or villages. There are two main components in this definition: hazard and
vulnerabilitv. Without vulncrability or hazard there is no disaster. A disaster occurs when
hazards and vulnerability meet. There are scveral important characteristics that make
Disasters different from Accidents. The loss of a sole income earner in a car crash mav be
a disaster to a family. but only an accident to the community. Variables such as Causcs.
Freauency. Duration of the Impact. Speed of Onset. Scone of the Impact. Destructive

Potential. Human Vulnerability etc determine the difference.

The traditional perception of disaster management has been limited to the idea of
“calamitv relief”. which is seen essentiallv as a non-plan item of c¢xpenditure. However.
the impact of maior disasters cannot be mitigated bv the provision of immediate relief
alone. which is the oprimarv focus of calamitv relief efforts. Disasters can have
devastating cffects on the economv for the reason that thev causec huge human and
cconomic losses. and can significantly sct back development efforts of a region or a State.
With the kind of ecconomic losses and developmental setbacks that the country has been
suffering vear after vear. the development process needs to be sensitive towards disaster
prevention and mitigation aspects. There is thus the need to look at disasters from a

preventive persnective as well.



Disaster management can be defined as the body of policy and administrative decisions

and operational activities, which pertain to the various stages of a disaster at all, levels.

Broadly disaster management can be divided into pre-disaster and post-disaster contexts.

There are three key stages of activity that are taken up within disaster management. They

are:

1.

Before a disaster strikes (pre-disaster)

Activities taken to reduce human and property losses caused by the hazard and

ensure that these losses are also minimized when the disaster strikes. Risk
reduction activities are taken under this stage and they are termed as
mitigation and preparedness activities.

During a disaster (disaster occurrence)

Activities taken to ensure that the needs and provisions of victims are met and
suffering is minimized. Activities taken under this stage are called as
emergency response activities

After a disaster (post-disaster)

Activities taken to achieve early recovery and does not expose the earlier
vulnerable conditions. Activities taken under this stage are called as response

and recovery activities.



1.3  CLASSIFICATION OF DISASTERS

Disasters come in many form but for the purpose of this study, we categorize them into

the following

e Chemical Emergencies: Nearly all industries use products containing hazardous
materials or chemicals. Improper disposal of nuclear and industrial waste poses most
problems to people who leave around them. River sources stand the risk of
contamination, which eventually serves as health hazard for communities who use
them as their source of drinking water.

e Dam failure: Dams all over the world provide great support to humans. These
include the production of hydroelectric power, irrigation, potable water, etc Dam
failure or levee breeches can occur with little or no warning. They occur when intense
storm produces flood in few minutes or even seconds for upstream location. Flash
floods occur within six hours of the beginning of a heavy rainfall, and dam failure
may occur within hours of the first signs of breaching.

e Earthquake: is a series of underground shock waves and movements on the earth’s
surface caused by natural processes within the earth crust. Earthquakes strike
suddenly, violently, and without warning at any time of the day or night. If an
earthquake occurs in a populated area, it may cause many deaths and injuries and
extensive property damage.

e Wildfire: Forest Fire/Wild Fire is one of the destructive natural forces known to
mankind. While sometimes caused by lightning, nine out of ten wildfires are human-

caused. "Wild Fire” is the term applied to any unwanted and unplanned fire burning



in forest, shrub or grass. Dry conditions at various times of the year and in various
parts of the world greatly increase the potential for wildland fires.

Flood: is a temporary inundation of large regions as the result of an increase in
reservoir, or of rivers flooding their banks because of heavy rains, high winds,
cyclones, storm surge long coast, tsunami, melting snow or dam bursts. Floods are
one of the most common hazards in life. However, all floods are not alike. Some
floods develop slowly, sometimes over a period of days. But flash floods can develop
quickly, sometimes in just a few minutes and without any visible signs of rain. Flash
floods often have a dangerous wall of roaring water that carries rocks, mud, and other
debris and can sweep away most things in its path. Flooding can also occur when a
dam breaks, producing effects similar to flash floods.

Hazardous materials: Chemicals are found everywhere. They purify drinking water,
increase crop production, and simplify household chores. But chemicals also can be
hazardous to humans or the environment if used or released improperly. Hazards can
occur during production, storage, transportation, use, or disposal. Hazardous materials
in various forms can cause death, serious injury, long-lasting health effects, and
damage to buildings, homes, and other property. Chemical manufacturers are one
source of hazardous materials, but there are many others, including service stations,
hospitals, and hazardous materials waste sites.

Heat: is a complex phenomenon resulting from a certain combination of temperature,
humidity, air movement and duration. Simply stated, a heatwave is an extended
period of very high summer temperatures with the potential to adversely affect

communities. Heat kills by pushing the human body beyond its limits. In extreme



heat and high humidity, evaporation is slowed and the body must work extra hard to
maintain a normal temperature. Older adults, young children, and those who are sick
or overweight are more likely to succumb to extreme heat. Conditions that can induce
heat-related illnesses include stagnant atmospheric conditions and poor air quality.
Hurricane: A hurricane is a type of tropical cyclone, the generic term for a low-
pressure system that generally forms in the tropics. A typical cyclone is accompanied
by thunderstorms, ahd in the Northern Hemisphere, a counterclockwise circulation of
winds near the earth’s surface. All Atlantic and Gulf of Mexico coastal areas are
subject to hurricanes or tropical storms. Parts of the Southwest United States and the
Pacific Coast experience heavy rains and floods each year from hurricanes spawned
off Mexico. Hurricanes and tropical storms can also spawn tornadoes and
microbursts, create storm surges along the coast, and cause extensive damage from
heavy rainfall.

Landslide: are slippery masses of rock, earth or debris, which move by force of their
own weight down mountain slopes or river banks. In a landslide, masses of rock,
earth, or debris move down a slope. Landslides may be small or large, slow or rapid.
They are activated by: storms, earthquakes, volcanic eruptions, fires, alternative
freezing or thawing, and steepening of slopes be erosion or human modification.
Nuclear Power plant emergency: Nuclear power plants use the heat generated from
nuciear fission in a contained environment to convert water to steam, which powers
generators to produce electricity. Although nuclear power plants are guarded by very
strict and rigid laws and regulations to ensure safety at all times, an accident is

inevitable. Such accidents could result in dangerous levels of radiation that could



affect the health and safety of the public living near the nuclear power plant. The
potential danger from an accident at a nuclear power plant is exposure to radiation.
This exposure could come from the release of radioactive material from the plant into
the environment, usually characterized by a plume (cloud-like formation) of
radioactive gases and particles. A high exposure to radiation can cause serious illness
or death.

Terrorism: Throughout human history, there have been many threats to the security
of nations. These threats have brought about large-scale losses of life, the destruction
of property, widespread illness and injury, the displacement of large numbers of
people, and devastating economic loss. Recent technological advances and ongoing
international political unrest are components of the increased risk to national security.
Thunderstorm and Lightening: All thunderstorms are dangerous. Every
thunderstorm produces lightning. In the United States, an average of 300 people are
injured and 80 people are killed each year by lightning. Although most lightening
victims survive, people struck by lightening often report a variety of long-term,
debilitating symptoms. Dry thunderstorms that do not produce rain that reaches the
ground are most prevalent in the western United States. Falling raindrops evaporate,
but lightening can still reach the ground and can start wildfires.

Tornado: Tornadoes are nature’s most violent storms. Spawned from powerful
thunderstorms, tornadoes can cause fatalities and devastate a neighborhood in
seconds. A tornado appears as a rotating, funnel-shaped cloud that extends from a
thunderstorm to the ground with whirling winds that can reach 300 miles per hour.

Damage paths can be in excess of one mile wide and 50 miles long. Every part of the



world is at some risk from this hazard. Some tornadoes are clearly visible, while rain
or nearby low-hanging clouds obscure others. Tornadoes generally occur near the
trailing edge of a thunderstorm. It is not uncommon to see clear, sunlit skies behind a
tornado.

Tsunami: Tsunamis (pronounced soo-na-mees), also known as seismic sea waves are
a series of enormous waves created by an underwater disturbance such as an
earthquake, landslide, volcanic eruption, or meteorite. A tsunami can move hundreds
of miles per hour in the open ocean and smash into land with waves as high as 100
feet or more. From the area where the tsunami originates, waves travel outward in all
directions. Once the wave approaches the shore, it builds in height. The topography of
the coastline and the ocean floor will influence the size of the wave. There may be
more than one wave and the succeeding one may be larger than the one before. All
tsunamis are potentially dangerous, even though they may not damage every coastline
they strike. If a major earthquake or landslide occurs close to shore, the first wave in a
series could reach the beach in a few minutes, even before a warning is issued. Areas
are at greater risk if they are less than 25 feet above sea level and within a mile of the
shoreline. Drowning is the most common cause of death associated with a tsunami.
Volcano: A volcano is a mountain that opens downward to a reservoir of molten rock
below the surface of the earth. Unlike most mountains, which are pushed up from
below, volcanoes are built up by an accumulation of their own eruptive products.
When pressure from gases within the molten rock becomes too great, an eruption
occurs. Eruptions can be quiet or explosive. There may be lava flows, flattened

landscapes, poisonous gases, and flying rock and ash. Because of their intense heat,
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lava flows are great fire hazards. Lava flows destroy everything in their path, but
most move slowly enough that people can move out of the way. Fresh volcanic ash,
made of pulverized rock, can be abrasive, acidic, gritty, gassy, and odorous. While
not immediately dangerous to most adults, the acidic gas and ash can cause lung
damage to small infants, to older adults, and to those suffering from severe
respiratory illnesses. Ash accumulations mixed with water become heavy and can
collapse roofs. Sideways directed volcanic explosions, known as "lateral blasts," can
shoot large pieces of rock at very high speeds for several miles. These explosions can
kill by impact, burial, or heat. They have been known to knock down entire forests.

Winter storm: Heavy snowfall and extreme cold can immobilize an entire region.
Even areas that normally experience mild winters can be hit with a major snowstorm
or extreme cold. Winter storms can result in flooding, storm surge, closed highways,

blocked roads, downed power lines and hypothermia.

EARTHQUAKES

Tectonic forces within the earth produce local accumulations of strain that may be

released abruptly in the form of seismic energy. Earthquakes result from rapid release of

stored elastic strain in the lithosphere, usually in the form of sudden movement of

portions of the Earth's crust along faults.

To understand seismicity it is important to consider the physical state of rocks in the solid

Earth. Changes in the physical properties of rocks with increasing temperature and

pressure (i.e., increasing depth in the Earth) result in decreasing viscosity {a parameter
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that measures 'resistance to flow') and a transition from 'brittle’ to 'ductile' deformation.
That is, the outer part of the Earth deforms mainly by fracture, whereas rocks in the deep
crust and mantle undergo plastic flow or creep over geologic time scales. The outer (50-
100 km) layer of the Earth behaves as more or less rigid ‘plates’ (lithosphere) that can

'drift' on the deeper, less viscous interior (mantle) that is undergoing slow convection.

The boundary between. lithosphere and mantle is believed to reflect the change in
rheology, which is temperature sensitive. Thus, it is a thermal boundary layer (1300°C
isotherm). It may also be a compositional boundary in some places, but in general the
lithosphere comprises the crust (oceanic or continental) and the uppermost mantle, which
is considered to be 'peridotitic' (olivine-pyroxene rock). Composition of the crust is
variable and reflects the geologic processes attending crust formation - essentially mafic
(basalt-gabbro) in oceanic regions and sialic (roughly 'andesitic') in continental regions.
The crust (especially continental) is lithologically heterogeneous and variable in age (up
to 4 billion years old in the oldest regions).

Upwelling mantle convection results in heat transfer toward the surface, which can 'thin’
the rigid lithosphere (rift zones), promote melting of the rising mantle rock (mid-ocean
ridges or 'hot-spot’ volcanoes), and create topographic highs away from which the
lithospheric plates tend to drift. Likewise downwelling is associated with subduction of

relatively older and cooler oceanic plates.

Interactions between these moving plates, at their margins, create deformation

(tectonism) of three major types:

12



1. extension - plates move apart with the intervening space filled by new igneous
material (e.g., mid-ocean ridge basalts)

2. convergence - plates collide resulting in subduction (underthrusting) of one plate
(usually the denser one), intense deformation and uplift (mountain building), and
a particular type of magmatism (volcanic arcs)

3. strike-slip - horizontal motion as plates slide by one another (San Andreas); note
that because platé margins are not usually straight, friction and obstructions result
in significant earthquake activity that may be concentrated in the most constricted

zones [www.pub.edu], (accessed 2007 January 4).

1.5 EARTHQUAKES AND SEISMICITY
Seismic Waves

Basically, there are two types of waves generated during an earthquake namely, body

waves and surface waves.

Body waves travel through the Earth, emanating from the earthquake focus, or
'hypocenter' (e.g., a ruptured fault). Body waves are useful in determining the surface
location above the earthquake source, or 'epicenter', and for determining the amount of

energy released, or magnitude. Body waves can be further classified as either:

13



e compressional or P-waves - these have the highest velocity of all seismic waves
(6 km/s) and are the first (Primary) waves to be recorded by a seismograph after
an earthquake

o shear or S-waves - these oscillate perpendicular to the direction of wave

propagation, are slower than P-waves (3.5 km/s) and arrive later (Secondary)

Surface waves travel along or near the Earth's surface, generally arriving later than body
waves. Becéuse they travel along the surface, their effects on society may be significant,
including structure collapse, mass movement (landslides), disruption of utilities, and
secondary effects such as fires.

One of Charles F. Richter's most valuable contributions to seismology was to recognize
that the seismic waves radiated by all earthquakes can provide good estimates of their
magnitudes. He collected the recordings of seismic waves from a large number of
earthquakes, and developed a calibfated system of measuring them for magnitude.

Richter showed that, the larger the intrinsic energy of the earthquake, the larger the
amplitude of ground motion at a given distance. He calibrated his scale of magnitudes
using measured maximum amplitudes of shear waves on seismometers particularly
sensitive to shear waves with periods of about one second. The records had to be obtained
from a specific kind of instrument, called a Wood-Anderson seismogmph. Although his
work was originally calibrated only for these specific seismometers, and only for
earthquakes in southern California, seismologists have developed scale factors to extend
Richter's magnitude scale to many other types of measurements on all types of
seismometers, all over the world. In fact, magnitude estimates have been made for

thousands of Moon-quakes and for two quakes on Mars.
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Energy released from an earthquake may be recorded as motions of the Earth's surface by
a seismograph. Examples of seismograms vary in complexity due to dispersal of seismic
energy via reflections at velocity discontinuities and refraction (bending) as waves passes

through velocity gradients within the Earth.

1.6 CHARACTERISTICS OF EARTHQUAKES
e They are highly unpredictable in nature.
e It shakes the earth crust for long distances.
e Where as some are a little shiver like a truck passing by, others are very
frightening.
e Earthquakes happen along the edge of the tectonic plates.
e They are very destructive and tend to destroy any impediment that comes their

way.

1.7  HISTORY OF EARTHQUAKES

Our ancestors believed years ago that giant snakes, turtles, catfish, and even spiders
living underneath the ground, caused earthquakes as a result of their movements. Ancient
people had many fanciful explanations for earthquakes, usually involving something

large and restless living beneath the earth's surface.
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Aristotle was one of the first to attempt an explanation of earthquakes based on natural
phenomena. He postulated that winds within the earth whipped up the occasional shaking
of the earth's surface.

Empirical observations of the effects of earthquakes were rare, however, until 1750,
when England was uncharacteristically rocked by a series of five strong earthquakes.
These earthquakes were followed on Sunday, November 1, 1755, by a cataclysmic shock
and tsunami that killed an estimated 70,000 people, leveling the city of Lisbon, Portugal,
while many of its residents were in church. This event marked the beginning of the
modern era of seismology, prompting numerous studies into the effects, locations, and
timing of earthquakes.

Prior to the Lisbon earthquake, scholars had looked almost exclusively to Aristotle, Pliny,
and other ancient classical sources for explanations of earthquakes. Following the Lisbon
earthquake, this attitude was jettisoned for one that stressed ideas based on modern
observations. Cataloging of the times and locations of earthquakes and studying the
physical effects of earthquakes began in earnest, led by such people as John Michell in
England and Elie Bertrand in Switzerland.

The hundred or so years following the Lisbon earthquake saw sporadic but increasing
studies of earthquake phenomena. These efforts were often spurred on by earthquake
catastrophes, such as the 1783 Calabrian earthquakes that killed 35,000 people in the
southern toe of Italy. (Charles Davison, 1978)

As communication between various parts of the world became more common, earthquake
observations from throughout the world could be combined. Following an earthquake in

Chile in 1822, Maria Graham reported systematic changes in the elevation of the Chilean
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coastline. Observations of coastline changes were confirmed following the 1835 Chilean
earthquake by Robert FitzRoy, while Charles Darwin was onshore examining the geology
of the Andes.

In the 1850s, 60s, and 70s, three European contemporaries made cornerstone efforts in
seismology. Robert Mallet, an engineer born in Dublin who designed many of London's
bridges, measured the velocity of seismic waves in the earth using explosions of
gunpowder. His idea was to look for variations in seismic velocity that would indicate
variations in the properties of the earth. This same method is still used today, for example
in oil field exploration. Robert Mallet was also one of the first to estimate the depth of an
earthquake underground.

At the same time as Mallet was setting off explosions of gunpowder in England, Alexis
Perrey, in France, was making quantitative analyses of catalogs of earthquakes. He was
looking for periodic variations of earthquakes with the seasons and with lunar phases.
And in Italy, Luigi Palmieri invented an electromagnetic seismograph, one of which was
installed near Mount Vesuvius and another at the University of Naples. These
seismographs were the first seismic instruments capable of routinely detecting
earthquakes imperceptible to human beings.

The foregoing work set the stage for the late 1800s and early 1900s, when many
fundamental advances in seismology would be made. In Japan, three English professors,
John Milne, James Ewing, and Thomas Gray, working at the Imperial College of Tokyo,
invented the first seismic instruments sensitive enough to be used in the scientific study

of earthquakes.
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In the United States, Grove Karl Gilbert, after studying the fault scarp from the 1872
Owens Valley, California earthquake, concluded that the faults were a primary feature of
earthquakes, not a secondary one. Until his time, most people thought that earthquakes
were the result of underground explosions and that faults were only a result of the
explosion, not a primary feature of earthquakes.

Also in the United States, Harry Fielding Reid took Gilbert's work one step further. After
examining the fault trace of the 1906 San Francisco earthquake, Reid deduced that
earthquakes were the result of the gradual buildup of stresses within the earth occurring
over many years. This stress is due to distant forces and is eventually released violently
during an earthquake, allowing the earth to rapidly rebound after years of accumulated
strain.

The late 1800s and early 1900s also saw scientific inquiry into earthquakes begun by
Japanese researchers. Seikei Sekiya became the first person to be named a professor in
seismology; he was also one of the first people to quantitatively analyse seismic
recordings from earthquakes. Another famous Japanese researcher from that time is
Fusakichi Omori, who, among other work, studied the rate of decay of aftershock activity
following large earthquakes. His equations are still in use today.

The twentieth century has seen an increased interest in the scientific study of earthquakes,
too involved to discuss here. It should be noted, however, that research into earthquakes
has broadened and contributions now come from numerous areas affected by
earthquakes, including Japan, the United States, Europe, Russia, Canada, Mexico, China,
Central and South America, New Zealand, and Australia, among others

[www.projects.crustal.ucsb.edu], (accessed 2007 January 11).
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1.8 CAUSES OF EARTHQUAKES

In simple language, earthquakes are caused by faulting, a sudden lateral or vertical
movement of rock along a rupture (break) surface. The surface of the Earth is in
continuous slow motion. This is plate tectonics--the motion of immense rigid plates at the
surface of the Earth in response to flow of rock within the Earth. The plates cover the
entire surface of the globe. Since they are all moving they rub against each other in some
places (like the San Andreas Fault in California), sink beneath each other in others (like
the Peru-Chile Trench along the western border of South America), or spread apart from
each other (like the Mid-Atlantic Ridge). At such places the motion isn't smooth as the
plates are stuck together at the edges and the rest of each plate is continuing to move, so
the rocks along the edges are distorted (what we call "strain"). As the motion continues,
the strain builds up to the point where the rock cannot withstand any more bending. With
a lurch, the rock breaks and the two sides move. An earthquake is the shaking that
radiates out from the breaking rock.

People have known about earthquakes for thousands of years, of course, but they didn't
know what caused them. In particular, people believed that the breaks in the Earth's
surface-faults-which appear after earthquakes were caused by the earthquakes rather than
the cause of them. It was Bunjiro Koto, a geologist in Japan studying a 60-mile long fault
whose two sides shifted about 15 feet in the great Japanese earthquake of 1871, who first
suggested that earthquakes were caused by faults. Henry Reid, studying the great San
Francisco earthquake of 1906, took the idea further. He said that an earthquake is the
huge amount of energy released when accumulated strain causes a fault to rupture. He

explained that rock twisted further and further out of shape by continuing forces over the

19



centuries eventually yields in a wrenching snap as the two sides of the fault slip to a new
position to relieve the strain. This is the idea of "elastic rebound” which is now central to

all studies of fault rupture (Gerard Fryer, University of Hawaii, Honolulu).

1.9 EARTHQUAKE MEASUREMENT

The measurement of an earthquake is very important in seismology. They are measured
based on two criteria namely, magnitude and intensity. Magnitude and intensity are scales
used to measure the energy and degree of damage that are produced during an earthquake
respectively.

Magnitude: a quantitative measurement of the amount of energy released by an
earthquake. Each step on the Richter scale represents an increase of 10 times the shaking
or rock movement (amplitude) and an increase of 30 times the amount of energy released.
The difference between an earthquake that measures 6.5 on the Richter scale and a quake
that measures 7.5 is that the 7.5 releases 30 times more energy. It would take 30
magnitude 6.5 quakes to equal the energy output of one 7.5 quake. Even scarier is that, it
would take 30 x 20, or 900 magnitude 6.5 quakes to equal just one 8.5 quake.

Intensity: a qualitative assessment of the effects of the earthquake. It is a measure of the
degree of observable effects of the movement as well as damage that has occurred using a
descriptive scale called Modified Mercalli Scale. The amount of damage is determined by

how much the ground shakes, how long the quake lasts, and how well the buildings are

constructed.
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The surface point above the hypocenter is known as the epicenter. As the distance from
an earthquake increases, the arrival time difference between the p-wave and s-waves ('S-
P difference’) increases proportionately. Thus, epicenter locations can be determined by
triangulation using a travel-time curve and data recorded at three or more seismic
stations.

The figure below demonstrates hands-on examples of calculating location (as well as

Richter magnitude) for real earthquakes using the Richter scale
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The scales in the diagram above form what is called a nomogram that allows you to do

the mathematical computation quickly by eye. The equation for Richter Magnitude is:

M, =log,, A(mm)+ (Distance correction factor)

Here A is the amplitude, in millimeters, measured directly from the photographic paper
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record of the Wood-Anderson seismometer, a special type of instrument. The distance
factor comes from a table that can be found in Richter's (1958) book Elementary
Seismology. The equation behind this nomogram, used by Richter in Southemn California,
is: M, =log,, A(mm)+3log,, [8At(s)]— 2.92

Thus after measuring the wave amplitude you will take its logarithm, and scale it
according to the distance of the seismometer from the earthquake, estimated by the S-P

time difference Af in seconds.

Seismologists will then get a separate magnitude estimate from every seismograph station
that records the earthquake, and then average them. This accounts for the usual spread of
around 0.2 magnitude units that we see reported from different seismological labs right
after an earthquake. Each lab is averaging in different stations that they have access to. It
may be several days before different organizations will come to a consensus on what was

the best magnitude estimate.
1.9.1 SEISMIC MOMENT

Seismologists have more recently developed a standard magnitude scale that is
completely independent of the type of instrument. It is called the moment magnitude,

and it comes from the seismic moment.

The idea of the seismic moment is based on elementary physics concept of torque. A
torque is a force that changes the angular momentum of a system. It is defined as the
force times the distance from the center of rotation. Earthquakes are caused by internal

torques, from the interactions of different blocks of the earth on opposite sides of faults.
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After some rather complicated mathematics, it can be shown that the moment of an

earthquake is simply expressed by:

(Moment) = (Rock Rigidity) x (Fault Area)x (Slip Dis tan ce)

ie. M, = uAd

dyne

cm?

(dyne—cm):( Jx(cmz)x(cm)

The formula above, for the moment of an earthquake, is fundamental to seismologists'

understanding of how dangerous faults of a certain size can be.

We will now imagine a chunk of rock on a lab bench, the rigidity, or resistance to
shearing, of the rock is a pressure in the neighborhood of a few hundred billion dynes
per square centimeter. The pressure acts over an area to produce a force, and it can be
seen that the cm-squared units cancel. Now if we guess that the distance the two parts
grind together before they fly apart is about a centimeter, then we can calculate the
moment, in dyne-cm:

M, =(3x10" b

) x (10cm) x (10cm) x (Icm)
cm

M, =3x10" dyne —cm
It is helpful to use scientific notation, since a dyne-cm is really a puny amount of

moment.
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Now let's consider a second case, the Sept. 12, 1994 Double Spring Flat earthquake,
which occurred about 25km southeast of Gardnerville. The resultant fault of the quake
was 10km deep and 15km long. The first thing to do, since we are working in centimeters,
is to convert the 15-kilometer length and 10km depth of that fault to centimeters.

10°cm 5

10
= ]x (15km) {EJ x (30cm)

= M, = (3x10" D) (10km) x
sz

M, =1.4x10% dyne —cm
Of course this result needs scientific notation even more desperately. We can see that this
earthquake, the largest in Nevada in 28 years, had two times ten raised to the twelfth

power, or 2 trillion, times as much moment as breaking the rock on the lab table.

There is a standard way to convert a seismic moment to a magnitude. The equation is:

M, = %[logm M ,(dyne — cm) -16.0]

Now let's use this equation (meant for energies expressed in dyne-cm units) to estimate

the magnitude of the tiny earthquake we can make on a lab table:

M, =3x10"dyne —cm =M 54 %[log,0(3x10'3dyne—cm)—16.0]z -1.7

Negative magnitudes are allowed on Richter's scale, although such earthquakes are

certainly very small. Next let's take the energy we found for the Double Spring Flat

earthquake and estimate its magnitude:
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2 ‘
M, =1.4x10% =M, = 5[1og,0(1.4><102— dyne ~ cm)-16.0]~ 6.1

The magnitude 6.1 value we get is about equal to the magnitude reported by the UNR

Seismological Lab, and by other observers [www.seismo.unr.edu], (accessed 2007

February 3).

1.9.2 SEISMIC ENERGY:

Both the magnitude and the seismic moment are related to the amount of energy that is
radiated by an earthquake. Richter, working with Dr. Beno Gutenberg, developed a
relationship between magnitude and energy. Their relationship is:
log,, Eg =11.8+1.5M

giving the energy Es in ergs from the magnitude M. Note that Es is not the total
“intrinsic" energy of the earthquake, transferred from sources such as gravitational
energy or to sinks such as heat energy. It is only the amount radiated from the earthquake
as seismic waves, which ought to be a small fraction of the total energy transferred during

the earthquake process.

More recently, Dr. Hiroo Kanamori came up with a relationship between seismic moment

and seismic wave energy. It gives:

Energy = (Moment) /20,000
For this moment is in units of dyne-cm, and energy is in units of ergs. dyne-cm and ergs

are unit equivalents, but have different physical meaning.
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Let's take a look at the seismic wave energy yielded by our two examples, in comparison

to that of a number of earthquakes and other phenomena. For this we'll use a larger unit

of energy, the seismic energy yield of quantities of the explosive TNT (Trinitrotoluene):

Table 1.1 Earthauake magnitude and amount of energv released

Richter TNT for Seismic | Example (approximate)

Magnitude | Energy Yield

-1.5 6 ounces Breaking a rock on a lab table -

1.0 30 pounds Large Blast at a Construction Site

1.5 320 pounds

2.0 1 ton Large Quarry or Mine Blast ]

2.5 4.6 tons

3.0 29 tons

3.5 73 tons ]

4.0 1,000 tons Small Nuclear Weapon

4.5 5,100 tons Average Tornado (total energy)

5.0 32,000 tons N

5.5 80,000 tons Little Skull Mtn., NV Quake, 1992

6.0 1 million tons Double Spring Flat, NV Quake, 1994

6.5 5 million tons Northridge, CA Quake, 1994

7.0 32 million tons Hyogo-Ken Nanbu, Japan Quake, 1995; Largest
Thermonuclear Weapon

7.5 160 million tons Landers, CA Quake, 1992

8.0 1 billion tons San Francisco, CA Quake, 1906

8.5 5 billion tons Anchorage, AK Quake, 1964

9.0 32 billion tons Chilean Quake, 1960

10.0 1 trillion tons San-Andreas type fault circling Earth)

12.0 160 trillion tons (Fault Earth in half through center, OR Earth's daily

receipt of solar energy)

1.10 CLASSIFICATION OF EARTHQUAKES

Generally, earthquakes are classified based on their magnitude on the Richter scale. They

range from slight to very great as shown in the table below



Table 1.2 Earthauake classifications

Classification Magnitude on Richter Scale
Slight Upto 4.9

Moderate 5.0-6.9

Great 7.0-7.9

Very Great 8.0 and above

1.11 BUILDING STRUCTURES

Building Construction refers to procedures involved in the erection of various types of
structures. The major trend in present-day construction continues away from handcrafting
at the building site and towards on-site assembly of ever larger, more integrated
components manufactured away from the site. Another characteristic of contemporary
building, related to the latter trend, is the greater amount of dimensional coordination;
that is, buildings are designed and- components manufactured in multiples of a standard
module, which drastically reduces the amount of cutting and fitting required on the
building site. A third trend is the production or redevelopment of such large structural
complexes as shopping centres, housing estates, entire campuses, and whole towns or

sections of cities.

Building construction is the product of private companies and public authorities, with
many individuals and organizations involved in the construction of a single structure,
from the manufacture of necessary components to final assembly. Building projects by
both public and private bodies employ a registered architect or civil engineer under the
direction of a project manager, or both, to execute the design and to make sure that it

complies with public health, fire, and building regulations as well as the requirements of
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the owner. The architect or engineer converts these requirements into a set of drawings

and written specifications that usually are sent to interested general contractors for bids.

The loads imposed on a building are classified as either “dead” or “live”. Dead loads
include the weight of the building itself and all major items of fixed equipment. Dead
loads always act directly downwards, act constantly, and are additive from the top of the
building down. Live loads include wind pressure, seismic forces, vibrations caused by
machinery, fnovable furniture, stored goods and equipment, occupants, and forces caused
by temperature changes. Live loads are temporary and can produce pulsing, vibratory, or
impact stresses. In general, the design of a building must accommodate all possible dead
and live loads to prevent the building from settling or collapsing and to prevent any

permanent distortion, excessive motion, discomfort to occupants, or rupture at any point.

The structural design of a building depends greatly on the nature of the soil and

underlying geological conditions and human modification of either of these factors.

If a building is to be constructed in an area of a country with a history of earthquake
activity, the earth must be investigated to a considerable depth. Faults in the crust of the
Earth beneath the soil must obviously be avoided. Certain clay soils have been found to
expand 23 cm (9 in) or more if subjected to long cycles of drying or wetting, thus
producing powerful forces that can shear foundations and lift lightweight buildings. Some
soils with high organic content may, over time, compress under the building load to a

fraction of their original volume, causing the structure to settle. Other soils tend to slide

under loads.
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Soil and geological analyses are necessary, therefore, to determine whether a proposed
building can be supported adequately and what would be the most effective and

economical method of support.

1.11.1 TYPES OF STRUCTURES
1.11.1.1 ONE TO THREE STOREY BUILDINGS

With low buildings the variety of possible shapes is much greater than with taller
buildings. In addition to the familiar box shape, which is also used in very tall buildings,
low buildings may use cathedral-like forms, vaults, or domes. A simple single-storey
structure might consist of a reinforced-concrete slab laid directly on the ground, exterior
masonry walls supported by the slab (or by a spread footing cast continuously around the
perimeter of the building), and a roof. For low buildings, the use of interior columns
between masonry load-bearing walls is still the most common construction method.
Spaced columns supported by the slab or by individual spread footings may be used,
however; in that case the exterior walls can be supported by or hung between the
columns. If the roof span is short, abutting planking made of wood, steel, concrete, or

other material can be used to form the roof structure.

As a general rule, the greater the roof span, the more complicated the structure supporting

the roof becomes and the narrower the range of suitable materials. Depending on the
length of the span, the roof may have one-way framing beams (Figure 2a and 2b) or two-

way framing (beams supported on larger girders spanning the longest dimension).
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Trusses can be substituted for either method. Trusses, which can be less than 30 cm or
more than 9 m deep, are formed by assembling tension and compression members in

various triangular patterns. They are usually made of timber or steel, but reinforced

concrete may be used.

Beams

Bearing |
vialls 2C. Bent

Isometric i
2A. One-way framing Plan

2D, Church
form

Isometric 2E. Parabola
28. Two-way framing Plan

1.11.1.2 MULTI-BAY AND MULTI-STOREY BUILDINGS

By far the most common form of building structure is the skeleton frame, which consists
essentially of the vertical members shown in Figure 2a, 2b, and 2¢, combined with a
horizontal framing pattern. For tall buildings, the use of load-bearing walls (as in Figure

2a) with horizontal framing members has declined steadily; nonload-bearing curtain walls

are used most frequently.

For structures up to 40 storeys high, reinforced concrete, steel, or composite-reinforced
concrete and steel can be used in a variety of ways. The basic elements of the steel

skeleton frame are vertical columns, horizontal girders spanning the longer distance
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between columns, and beams spanning shorter distances (Figure 3a). Lateral stability is
provided by connecting the beams, columns, and girders; by the support given the
structure by the floors and interior walls; and by diagonal bracing or rigid connections
between columns, girders, and beams. Reinforced concrete can be used in a similar way,
except that concrete shear walls would be used instead of diagonal bracing to provide

lateral stability.

In hanging (Figure 3b), a vertical utility core is built, and strong horizontal roof framing
is anchored to the top of the core. Stacking (Figure 3¢)is a construction technique in
which prefabricated, boxlike units are raised by cranes, placed on top of and alongside

each other, and then fastened together.

For buildings over 40 storeys high, steel had been considered the most appropriate
material. However, recent advances in the development of high-strength concretes have
made concrete competitive with steel. Tall buildings often require more sophisticated
structural solutions to resist lateral loads, such as wind and, in some countries, earthquake
forces. One of the more popular structural systems is the exterior structural tube, which
was used in the construction of the World Trade Center (417m/1,368ff) in New York.
Here, closely spaced columns connected rigidly to the horizontal spandrel beams on the
perimeter of the building provided sufficient strength to resist loads and the stiffness to
minimize lateral deflections. The structural tube has now been used with concrete and

with composite construction consisting of structural steel members encased in reinforced

concrete.
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For very tall buildings, the mixing of steel and concrete is commonly used. The high
strength-to-weight ratio of steel is excellent for the horizontal spanning members. High-
strength concretes can economically provide the compression resistance needed for
vertical members. In addition, the mass and internal damping properties of the concrete
assist in minimizing vibration effects, which are potential problems in very tall buildings

(Microsoft Encarta, 2005).

Precast or preformed
4 or 6 sided units

Cross bracing

3a. Skeleton frame : 3b. Cable hung

1.12 ROBLEM STATEMENT

There has been a lot of research into earthquakes worldwide but all seem to focus on
preventing them from occurring, how they occur, causes of it, and predicting when they
will occur and even their magnitude on the Richter scale. Not only is such researches
capital intensive but also they are abnormally involving and prone to errors. In all these
research the effect on certain buildings based on their specific materials construct are not
considered. Where as some believe that building firmly rooted to the ground do not suffer
much in the event of earthquakes, other researchers believe that it is rather the quality of

materials used in the construct that gives the best resistance to a building.
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As Ghana has not experienced earthquakes of magnitude higher than 4.9 on the Richter
scale, all our attention should not be directed towards preventing earthquakes from
occurring but how to manage and prevent losses when they do occur. Not all buildings
collapse even at the epicenter and neighbourhood of an earthquake. Why such buildings
do not collapse and why very similar ones do is of interest in this research.

The precise possible damage to any high-rise building and the average maximum relative
displacement- of each floor will the looked into. We will then attempt to make firm

decision on the building standards to adapt based on computed values in this project.

1.13 OBJECTIVES
e To model the dynamics of a high-rise building.

e To analyze the possible displacement of various floors of a high-rise building.

114 METHODOLOGY

e To formulate the model as a symmetric definite generalized eigenvalue problem

in terms of mass and stiffness matrices under free vibration, and a tridiagonal
system under forced vibration.
e Use the structural and detailed drawings of a high-rise building as our source of

data, as well as the building standards adapted by architects and engineers.

e Run MATLAB-based simulation on the model.
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1.15 JUSTIFICATION

Development of a country has swayed from the building of micro and macro stability to
the sprouting of edifices for the benefit of the citizens. Such edifices have brought
enormous pressure on lands in this country especially in our towns and cities.
Unfortunately however, most of these edifices could have been combined into one giant
edifice to make more lands available for the nation.

It is therefore important to know the risk levels of high-rise buildings so that we may not
be caught off-guard. Mathematical methods will provide the necessary tools to draw
sound and safe conclusion on any high-rise building. Such knowledge will help us to
decide on which type of high-rise building should be adapted at any particular place

based on the known likelihood of an earthquake.

1.16 PROJECT LIMITATIONS

1. The mass of each floor is about 95% accurate. This is because the composite of
other materials made use of in the slab construction is not known. These materials
include asbestos, felt, and linings for electrical fittings among others which may
constitute less than 5% of the slab weight.

2. The relative response to vibrations of each floor was not known and was

consequently assumed.
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1.17 OPERATIONAL DEFINITIONS

Table 1.3 Operational definitions

Terminology Definition ]

Epicenter It is the point on the (free) surface of the earth vertically above
the place of origin (hypocenter) of an earthquake.

Hypocenter or Focus | It is the point with in the earth from which seismic waves
originate. Focal depth is the vertical distance between the
hypocenter and epicenter.

Magnitude It is the quantity to measure the size of an earthquake in terms of
its energy.

Richter Scale This is the scale of measure of magnitude of an earthquake.

Intensity It is the rating of the effects of an earthquake at a particular

place, using the Modified Mercalli Scale.

Plate Tectonics

This refers to the motion of immense rigid plates at the surface
of the earth in response to flow of rock within the earth.

Seismology

It is a branch of geophysics involving the observation of seismic
waves from natural and artificial ground vibrations.

Seismic waves

Vibrations that travel outward from the earthquake fault at
speeds of several miles per second. Although fault slippage
directly under a structure can cause considerable damage, the
vibrations of seismic waves cause most of the destructions
during earthquakes.

Faults The fracture across which displacement has occurred during an
earthquake. The slippage may range from less than an inch to 10
yards in a severe earthquake.

Aftershock An earthquake of similar intensity that follows the main
earthquake.

Tectonic force

This is the force that emerges as a result of the interactions
between moving plates, at their margins and create deformation.

Seismogram

It is a written or digital recording of energy released from an
earthquake as motions of the Earth’s surface.

1.18 SUMMARY

Disaster is defined as:

“a serious disruption of the functioning of a society, causing

widespread human, material, or environmental losses which exceed the ability of the

affected society to cope using its own resources.” Disaster management can be defined
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as the body of policy and administrative decisions and operational activities, which
pertain to the various stages of a disaster at all, levels.

Disasters are classified into Chemical emergency, Dam failure, Earthquake, Heat, Flood,
Hazardous material, Landslides, Fire, Nuclear Power Plant emergency, Terrorism,
Thunderstorm, Tornado, Tsunami, Volcano, and Winter storm.

The two types of waves generated during an earthquake are body waves and surface
waves. Energy released from an earthquake may be recorded as motions of the Earth's
surface by a seismograph. The measurement of an earthquake is based on magnitude and
intensity. Magnitude and intensity are scales on Richter and Modified Mercalli used to

measure the energy and degree of damage produced during an earthquake respectively.
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CHAPTERTWO
20 MATHEMATICAL MODELS AND MODELING
It is very common to come across word problems in mathematics solved to obtain a
single formula or expression. This is only part of mathematical modeling. The broader
view of mathematical modeling is that it is about using mathematics to explore topics
outside of mathematics. The intimate connection between science and mathematical
modeling is eloquently stated by the great contemporary physicist Stephen Hawking as
“...take the view...that a theory of physics is just a mathematical model that we use to
describe the results of observations. Theory is a good theory if it is an elegant model, if it
describes a wide class of observations, and if it predicts the results of new observations”
Mathematical models arise in every field of science. Although the connections between
models and physical phenomena in other sciences are not always as strong as in physics,
it remains useful to think of theories of science in terms of mathematical models.
A mathematical model is a set of formulas and/or equations based on a quantitative
description of real phenomena and created in the hope that the behaviour it predicts will
resemble the real behaviour on which it is based. With this definition, a mathematical
model could be as simple as a single formula relating two variables or as complicated as a
set of equations describing the relationships between a set of unknowns
Mathematical modeling is the art and science of constructing mathematical models and
using them to gain insight into physical processes or to make predictions concerning
physical processes. The science lies in constructing the mathematical model from the
conceptual model, which is an idealized characterization of a real-world situation, and the

art lies in determining an appropriate conceptual model.
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2.1 SOURCES OF MODELS

It is very common to come across expressions like y = ¥, —16t* describing the motion of

an object thrown in air or p = x’ —4x? —~2x+12 also describing a production function,
where

y =position of object at any given time ¢ (dependent variable)

¥, = position of object at time ¢ = 0

t =time (independent variable)

p =quantity of the items produced

x =resources employed in the producﬁon

The question now becomes, where do such formulas come from? The truth of the matter
is that such expressions come from series of experiments conducted at a well equipped
physics laboratory. Others also come from physical laws.

Physical Laws

A physical law is a statement that expresses the relationship between quantities closely
enough to be taken as exactly true. To qualify as a physical law, a relationship must be
observed in a large variety of settings. Scientists do not use measurements only to obtain
formulas for specific experiments. A bigger goal is to try to determine basic principles
that underlie the measured behaviour. These basic principles are stated in the form of
physical laws such as Newton’s second law of motion, which is generally given as,

F=ma
where F is the net force on the object, m is the object’s mass, and a is the acceleration

that results from the force.
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A(dis tan ce)

From Acceleration = A(vel.ocily ) ___Alime) — = dv _ 11_{
A(time) A(time) &t
2
= F = mg
dt?

This expression is a very common modeling formula that we will make use of in our task.

2.2 EIGENVALUES AND EIGENVECTORS
It is a known fact in vector computations that the multiplication of an 7 x n matrix by an

nx1 vector yields a new nx1 vector. Mathematically,
A=y
If it is possible to find a constant A and a vector 7 such that

An=An

then we shall call A an eigenvalue and 7 the eigenvector of 4.

= (A-ADif =0
There are two possible solutions to the above equation namely 7 = 0 and the second will
be an infinitely many nonzero solutions. To find the second case, we will need to
determine the values of A for which we will get

det(A-Al)=0

Once we have the eigenvalues we can then go back and determine the eigenvectors for

each eigenvalue. Let’s take a look at a couple of quick facts about eigenvalues and

eigenvectors.
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o Fact1:If Ais an nxn matrix then det(4—A)=0 is an n” degree polynomial
called the characteristic polynomial.
e Fact 2: If 4,4,,...,4, is the complete list of eigenvalues for 4 (including all
repeated eigenvalues) then
1. If A occurs only once in the list then we call A simple.
2. If A occurs k >1 times in the list then we say that A has multiplicity k.

3. f A,.,A4 (k<n) are the simple eigenvalues in the list with

corresponding eigenvectors 7,7® ,...,77*) then the eigenvectors are all
linearly independent.
4. If A is an eigenvalue of k£ >1 then A will have anywhere from 1 to &

linearly independent eigenvalues. (Data, 2000).

23 ALGORITHM STABILITY OF THE NUMERICAL EIGENVALUE

PROBLEM

A matrix A is said to be stable if the eigenvalues of 4 remain the same or very, very close
to it when an entry in 4 is changed by a very minute amount. In other words, if B
represents the matrix which is very close to 4 as a result of a minute change in an entry of

matrix A4, then their eigenvalues must be the same in other for us to conclude that the

matrix 4 is stable. Otherwise, it is unstable.

1 1000
-0.001 1

) 1 1000
For example, consider matrices 4 = 0 1 and B =
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Matrix B differs from 4 by only 0.001 in the second row and first column. The
eigenvalues of 4 are 1 with multiplicity of two, but B has no real eigenvalues at all since

the characteristic polynomial is A —24 +2 .

What this tells us is that when error enters into the calculation of the entries of a matrix 4
and we later try to calculate the eigenvalues of A, we must view the results carefully. But
if 4 is symmetric, small changes in 4 will generally not lead to large changes in the
eigenvalues. So in applications involving symmetric matrices, numerical methods are

generally quite successful in computing the needed eigenvalues

To make a concrete statement, we define the Frobenius norm of a matrix 4 as

2
I 4ll= / 2lal
1<i, j<n

STABILITY THEOREM. Let 4 be an nxn matrix, and let £ be an nxn “‘error
matrix." Suppose that 4 and E are real and symmetric, and set A=A+E (that is, A isthe

“error version" of A). Let 4,,..,4, be the eigenvalues of 4 and :ln,...,/l_,, be the

eigenvalues of 4, then A4 -/1—1)2 +(4, -—/{2)2 +..+(4, —An): S| E 7

STABILITY COROLLARY. With the same hypotheses of the stability theorem,

| A, —/1:,, I<| E||, for k=12,..,n. This means that the process of finding4....,4, is
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stable: Small errors in A(|| E|| r Small) lead to small errors in determination of

Aurees A (| Ay = 2y | small). Thus (4, - 4)? < E|,

This corollary tells us that if|| £ ||, is less than or equal to a small number then all the

computed eigenvalues 4, of 4+ E will be within of the true eigenvalues A4, of 4. That

is, small error in real symmetric matrix A leads to small absolute error in a calculation of
the eigenvalues. Our initial illustration does not involve a symmetric matrix so let us try

one now.

2 -1 0
Suppose that we want to calculate the eigenvalues of A= -1 2 —1|ina computer,
0 -1 2

which keeps only six significant digits. Assuming the error of 0.000001 in each entry of

A, the bound error in calculating the eigenvalues of 4 is found as follows

Let E= where £=0.000001. Then by the stability corollary

M M O
H M O
M M M

| A— A, |<+/9(0.000001)? = 0.000003

Of course, this estimate neglects errors introduced by calculations used in a particular

- method of computing eigenvalues.

The main point has been made: In general, small errors in 4 need not lead to small errors

in computation of 4,,...,4,; however, if 4 is symmetric, with symmetrically distributed
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error, then small errors in 4 will lead to small absolute errors in determination of

Ases

Finally, even if the absolute error is small I/I-—,l_k I< e where ¢ is small, the

relative error could be large. For instance, if A, =¢/2, then M =200%
A

(Rice, 1983)

24 GENERALIZED EIGENVALUE PROBLEM

Definition

Given nxn matrices 4 and B, find scalars A and nonzero vectorsx such that Ax = ABx.
A is called an eigenvalue, and the vector x is an eigenvector associated with A for the
generalized eigenvalue problem.

It is clear to see that A is a root of the characteristic equationdet(4— AB)=0. The

matrix A — AB is called a matrix pencil and it is conveniently denoted by (4, B).

The rather strange use of the word pencil comes from optics and geometry. An aggregate
of (light) rays converging to a point does suggest the sharp end of a pencil and, by a
natural extension, the term came to be used for any one-parameter family of curves,
spaces, matrices, or other mathematical objects.

Most engineering applications give rise to generalized eigenvalue problems. A majority
of eigenvalue problems arising in mechanical vibration are generalized eigenvalue

problems. For example eigenvalue problems for vibrations of structures, which is the
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subject of concern of this project are called symmetric definite generalized eigenvalue
problems for the mass and stiffness matrices; Kx = AMx , where M is the mass matrix and

K is the stiffness matrix. M and K are usually real symmetric and, furthermore, M is

symmetric positive definite.
Definition

If A and B are real symmetric matrices and, furthermore, if B is positive definite, then
the generalized eigenvalue problem Ax=ABx is called the symmetric definite

generalized eigenvalue problem.

2.5 THE EIGENVALUE OF A PENCIL
The pencil pair (4, B) is called regular if det(4— AB) is not identically zero. Otherwise,

it is called singular.

2.5.1 The Eigenvalues of a Regular Pencil
Consider a the following conditions for a regular pencil (4, B)

Case 1: If B is nonsingular, then all the eigenvalues of the pair (4, B) are finite and are

the same as those of 4B~ or B™' 4

Case 2: If B is singular, then the degree of p(4) = det(4— AB) is less than n. Let it be 7.
" The r zeros of p(A) are the eigenvalues of the pair(4, B). The convention is to set the

(n—r) remaining eigenvalues to be «.



2.5.2 The Eigenvalues of a Singular Pencil
If (4, B) is a singular pencil, then because det(A4 — AB) vanishes identically, any number

A can be an eigenvalue of (4, B). (Chapra and Canale, 1988, Atkinson, 1993).

2.6 FLOOR MASS COMPUTATIONS

A sample of reinforced concrete used in the floor construction will be taken. This sampie
will be taken to the lab to find its weight and volume. We will then compute the density
of the sample to know the density of reinforced concrete used.

A whole floor of our building is depicted in the diagram below. It is a rectangular box.

B={(x,y,z)|a<x<b,c<y<d,r<z<s} with function /.

z B

Figure 2.2 Slab volume computation diagram

The first step is to divide B into sub-boxes. We do this by dividing the interval [a,b] into
[ subintervals [x,,,x,] of equal width Ax, dividing [c,d] into m subintervals
[¥,.,¥,1of width Ay, and dividing [r,s] into n subintervals [z, ,,z,] of width Az. The
planes through the endpoints of these subintervals parallel to the coordinate planes divide
the box B into /mn sub-boxes.

Btjk :[xl-]’xi]x[yj—l’yj]x[zk—l’zk]
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which are shown in figure 2.6. Each sub-box has volume AV = AxAyAz .

n

Z f(x;k’y;kaz;‘k)AV

- . - l
Then the triple Riemann sum is given as
i=l j=1 k=1
where the sample point (x,, Viks>Zy) isin By,

The triple integral of fover the box B is

m n

!
[[]/& y:2)AV = lim 35S f(xy.yyeszy )AV  if this limit exists.

i=l j=1 k=1
The practical method for evaluating triple integrals is to express them as iterated integrals
as follows
Definition

If fis continuous on the rectangular box B = [a,b]x[c,d]x[r,s], then

[[[rey.2av=[ f f f(x,y,z)dxdydz (Stewart, 1999).

Once the volume of a whole floor is computed, we can find the mass of that particular

floor using the basic formula mass = density x volume

2.7 COLUMNS/SPRING CONSTANTS COMPUTATIONS
The column of the building in our model acts as the spring when it is compared with a
spring-mass system. From basic mechanics the angular velocity of an oscillating body is

@ =27f . It can also be shown that the period of oscillation of a spring-mass pendulum

. . . m
with mass m and spring constant k is given by 7' = 27[\/—-—];
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Assume the period of oscillation of a simple pendulum of length 1 and the same particle

of mass m is also givenas T =27 i

g

m_ mg
= —= Sok=—=
k k l

!
g
This means that if the mass of a particular floor is known, the spring/column constant can

be computed for each floor of a high-rise building as follows

k,

i

= % ,fori=123,...

where [ = length of floor (in meters)
m = floor mass (in kilog rams)

g = acceleration due to gravity

2.8 THE CHOLESKY QR ALGORITHM

Because the eigenvalues of a matrix 4 are the zeros of the characteristic
polynomial det(4 — Al), one would naively think of computing the eigenvalues of 4 by
finding its characteristic polynomial and then computing its zeros by a standard root-
finding method. Unfortunately, this is not a practical approach.

A standard practical algorithm for finding the generalized eigenvalues of a symmetric
definite pencil is the Cholesky QR algorithm.

Method:

Given a generalized eigenvalue problem Ax=ABx, since B is symmetric positive

definite, it admits the Cholesky decomposition B = LL'
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= Ax = ALL"
o LAY 'x=x

Multiplying through by L”

= LAY ' I'x = AL x

Let C=L"A(L")" and y=L"x
=>Cy=2Ay

& det(C - AI) =0

Definition

Given the symmetric definite pencil (4,B) the corresponding eigenvalues 4,, and
eigenvectors x,, i =1,2,3,...,n are computed as follows
e Step 1: Find the Cholesky factorization of B, such that B = LI”
e Step 2: Form C=L"A4(L")™" by taking advantage of the symmetry of 4.
e Step3: Compute the eigenvalues A4, i=12,..,n and the orthonormal
eigenvectors y,, i = 1,2,...,n of the symmetric matrix C of the pair (4, B).
e Step 4: Compute the eigenvectors x; corresponding to the eigenvalues A, of the
pencil (4, B) by solving L'x, = y,, i=12,...,n

(Householder, 1964, Data, 2000)

2.9 MODEL FORMULATION

Damping Force: No matter the velocity with which an object is released, it will

definitely come to rest at a certain time ¢. The object will come to a halt because of
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damping force acting on it. A damping force is a force that acts to oppose an object’s
motion. They act in opposite direction to the released item until eventually when the
velocity of the object reaches zero, at which point the damping force vanishes.

Restoring Force: When an elastic band is used to tie an object and released while
holding the band, the object moves to a certain point and stops momentarily. It will then
return to its original point of released without pulling the object. This is possible because
the elastic band exerts a restoring force on the object. A restoring force is a force that acts
to oppose an object’s displacement. The magnitude of the force is an increasing function
of displacement rather than speed.

Resonance: It is an effect caused by a vibrating body, setting another body into vibration
both at their natural frequencies. In other words, if the frequency of the imposed periodic
force is equal to or nearly equal to one of the natural frequencies of a system, resonance
results.

Amplitude: The amplitude of a motion is the maximum value of its displacement.

Let us consider a system of » spring massesm,,m,,...,m,, with corresponding spring
constants k,,k,,...,k, under an excitation by a harmonic force F| sinwr . This system of

masses is compared to a block of » high-rise building with the floor masses
corresponding to the spring masses. The columns of the building structure correspond to

the spring of our model. Hence the model for the spring masses will apply for the high-

rise building.
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2.9.1 MODEL ASSUMPTIONS
The following assumptions are going to be employed in our model formulation

1. The weight concentration of the building is uniformly concentrated weight at each

floor.
2. The weights of the column walls were assumed to be negligible.

3. Displacement is very small. This is to maintain the liner nature of our model.

4. Lateral displacement is assumed rather than vertical displacement.

2.9.2 DISPLACEMENT UNDER FREE VIBRATION

Free vibration takes place when a system oscillates due to the forces inherent in the
system and without any external forces. Under free vibration such a system vibrates at
one or more of its natural frequencies. Since there is no external force on the system, we
set F(t,y)=0.

Applying Newton’s second law of motion gives

Total Force = Re storing Force + External Force

Mathematically,
d*y

m =—-ky+ F(t,
% ky+ F(t,y)
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3 5

(n-1)

—-—}yn

—_— n
kn
M1y
—Vn
k (n-1)
m,
>V
k2
m
»)V)
kl

Figure 2.3 Comparison of a buildine to a helical spring-mass with no external force
ko, ky(y,= 1) k, (yT - ) k(Y =Yn1)
m, m, m, m,
i l
kL(y,-y) ™& k(-y,) mg k(i-y;) mg m,g
Figure 2.4 Free body diagram for the spring-mass system without external force
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From the free body diagram, the equations of motion, by Newton’s second law, are:

my, =-ky +k,(y, -V)+mg (1) \
m,y, ==k, (¥, =) +ky(y; - y,) +m,g )
m3y3=_k3(y3—J/2)+k4(y4_}’3)+m3g (3)

> (a)

MysVpa =~k s Vs = Vo) + b, (9, = y,)+m, g (n-1)

m,5, ==k, (y, ~ Y, ) +m,g @

Y:(t,)=0 forall i=123,....n
Suppose we are interested in knowing the displacement of these springs when the system
is in an unsteady state-that is when the system attains maximum acceleration. Then by

setting the acceleration due to gravity to zero, we obtain: (Franklin, 1968)

my, =-ky +k,(y,-») M
myy, ==k, (y, = y,)+ks(y; = y,) (2)
myy, =—ky(y; = y,)+k (¥, —y3) (3)

> (b)

M Y ne1y = "k(n—l)(y(n—l) - y(n-2)) +k, (¥, = Vo) (n-1)

mnj}n = _kn(yn _y(n——l)) (n) J

Because we are going to solve the above systems using a matrix approach, it is easier to

do so by first rearranging the systems as shown below
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m y, +(k, + k,)y, -k, y,=0 (1)
m2y2+k2y1+(k2+k3)y2'k3y3 =0 (2)\
myy, —k;y, + (k; + ky)y, ~-k,y, =0 3)

(c)

My Y ity = KntyVin-ay + (k) + £, )iy —=k,y, =0 (n-1)
mnj?,, _kny(n-l) +knyn =0 (n)

J

We then formulate the immediate systems above in matrix form as

Ytk % 0 000 0 0 0) x) (0

(m 0 00000 0 OYj

0m 000000 O[3 ||k k% % 000 0 0 o0f 5 |0

00m0000 0 05|/ 0 —k k+k %00 0 0 0 y |0
+ =

0000000m, Of5,/| 0 0 0 0004k, kot % ¥ |0
(0000000 0 m)lLo 0 0 0000 % k£J)y)lo

The above matrix equation is a second order homogenous system of the form

My + Ky =0 where M =diag(m,,m,,...m,) and K, also known as the stiffness matrix

k+k, -k 0 0 00 O 0 0
k, k+k, -k, 0 00 0 0 0
o 0 -k, k,+k, -k, 00 0 0 0
18 given as
0 0 0 0 0 0 —kyy kpytk, -k,
0 0 0 0 00 O -k, K,

53



Since our model is a second order linear differential equation of the form My+Ky=0
with initial condition y(#,) =0 its general solution is of the form
y = Acosot + Bsin ot
Applying initial condition yields y = Bsinot where B is amplitude of displacement.
Hence we generalize displacement and acceleration as follows

¥, =x, sinot ¥, = - x, sinot

Yy =X, Sinot ¥, =-0’x, sinot

Yn =X, sinot y, =-0'x, sinot
where x,,x,,...,x, are respectively the amplitudes of the masses m,,m,,...,m, and ®
denotes the natural frequency. Substituting the above expressions for y,,y,,...,y, and

V15 ¥55-- ¥, In equation (c) gives

—mx,0* +(k, +ky)x, —k,x, =0 M )
—myx,0° +kyx, + (ky +k;)x, —kyx; =0 (2)
—myx,0° —kyx, + (ks +k)x; —kyx, =0 (3)

> (d)

2 _ _ _
=My Xy @ = KX gy (K nory + K )Xoy kx,=0___ (n-1)

(n-1)

2 = n
-m,x,0° —k,x,_, +k,x,=0 (n)

J

The system of equations above (d) can be simplified in matrix notation as
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k,

(k+k,  —k,

k+k,

0
k&

0 —k  k+k —k,

00
00
00

00 —k,, k.,+k -k,

00

0

0 0
0 0
0 0

-k K

S8 3

K1)

oo.S\
o3 o
S o o

0 0 O

0 0 0

0000 0 0Yx)

0000 0
0000 0 O

(=)

0000m,, 0
0000 0 m)

The above model is a generalized eigenvalue problem of the form Kx = AMx

2 ., .
where 4, =®,", i =1,2,...,n are the eigenvalues

29.3 ABSOLUTE AND AVERAGE MAXIMUM DISPLACEMENTS OF A

HIGH-RISE BUILDING

Let p,represent the coordinates of participating mode ;, E, = Z p;m, denote mode

=

participation factor of the chosen mode participation p, due to support excitation, and

also let R,R,.,...,R, denote the known maximum relative response of the participating

modes. This observation immediately gives the absolute maximum displacement of the

participating floors as follows
(}ﬁ ) (Pn
84! P
ER,|. + E,R,|.
Ky" / absolute max Pnm )

(Plz
Pxn

\pn2)

+..+ER,|.
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The average of the absolute maximum displacement is called the average maximum

displacement, which is actually the geometric mean of the absolute maximum

displacement. It is computed as follows

(/vi )average max = ‘/(ElRlpil)2 +(E,R,p,,)’ +..+(E.R.p,)* (Golub and Ortega, 1992

Data, 2000)

2.9.4 DISPLACEMENT UNDER FORCED VIBRATION
The impact of an earthquake in areas outside the neighborhood of it is always small
compared to the total area very close or directly on the epicenter of the quake. Here, the
magnitude of the earthquake becomes the external force acting on the structure. Applying
Newton’s second law of motion gives

Total Force = Re storing Force + External Force

Mathematically,

2

dy
m =—ky + F(t,
dt? *.y)

Since the external force is sinusoidal, it may be represented by F(f,y) = F, sinat where
F, is the forcing amplitude defined by F, =k, y,. The parameter y, is the amplitude of
displacement caused to the moving support by the earthquake and is computed from the

formular M, =log,, y,(mm)+3log,, [8At(s)]— 2.92 with the assumption that Az = 2.
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k ﬁ~yn
1 F, sin ot k,
ml >l m(n-l)
;y(n—l)
%k k(n—l)
2
m, —>); .
5 . >
k(n—l) m,
»)>
_—>y(n—l)
M -1 k,
m,
k" » V1
)
mn i kl

: y
F;sin a)t—T —

Figure 2.5 Comparison of a building to a helical spring-mass with external force

ko, k,(y,—n) ky(y;—y,) k, (¥, —¥,1)
m m, m; m,
v v l
k(y,-y)mg F(,y) ki(y;-y,) mMmg k(a—y;) mg m,8

Figure 2.6  Free body diagram for the spring-mass system forced vibration
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From the free body diagram, the equations of motion, by Newton’s second law, are:

mj, =—ky, +k,(y, = Y1)+mg+F sinot

(1)
myy, ==k, (¥, = ») +k;(y, =y,)+m,g (2
myjs =—ks (s =) +k,(y, - y;) +m,g 3)

mn—lj;n—l ="Kn (yn—l _yn—2)+kn(yn —yn_1)+m,,_1g (n‘l)

mnj}n =—kn(yn —yn—l)+mng (n)

\

> (e)

J

Suppose we are interested in knowing the displacement of these springs when the system

is in an unsteady state-that is when the system attains maximum acceleration. Then by

setting the acceleration due to gravity to zero, we obtain:

my, = -k, +k2(y2 —y,)+ F, sin ot

M

m,y, ==k, (¥, =)+ ki (y; —y,)

(2)

myy, = —ky(¥; = ,)+k,(¥y —y3)

M 3V 1y = =Ky Vinty = Yin-y) + ky (Vo = Ynt)

(3)

(n=1)

mnj;n = —kn (yn - y(n—l))

(m)
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Because we are going to solve the above systems using a matrix approach, it is easier to

do so by first rearranging the systems as shown below

mi i+ + k)1~ by, = Fsin ot (n )
mzj’.2+k2yl+(k2+k3)y2‘k3y3 =0 (2)
msys_k3y2+(k3+k4)y3"k4y4 =0 (3)

> (8
M-y Ity = Kin-1yVin-2y + Ry +£,) Y0y — k,, =0 (n-1)
mnj}n _kny(n—l) +knyn =0 (n) j

We then formulate the immediate systems above in matrix form as

(m 000000 0 0
0m 00000 0 0
00m0000 0 0

o e

. e e s

0000000 0 m)\j)

(k+k % 0 000 0
k k# % 000 0
0 & k+k 400 0

0 0 0 000+,

0y ¢=0-000
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The above matrix equation is a system of second order non-homogenous equations of the

form My+Ky=c whereM=diag(ml,m2,...,m"), ¢ = F, sinot and
ko vk, -k, 0 o 0 0 o o 6
k2 kz + k; = k3 0 0 0 0 0 0
0 -ky  k,+k, -k, 0 0 o 0 0
K =
0 0 0 0 0 0 -k, k,,+k, -k,
L 0 0 0 0 0 0 0 —k k

Our model is a non-homogeneous second order differential equation of the form

My+Ky=F(t) y(t,)=0
Since F(t) is sinusoidal, the general solution of this differential equation is

y = Acoswt + Bsin ot
Applying initial condition yields y = Bsinwt

So in general terms we say that

. o 2 .
. e 2 .

Y, =X, sinat Y, =—0"x,smaot

¥, =x,sinat J, = —@’x, sinat
. o 2 .

Y, =X, sinwt y, =—@°x,smaot

where x,,X,,...,x, are respectively the amplitudes of the masses m,,m,,...m, and @

denotes the natural frequency. Substituting the above expressions for y,,y,,...., and

P15 Y95 7, in equation (f) gives
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—mx,0° +(k, +k,)x, —k,x, =F, (1) )
- myx,0° + kyx, +(k, + k,)x, —kyx, =0 (2)
_m3x3a)2-—k3x2+(k3 +k4)x3—k4x4 =0 ( 3)

> ®

o m(n—l)x(n—l)wz - k(n—l)x(n—Z) + (k(n—l) + kn )x(n—l) - knxn = 0“( n-— 1)
-m x,0° - kX, +k,x,=0 (n)

. J
The system of equations above (c) can be simplified to obtain ‘
((k,+k2)—m,a)2)x1—k2x2=F, (D Y\
kyx, +((ky + k3) —my0*)x, —k,x, =0 (2)
—kyx, + (ks + k) -my0*)x, —k,x, =0 (3)

St

X1)

= k(n—l)x(n—Z) + ((k(n-l) +k,)- m(n—i)a)2 )x(n—l) -kx,=0__ (n-1)

_knx(n—l) +(kn —.mna)z)xn =0 (n) J

Equation (d) in matrix form is

((k+k-ma?) -k 0 0 00 0 0 0 )
k, (ky+k,—mye?) ~k, 0 00 0 0 0
0 & (g+k-md?) -k 00 0 0 0
0 0 0 0 00 —k(n-;) (k(n-l) +k, "”bp-l)af ) —k,

L 0 0 0 0 00 O —k, (k,-ma?))
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The above matrix can easily be solved to obtain explicit expressions for the amplitudes

X,5X, ..., X, With denominator factor m-my---m (o} - 0?)-(0? ~0Y) (0 - 0?)
n

From this, it follows immediately that whenever o is equal or close to @, for i = 1,2,.n
the amplitude becomes arbitrarily large, signaling the occurrence of resonance. In this
case when the frequency of the imposed periodic force is equal to one of the natural

frequencies of the system, the denominator is zero or close to zero, a situation, which is

very alarming for engineers.

2.10 SOLUTION OF TRIDIAGONAL SYSTEM

The resulting system of equations whose matrix equation appears above is known as a
tridiagonal system. The solution of linear second order systems of differential equations
leads to the solution of systems of algebraic equations in # or #+ 2 unknowns whose
coefficients give rise to a tridiagonal system. The solution of such systems is achieved
with the following algorithm

Algorithm

Consider the general tridiagonal system shown below

b ¢¢ 0 0 0 0 O 0 0 % n
a, b, ¢, 0 0 0 0 0 0 X, 7,
0 a; b, ¢; 0 0 O 0 0 X, £
0 0 0 0 0 0 a,y buy Cun | Xn Tn-1)
0 0 0 000 0 a b,A\H«x, T
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c r,
Step 1: Set «, =—L and y, =L
P 1 b, N bn

Step 2: For j = 2(1),...,n
¢j

J
b,-a,a,,

Step 3: With ¢, =0, set x, =y,
Step 4: For j=n-1,....1

X;) =T =Q;X4)

@, =——— andy, =

b, - a,a .

(Wilkinson, 1965 Coleman and Van Loan, 1988)

The above tridiagonal systems algorithm when employed to solve the system will obtain

explicit expression for the amplitudes x, , x, ,..., x,, .

These explicit solutions are of particular interest to an engineer because whenever b ; is
equal or close to a,, ,, the amplitude becomes arbitrarily large, for the simple reason

that the denominator approaches zero. This results in the occurrence of resonance.

2.11 LIMITS OF LINEARITY
In the derivation of the period of a simple pendulum, the displacement value appeared as

x=1Isin@. It was agreed that whenever @ is small, sind~6@ so that x=16

=>0=£.
l

From Taylor series expansion of siné,
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No 02n+1 93 05 7
ind = -1)" =0 -—— __i
3 Zo( ) 2n+1D)! 35

helps to yield appropriate values for 8 to fulfill linearity.

Definition: If x is a real number and x' is the floating-point approximation, then the

difference x'—x is called the absolute error and the quotient =% % %0 is called the

relative error.

200) _Ax _00 ol

From 9 o T the relative error for 6 can easily be computed (Chapra and

Canale, 1988)

212 SUMMARY

A mathematical model is a set of formulas and/or equations based on a quantitative
description of real phenomena and created in the hope that the behaviour it predicts will
resemble the real behaviour on which it is based. Mathematical modeling is the art and
science of constructing mathematical models and using them to gain insight into physical
processes or to make predictions concerning physical processes.

A physical law is a statement that expresses the relationship between quantities closely
enough to be taken as exactly true and is the major source of mathematical models.

* Most engineering applications give rise to generalized eigenvalue problems. A majority

of eigenvalue problems arising in mechanical vibration are generalized eigenvalue

problems
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CHAPTER THREE
30 DATA COLLECTION AND ANALYSIS

The structural drawings of Unity hall was collected and examined. The examinations
revealed that the Unity hall building has three different kinds of slabs, namely, the ground

floor slab, the intermediate floor slab (i.e. from first floor to eight floor), and the roof top

slab.

These slabs are represented schematically as below

0.125

3.075 0.85m 3.075
> «oh «—
Fig. 3.1 Ground floor dimensions

4.Q.ZIL_>

16.025m

v

Fig. 3.2 Subsequent floor dimensions
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A

0.6m

l

Fig. 3.3

0.85m

Mathematical methods were applied to these data dimensi ons and obtained the table

below

Roof top dimensions

[able 3.1 Extraction of data into tables

w

4.9375m

. ]
»

Unity Hall
Floor Length Breadth | Volume Mass (kg) Spring constant
(m) (m) (m’) Dead load | Live load | (N/m)
Ground 51.6 16.025 259.806 62353.44 | 14280 2.2x10°
1-8 51.6 16.025 397.5135 |95403.24 | 14280 3.4x10°
Rooftop |51.6 9.875 191.14575 | 45874.98 | - 1.6x10°
3.1 UNDER FREE VIBRATION
3.1.1 Case 1: Ignoring Live Load
Mass matrix
6.2353 0 0 0 0 0 0 0 0 0
0 9.5403 0 0 0 0 0 0 0 0
0 0 9.5403 0 0 0 0 0 0 0
0 0 0 9.5403 0 0 0 0 0 0
J o 0 0 0 9.5403 0 0 0 0 0
M=1070 0 0 0 0 9.5403 0 0 0 0
0 0 0 0 0 0 9.5403 0 0 0
0 0 0 0 0 0 0 9.5403 0 0
0 0 0 0 0 0 0 0 9.5403 0 ;
0 0 0 . 0 0 0 0 0 0 4.5875
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Stiffness matrix

(5.6 -3.4 0 0 0

0 0 0 0 0 )
34 68 -34 0 0 0 0 0 0 0
0 -34 68 -34 0 0 0 0 0 0
0 0 -34 68 -34 o 0 0 0 0
K =10° 0 0 0 -34 68 -34 0 0 0 0
o o 0 0 -34 68 -34 o 0 0
U 0 0 0 -34 68 -34 0 0
0 0 0 0 0 0 -34 68 -34 0
0 0 0 0 0 0 -34 50 -1.6
00 0 0o 0o 0 o o 16 16
From M = LL"
(249.7058 0 0 0 0 0 0 0 0 0 )
0 308.8738 0 0 0 0 0 0 0 0
0 0 3088738 0 0 0 0 0 0 0
0 0 0 3088738 0 0 0 0 0 0
e 0 0 0 0 308.8738 0 0 0 0 0
0 0 0 0 0 3088738 0 0 0 0
0 0 0 0 0 0 3088738 0 0 0
0 0 0 0 0 0 0 308.8738 0 0
0 0 0 0 0 0 0 0 3088738 0
L 0 0 0 0 0 0 0 0 0 214.1845)
(8.8774 - 4.3402 0 0 0 0 0 0 0 0 )
43402 7.0175 -3.5088 0 0 0 0 0 0 0
0 -3.5088 7.0175 -3.5088 0 0 0 0 0 0
0 0 -3.5088 7.0175 -3.5088 0 0 0 0 0
0 0 0 -3.5088 7.0175 -3.5088 0 0 0 0
€=l 0 0 0  -35088 70175 -3.5088 0 0 0
0 0 0 0 0 -3.5088 7.0175 -3.5088 0 0
0 0 0 0 0 0 -3.5088 7.0175 -3.5088 0
0 0 0 0 0 0 0 -3.5088 5.1960 -2.4331
0 0 0 -0 0 0 0 0 -2.4331 3.5088 )
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The eigenvalues of C, which are the eigenvalues of the pencil, (K,M) are 13.5271,

12.0421, 8.3144, 8.3144, 9.6378, 6.6940, 4.4513,0.1165, 1.0127, and 2.5946.

The natural frequencies corresponding to these eigenvalues are

f=(05851 0.5521 04587 04587 04939 04116 03357 0.0543 0.1601 0.2563)"

The approximate eigenvectors of (K, M) associated with these eigenvalues are

(-0.0810

0.1851 -0.7071 -0.7071 -0.3302
0.0868 -0.1350 -0.0917 -0.0917 0.0579
-0.2613 0.4223 - 0.3260 - 0.3260 - 0.4517
0.3980 - 0.4698 0.1046 0.1046 0.2795
- 0.4770 0.2504 0.1060 0.1060 0.2430
0.4870 0.1112 -0.0632 - 0.0632 - 0.4609
- 0.4265 - 0.4097 - 0.0265 - 0.0265 0.1012
0.3042 0.4754 0.0287 0.0287 0.3854
-0.1379 -0.2711 0.0000 0.0000 - 0.3890
0.0335 0.0773 . - 0.0061 -0.0061 0.1544
-0.3229 ) ( 0.2068 (-0.0269 0.0833 0.1433
-0.1624 0.2109 - 0.0544 0.1509 0.2074
-0.4144 0.4101 - 0.1402 0.3612 0.4387
0.1242 0.0890 -0.2214 0.4672 0.3456
0.4258 - 0.3450 -0.2953 0.4385 -0.0031
- 0.0850 -0.3413 -0.3594 0.2831 - 0.3495
-0.4337 0.0953 -0.4115 0.0461 - 0.4374
0.0450 0.4111 - 0.4500 -0.2043 1 -0.2019
0.4378 0.2053 - 0.4735 -0.3957 0.1829
-0.3344 - 0.5300 -0.3396 - 0.3857 0.4867 )

by solving L'x, = y,, i=1.2,...,n
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The eigenvectors x, corresponding to the eigenvalues A, of the pencil (4, B) is obtained




(-0.0003 0.0007

-0.0028 (-0.0028 (-0.0013
0.0003 -0.0004 -0.0003 -0.0003 0.0002
- 0.0008 0.0014 -0.0011 -0.0011 -0.0015
0.0013 -0.0015 0.0003 0.0003 0.0009
. = -0.0015 . - 0.0008 . _| 00003 _ | 0.0003 _| 0.0008
0.0016 0.0004 * 7100002 | T [-00002 | **T|-0.0015
-0.0014 -0.0013 -0.0001 -0.0001 0.0003
0.0010 0.0015 0.0001 0.0001 0.0012
-0.0004 - 0.0009 0.0000 0.0000 -0.0013
[ 0.0002 L 0.0004 0.0000 0.0000 0.0007
-0.0013 0.0008 -0.0001 0.0003 0.0006
- 0.0005 0.0007 - 0.0002 0.0005 0.0007
-0.0013 0.0013 -0.0005 0.0012 0.0014
0.0004 0.0003 - 0.0007 0.0015 0.0011
L | 00014 | 00011 . _|-00010 | | ooo14 | | 0.0000
¢ 1-0.0003 7| -0.0011 *1-0.0012 > | 0.0009 1 -0.0011
-0.0014 0.0003 -0.0013 0.0001 -0.0014
0.0001 0.0013 -0.0015 - 0.0007 - 0.0007
0.0014 0.0007 -0.0015 -0.0013 0.0006
(- 0.0016 -0.0025 -0.0016 -0.0018 0.0023

The mode participating factor of the chosen mode p, due to support excitation is given

as Ei = zn:pjimi

j=1
E, =m, p,, +m,p,y, + My, + ..t My Py =-21.3108
E, = mp,, + My p,, + My sy +...+ My, Py, =33.3823
E, =m p,; + My Py + My Py + ..ot My Py = -227.3430
E, = m Py, + My Py + My Psy +..t- My Proy = -488.0683
E; =myp,s + myp,s + MyPys + .ot Mg Pros = -609.9620

Eg =mpg +MyPyg + MyPag +.ct MygPros = -781.5557
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By =mypy +mypy tmpy +ot My Doy = -616.2667

Eg =mpg +my Dy +mypog + ...+ my py, = —1438.6857
Ey =mpig +myDsy + Mypyg +...+ my proy =—1146.2876
Eg=mpy+mpy+mpy, +..+mgp,, = -949.3482

Assuming the maximum relative response of each floor as follows

R, =04m,R, =R, =R, =R;=R, =R, =Ry =R, =02m and R,, =0.1m

(¥, (02592 )
Y, -0.0877 () (02174 )
Vs -0.0095 ' ¥, 0.1081
Vs -0.3130 s 0.2633
Vs | -0.1297 s 0.2382
Y | 03629 »s | 02538
Vs 0.3845 Vs | 0.2532
Vs 0.1744 ¥ 0.2607
Vs 0.2342 Vs 0.2574
(V10 ) e mwe \ 0.4521 ) ' Vs 0.3053
o | oy o \ 0.4258 )
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0.43m

0.3Im

0.26m

0.26m

0.25m

0.25m

0.24m

0.26m

0.11m
0.22m

——

51.6m

-
»

Figure 3.3 Schematic diagram of the maximum displacement of the building when
live load is ignored
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3.1.2 Case2: Considering Live Load

Number or rooms on each floor = 28

Average number of students per room = 6

Average weight per student = 60kg

Number of double beds per room =2

Average weight per double bed = 75kg

Live load per floor =28(6 x 60 + 2 x 75) = 14280kg

Mass

matrix
(76633 0 0 0 0 0 0 0 0 0 )
0 109683 0 0 0 0 0 0 0 0
0 0 109683 0 0 0 0 0 0 0
0 0 0 109683 (1) 0 0 0 0 0
vl O 0 0 0 109683 0 0 0 0 0
0 0 0 0 0 109683 0 0 0 0
0 0 0 0 0 0 109683 0 0 0
0 0 0 0 0 0 0 109683 0 0
0 0 0 0 0 0 0 0 109683 0
L 0 0 0 0 0 0 0 0 0 45875
From M = LI
(276.8267 0 0 0 0 0 0 0 0 0 )
0 331.1842 0 0 0 0 0 0 0 0
0 0 331.1842 0 0 0 0 0 0 0
0 0 0 331.1842 0 0 0 0 0 0
0 0 0 0 331.1842 0 0 0 0 0
=L=l 0 0 0 0 331182 0 0 0 0
0 0 0 0 0 0 331.1842 0 0 0
0 0 0 0 0 0 0 331.1842 0 0
0 0 0 0 0 0 0 0 331.1842 0
. 0 0 0 0 0 0 0 0 0 214.1845 )
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7.2231
3.6512
0

O O O O O O O

The eigenvalues of C, which are the eigenvalues of the pencil, (K,M) are 11.7730,

10.5089, 6.8944, 6.8944, 8.4975, 6.0152, 4.0603, 0.1029, 0.8986 and 2.3336

- 3.6512 0
6.1039  -3.0520
-3.0520 6.1039
0 - 3.0520

0 0

0 0

0 0

0 0

0 0

0 0

0

0
- 3.0520
6.1039
- 3.0520

0

S O © O

0

0

0
- 3.0520
6.1039
- 3.0520

0

0
0
0

0

0

0

0
- 3.0520
6.1039
- 3.0520

0

0
0

S O O ©

0
- 3.0520
6.1039
- 3.0520

0

0

The natural frequencies corresponding to these eigenvalues are

0 0

0 0

0 0

0 0

0 0

0 0
- 3.0520 0
6.1039  -3.0520
-3.0520 4.5195

0 - 2.2692

o 0O 0O 0o C © O

0
- 2.2692
3.5088

f =(0.5459 0.5157 0.4177 0.4177 0.4638 0.3902 0.3206 0.0510 0.1508 0.2430)"

The approximate eigenvectors of (K, M) associated with these eigenvalues are

(-0.0757 )
0.0943
-0.2657
0.3993
-0.4760
0.4848
-0.4246
0.3039
-0.1399

( 0.0384 )

0.1719
-0.1547
0.4288
- 0.4643
0.2413
0.1160
- 0.4087
0.4739
-0.2753

[ 0.0892

-0.7071
-0.0637
-0.3379
0.0768
0.1267
- 0.0496
-0.0435
0.0238
0.0126

-0.0136
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-0.7071 )
-0.0637
-0.3379
0.0768
0.1267
- 0.0496
-0.0435
0.0238
0.0126

-0.0136

(-0.3117 )
0.1088
-0.4583
0.2506
0.2617
- 0.4559
0.0958
0.3807
-0.3944

L 0.1794




(-0.3433 )

(0.2319 )

o136 (0.0282 ) (-0.0882 ) (0.1573 )
0.2009 0.0550 -0.1528 02107
-0.4140 0.4119 0.1418 -0.3662 0.4485
0.1015 0.0750 0.2239 -0.4718 0.3434
0.4169 -0.3617 0.2984 -0.4385 -0.0243
- 0.0894 -0.3172 0.3628 -0.2760 -0.3734
-0.4195 0.1494 0.4151 -0.0323 -0.4370
0.0772 0.4172 0.4533 0.2209 -0.1665
0.4218 0.1300 0.4763 0.4091 0.2314
(-0.3819 - 0.5348 (0.3173 [ 0.3557 ( 0.4467

|

The eigenvectors x, corresponding to the eigenvalues A, of the pencil (A4, B) is obtained

bysolving L'x, = y,, i=12,..,n

(-0.0003 ) ( 0.0007 ) (-0.0028 ) (-0.0028 ) (20.0012 )
0.0003 - 0.0005 - 0.0002 - 0.0002 0.0004
-0.0009 0.0014 -0.0011 -0.0011 -0.0015
0.0013 -0.0015 0.0002 0.0002 0.0008

Lo |0001s | 0.0008 | | 0.0004 . | 00004 o | 00008
"1 0.0016 7100004 |77 |-0.0002 ‘| -0.0002 * 7 1-0.0015

-0.0014 -0.0013- - 0.0001 -0.0001 0.0003
0.0010 0.0015 0.0001 0.0001 0.0012
- 0.0005 - 0.0009 0.0000 0.0000 -0.0013

[ 0.0002 ) [ 0.0004 ) - 0.0001 - 0.0001 [ 0.0008 )
(-0.0014 (0.0009 ) (0.0001 ) (-0.0004 ) [ 0.0006 )
- 0.0004 0.0007 0.0002 -0.0005 0.0007
-0.0013 0.0013 0.0005 -0.0012 0.0015
0.0003 0.0002 0.0007 -0.0015 0.0011
0.0013 -0.0012 0.0010 -0.0014 -0.0001

*=| 00003 | *=|-00010 | ¥ o002 | **7|-00009 | T |-00012

-0.0014 0.0005 0.0013 -0.0001 -0.0014
0.0003 0.0014 0.0015 0.0007 - 0.0005
0.0014 0.0004 0.0015 0.0013 0.0007
(- 0.0018 - 0.0025 L0.0015 ( 0.0017 L 0.0021
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The mode participating factor of the chosen mode p; due to support excitation is given

as E, =ipj,.mi

j=1
E, =mp, +mypy +mp, +..+mp,, =-18.0437
E, =mp,, + mypy, +mypy, +...+ myp,, =30.7270
E; =mpiy +my Py +mypsy + ...t my gy = -227.3960
Ey=mpy, +mypyy +mpy +..v m iy, = -485.5189
Es=mp;s+myp,s +myp,s +...+myp,os =-590.0691
Es=mp+mp,,+m;p, +... + My, Dios = -7163.4594
E,=mp, +m,p,, + myp,, +..+ myp,, =-602.2372
Eg =mpg+m,p,s +mypyg +...4my,pros =222.2409
Ey =mp,g +myp, +mypsg + ...+ My P =-65.7332

E\y =mpyg +mypy 5 +Mypyg + .ot My prgye =141.1426

(¥ (6.6981) () 7
% -0.3262 2 0.3957
¥s 4.0877 » 11870
74 -2.2964 2 0.5288
Vs -2.5452 ¥, _| 10149
Ys | 2.9069 Ye 0.8747
Y1 0.1576 2 0.8697
Vs -4.8628 | Ve 0.9260
Vs -2.2751 Y 1.0418
\ V10 Japs.max.  \ 4.1940 ) \ V10 ) average.max. \1.5754 )
75 -
LT




1.6m

1.0m
0.9m I
0.9m
0.9m
1.0m
0.5m
1.2m
0.4m
1.4m
51.6m
- >
Figure 3.4 Schematic diagram of the maximum displacement of the building when

live load is considered
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(-1.6542

-0.6889

cocococ oo o

0

0.6889

-0.9136

0.4568
0

©c o oo oo

0

0.4568
-0.9136
0.4568

0

©C O © © o

3.3.1 Case 1: Ignoring live load

32 ALGORITHM STABILITY TEST

0
0
0.4568
-0.9136
0.4568
0

©cC © o O

3.3 UNDER FORCED VIBRATION

4 -51)’ +(4 - 42)? +..+ (4, - A,)? =11.4557

0 0 0 0
0 0 0 0
0 0 0 0
0.4568 0 0 0
-09136  0.4568 0 0
0.4568 -09136 0.4568 0
0 04568 -09136 0.4568
0 0 04568 -09136
0 0 0 0.4568
0 0 0 0
L] n
LEIE=Y Yle, [ =12.9618
J=1 =l

The resultant generalized eigenvalues problem is

(4.7559 -3.3475 0 0 0 0 0
33475 55024 -3.3475 0 0 0 0
0 -3.3475 55024 -3.3475 0 0 0
0 0 -3.3475 55024 -3.3475 0 0
0 0 0 -3.3475 5.5024 -3.3475 0
0 0 0 0 -3.3475 55024 -3.3475
0 0 0 0 0 -3.3475 5.5024
0 0 0 0 0 0 -3.3475
0 0 0 0 0 0 0
0 0 0 0 0 0 0
77

(g = 24)? + (A = Ay)? +...+ (A, = An)? < E || must be satisfied.

mmmmixisaluﬂnedbyukingﬂ:ediﬁambamhn-m(m
mimomdliveloadanddntofwhmd\elivelodwacomidud).

0
0
0
0
0
0
0

0.4568
-0.6765
0.1639

Hence the stability theorem, which states that for stability to be assured, the condition

0 0 0 )

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
-33475 0 0
55024 -33475 0
-33475 3.7646 -1.6096

0 -1.6096 1.0362 )

"

o
—_

o
~

U —




T

Applying the algorithm for tridiagonal system described earlier

(x,) ( 7.8628
Y 7.8628

X, -2.1009 v, 21000
% | | 44095 s 4.4095
% 9.3490 Y4 9.3490
x; |_| 10.9579 ’ 10.9579
X 8.6631 »e | 86631
X, 3.2821 », 39821
Xg -3.2682 Ve 3.2682
Xy | | -8.6542 Vs 8.6542
\¥10) \-13.4434 Y10 ) og mee \13.4434
Displacement(x) | Four-digit  decimal | Relative ol 00

ﬂ?atmg point number ereod |x"—x| | 2]

. | x|
7.8626 0.7863x10' 5.0874x107° | 1.75x107 | 1.7493x107
2.1009 0.2101x10’ 4.1599x107° | 1.75x107% | 1.7502x107*
4.4095 0.4410x10' 1.1339x10™ | 1.75x107 | 1.7431x107
9.3490 0.9349x10" 5x107° 1.75x1072 | 1.7494x107
10.9579 0.1096 x10? 1.9164x10™* | 1.75x107 | 1.7352x107*
8.6631 0.8663x10" 1.1543x107° | 1.75x102 | 1.7532x107
3.2821 0.3282x10' 3.0468x07° | 1.75x1072 | 1.7514x107
3.2682 0.3268x10' 6.1196x107° | 1.75x107 | 1.7483x107
8.6542 0.8654x10' 2.3110x107° | 1.75x1072 | 1.7521x107
13.4434 0.1344x10° 2.5291x10™ | 1.75x1072 | 1.7291x107

Observing critically the relative error for & shows that it is very close to the relative

error for / as a result of the minute values for the relative error for displacement x.
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Figure 3.5 Schematic diagram of the maximum displacement of the building with no
live load, when subjected to an earthquake of magnitude 2.0 on the Richter scale
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3.3.2 Case 2: Considering live load

The resultant generalized eigenvalues problem is

(-4.2661 -3.3475 0 0 0 0 0 0 0 0 Yx) (44428
3.3475 -6.0241 -3.3475 0 0 0 0 0 0 0 |x, 0
0  -3.3475 -2.0595 -3.3475 0 0 0 0 0 0 |x 0
0 0  -3.3475 -2.0595 -3.3475 0 0 0 0 0 |x, 0
ol © 0 0 -3.3475 -3.8180 -33475 0 0 0 0 0% 100 ©
0 0 0 0  -3.3475 -1.0952 -3.3475 0 0 0 |x 0
0 0 0 0 0  -3.3475 1.0489 -33475 0 0 |x 0
0 0 0 0 0 0  -3.3475 53896 -33475 0 |x, 0
0 0 0 0 0 0 0  -33475 2.7790 -1.6096] x, 0
L 0 0 0 0 0 0 0 0  -1.609 -0.0343\x,) ( 0

Applying the algorithm for tridiagonal system described earlier

(x,) (-7.1919) [y, (7.1919 )
x, | |-4.1065 ¥, 4.1065
x, | | 0.1981 ¥, 0.1981
x, | | 3.9846 ¥, 3.9846
x, | |-2.6496 s | 26496
x| |-0.9626 ¥q 1 0.9626
x, | | 29646 s 2.9646
X, | | 1.8915 Yy 1.8915
x, | | 0.0809 Ys 0.0809
(x0) | 3.7940 ) \ Y10 g max . \3-7940 )
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4.1065

0.1981

3.9846

2.6496

0.9626

2.9646

1.8915

0.0809

3.7940

51.6

\4

Figure 3.6 Schematic diagram of the maximum displacement of the building with live
load included. when subjected to an earthquake of magnitude 2.0 on the Richter scale
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SIMULATION OF UNITY HALL UNDER KNOWN FORCES

The maximum possible displacement when no live load is present in meters is

(02174 0.1081 02633 02382 02538 02532 02607 02574 0.3053 0.4258)

Table 3.2(a)

Simulation results when live load is ignored

QUAKE LIVE LOAD IGNORED ]
%\DGENI MAXIMUM DISPLACEMENT UNDER A KNOWN FORCE

0.25 (0.1398 0.0374 0.0784 0.1663 0.1949 0.1541 0.0584 0.0581 0.1539 0.2391)

0.50 (02486 0.0664 0.1394 02956 03465 02740 0.1038 0.1034 02737 0.4251)

0.75 (0.4422 0.1181 0.2480 0.5257 0.6162 0.4872 0.1846 0.1838 0.4867 0.7560)

1.00 (0.7863 0.2101 0.4409 0.9349 1.0958 0.8663 0.3282 0.3268 0.8654 1.3443)

1.25 (13982 0.3736 0.7841 1.6625 1.9486 1.5405 0.5836 0.5812 1.5390 2.3906)

1.50 (24864 0.6644 13944 29564 3.4652 2.7395 1.0379 1.0335 2.7367 4.2512)

175 (44216 1.1814 24796 52573 6.1621 4.8716 1.8456 1.8379 4.8666 7.5598) |
20 (7.8628 2.1009 4.4095 9.3490 10.9579 8.6631 3.2821 3.2682 8.6542 13.4434)" |

The maximum possible displacement when live load is present, given in meters is

(1.3882 0.3957 1.1870 0.5288 1.0149 0.8747 0.8697 0.9260 1.0418 1.5754)

Table 3.2(b)

Simulation results when live load is considered

QUAKE LIVE LOAD CONSIDERED

MAGNI MAXIMUM DISPLACEMENT UNDER A KNOWN FORCE j
TUDE ‘
0.25 (0.1279 0.0730 0.0035 0.0709 0.0471 0.0171 0.0527 0.0336 0.0014 0.0675)

0.50 (0.2274 0.1299 0.0063 0.1260 0.0838 0.0304 0.0937 0.0598 0.0026 0.1200)

0.75 (0.4044 02309 0.0111 02241 0.1490 0.0541 0.1667 0.1064 0.0045 0.2134)

1.00 (0.7192 0.4106 0.0198 0.3985 0.2650 0.0963 0.2965 0.1892 0.0081 0.3794)

1.25 (12789 0.7302 0.0352 0.7086 04712 0.1712 05272 0.3364 0.0144 0.6747)

150 (22743 12986 0.0626 12600 0.8379 03044 09375 05982 0.0256 1.1998)
L.75 (4.0443 23092 0.1114 22407 14900 05413 1.6671 10637 00455 2.1335)

2.00 (7.1919 4.1065 0.1981 3.9846 2.6496 09626 29646 18915 0.0809 3.7940)
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Figure 3.7(a) Graph showing simulation results when live load is ignored
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Figure 3.7(b) Graph showing simulation results when live load is considered
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CHAPTER FOUR
4.0 INTRODUTION
This chapter seeks to discuss in detail the results of the computations of chapter three. It '.
will also list the conclusions drawn based on the computations and the discussion of

results. The recommendation of the project is provided for the benefit of society.

4.1  DISCUSSION OF RESULTS

Under free vibration and live load absent, all displacement values fall below 0.912m
which shows that the model maintains its linearity under free vibration. However, when
live load is present, some displacement values exceeded 0.912m, showing that the
presence of live load reduces linearity of the model under free vibration. This goes to
suggest that the linearity of the model is compromised when live load is included.

Under forced vibration, our model maintains its linearity up to an earthquake of
magnitude 1.0 when live load is present and 1.25 when live load is absent This also
confirm the allusion that, the presence of students have little effect on the linearity of the
model under forced vibration. Above the stipulated magnitudes of 1.0 and 1.25 when live
load is absent and present respectively, displacements exceeds 0.912m meaning the
linearity assumption becomes no longer tenable and failure of the building becomes
eminent.

In spite of the stated magnitude thresholds, it must be noted that if the frequency of the
incoming wave coincides with one of the natural frequencies of the building, the

amplitude of displacement becomes large, signaling the occurrence of resonance. Where
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42 CONCLUSION

. UnityHallhasbeenmodeleduaﬁnwmechmialsyMlndmldied

under conditions of 1. Free vibration.
2. Forced vibration.

e  The linearity assumption is represented by bounds of € in the range
-0.32 <6 <0.32 radians.

e  Unity Hall can maintain its linearity up to an earthquake of magnitude /.0
when live load is absent and /.25 when live load is present.

e  The presence of live load in the building is likely to improve its tolerance
under earthquake conditions.

e If the frequency of the imposed periodic force coincides with on of the
modal frequencies of the building, the amplitudes become arbitrarily large,

signaling the occurrence of resonance.

43 RECOMMENDATION
Simulation should be run for the various equations generated in this thesis to gencrate
apptopdatewns&ucﬁondenilswadaptinhﬂldhghiduixhﬂdinambe.bkw

maintain its linearity and also minimize cost.
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APPENDIX

MATLAB IMPLEMENTATION OF THE ALGORITHM FOR THE MODEL

cle

display(" )

display('THIS IS THE CODING FOR A THESIS IN PARTIAL FULFILMENT OF A
MASTER")

display(OF SCIENCE DEGREE IN MATHEMATICS, PRESENTED TO THE
GRADUATE SCHOOL)

display('OF KNUST BY DERICK FOLSON (BSC. COMPUTER SCIENCE)")

display(’ )
g=10;
pi=22/7;
h=input("What is the height of each floor in meters?');
if h<=0
display('/Remember you are entering height of a floor of a building! Run the
programme again’)
break
end
n=input ("What is the size of matrix or total number of floors?');
ifn<=1
disp('Please, we are dealing with storey buildings! Run the programme again))
break

end
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M=zeros(n); %holds the mass matrix when live load is absent

MI=zeros(n); %holds the mass matrix when live load is considered

M2=zeros(n),; %holds the error matrix
K=zeros(n); %holds the stiffness matrix
R=zeros(n,1);%holds the relative response to displacement
F=zeros(n,1); %holds the quake magnitude vector
r=zeros(n,1); %holds the displacements under a quake
DIl=zeros(n,1); %holds the eigenvalues when liveload is absent
D2=zeros(n,1);%holds the eigenvalues when live load is present
Fl=zeros(n,1);%holds the natural frequencies when live load is absent
F2=zeros(n,1);%holds the natural frequencies when live load is present
Y=zeros(n,1); %holds the right hand side of the stability theorem resu,lts
Jori=I:n
M(i,i)=input(‘enter mass’);
if M(i,i)<=0
disp('a floor mass cannot have this value’)
break
end

end

display(" MASS MATRIX: )
M
sk=zeros(n,1);

SJori=I:n
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sk(i)=M(i,i)*g/h;
end

display("

sk

sk(n+1)=0;

fori=I:n
K(i,i)=sk(i)+sk(i+1);

end

K:

fori=3:n
K(2,1)=sk(2);
K(2,3)=-sk(3);
K(1,2)=-sk(2);
K(@n+1)=0;
K(,i-1)=-sk(i);
K(,i+1)=-sk(i+1);

end

K(.n+D=[];

COLUMN CONSTANTS.

STIFFNESS MATRIX-

display("
K

display(’
L=chol(M)

CHOLESKY FACTORIZATION-

)

SYMMETRIC MATRIX-

display("
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C=inv(L) *K*inv(L")

[V.D]=eig(C)

Jori=I:n
DI(i)=real(D(i,i));
F1(i)=sqrt(D1(i))/(2*pi);

end

Di;

display('—---———--NATURAL FREQUENCIES

Fl

fori=I:n
R(i)=input(‘enter relative response’);

end

R
x=zeros(n,1);
sum=0;
sumi=0;
sum2=0;

fori=I:n
x=inv(L))*real(V(:,i));
fori=I:n

E=M(i,i)**(i);
sum=sum+E;

end
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display("-------—m---- EIGENVECTOR )

sum
suml=suml+sum*R (i) *x;
sum2=sum2+(sum*R (i) *x)."2;

end

display(" ABSOLUTE MAXIMUM: )

absmax=suml

display(”" : 9
display(" AVERAGE MAXIMUM DISPLACEMENT-----—------- )
display(" g

avgmax=sqrt(sum2)
max(avgmax);
fori=I:n

M2(i,i)=input(‘enter mass of live load));

end
MI1=M2+M;
display('------~=====-=-=- DEAD AND LIVE LOAD MASS MATRIX--------==menz-- )
Ml
display(" CHOLESKY FACTORIZATION- )
L1=chol(MI)

SYMMETRIC MATRIX- )

display(’
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CI=inv(L1)*K*inv(LI")

[V,D]=eig(Cl)

fori=I:n
D2(i)=real(D(,i));

F2(i)=sqri(D2())/(2%22/7);

end
D2;
display(’ NATURAL FREQUENCIES OF FLOORS )
F2
sum3=0;
sum4=0; w c:":r‘.\
sum5=0; ‘e "".» ?": =
for i=I:n Y, *‘:h'
x=inv(L')*real(V(.,i));
display('----------------- EIGENVECTORS OF THE PENCIL (K, M )------------— )
x
fori=I:n

E=M(i,i)*(i),

sum3=sum3+E;
sum4=sum4+sum3*R(i)*x;
sum5=sum5+(sum3*R(i)*x)."2;

end

display(" El )
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sum3

end

display(" ABSOLUTE MAXIMUM. )

absmax=sum4

display(" )
display(" AVERAGE MAXIMUM DISPLACEMENT ———neeemeev-’)
display(" )

avgmax=sqrt(sumJs)

max(avgmax),

display(" ERROR MATRIX )

ER=CI-C R
1 e .

display(" ALGORITHM'STABILITY TEST )
N

Y=(DI1-D2)."2

sum6=0;

fori=I:n
sum6=sum6+Y(i);

end

sum6

s=(norm(ER,'fro’))"2

if sum6<=s

display(WE HAVE A STABLE SYSTEM)

else

display('WE HAVE AN UNSTABLE SYSTEM)
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end

c=input("what magnitude do you want to subject the building t0?");

t=2

F(1)=10c+2.92-3*l0g10(8*));

display(’ QUAKE MAGNITUDE VECTOR )

F
for i=I:n

K(i,i)=K(i,i)-M(i,i) *real(D(i,i));

end

display(" RESULTANT TRIDIAGONAL SYSTEM--------------- )

K

display(" DISPLACEMENT UNDER EARTHQUAKE------------- )

r=real(inv(K)*F)

display(" ABSOLUTE MAXIMUM DISPLACEMENT--------------=-- )
real(r)

display(" )

display(" AVERAGE MAXIMUM DISPLACEMENT- )
display(" )

abs(r)

fori=I:n

K(i,i)=K(i,i)-M1(i,i) *real(D(i,i));
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end

display(---RESULTANT =~ TRIDIAGONAL SYSTEM WHEN LIVE LOAD IS
CONSIDERED----')

K

display('---DISPLACEMENT UNDER EARTHQUAKE WHEN LIVE LOAD IS

CONSIDERED---')

r=real(inv(K)*F)

display(" ABSOLUTE MAXIMUM DISPLACEMENT-—--eemeeemmemn- )
real(r)

display(’ )

display(" AVERAGE MAXIMUM DISPLACEMENT )
display(' )

abs(r)

KU.‘“;"'R’,.ﬂpu._ .', g
4 A
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