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ABSTRACT

An allowable bearing pressure is one of the most important basic parameters
to be determined before the design and construction of foundations for civil
engineering structures. The conventional methods of estimating this parameter is
becoming relatively expensive and time consuming for small scale projects such as
residential buildings.

The DCP is a versatile equipment that may be applied to obtain the bearing capacity.
However, currently, there are no reliable cnrrf:]atiﬂns; between the DCP test results
and the bearing capacity. This project was undertaken to develop a reliable
correlation between the Dynamic Cone Penetrometer (DCP) n-value (blows/100mm)
and the allowable bearing pressure ., (kN/m®) for shallow foundations using a
model footing. In this work, compacted soil sample of different dry densities in a
mould was loaded with a model footing until the sample yielded. On the same
sample, DCP testing was performed at two locations to determine the average D-
value (mm/blow). Triaxial samples were also taken for triaxial test. Results from the
triaxial test were used to calculate ultmate bearing capacity using Terzaghi bearing
equation. The measured DCP D-value (mm/blow) was processed into n-value

(blows/100mm) which is the standard form of recording the DCP test results in the
field. The results were analysed and a correlation (;=48n + 57, with a

coefficient of corrclation, R’=0.98 was obtained for the model footing. This
correlation was similar to the correlation between the n-value and the allowable

bearing pressure computed using the Terzaghi approach, except that the Model

underestimated the allowable bearing pressure by a constant value of 165 kN/m” for

all values of n. LIiBRARY
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CHAPTER ONE

INTRODUCTION
1.1 Background

One important objective in site investigation for the design and construction
of foundations for civil engineering structures is the estimation of the allowable
bearing stress for the foundation system proposed. Improper estimation of the
allowable bearing stress leads to either overestimation or underestimation of the
soil’s load carrying ability, with consequent safety or economy implications on the
project respectively.

The conventional approach to estimation ol allowable bearing stress is
through site investigation techniques. By this approach in cohesive soils, Ujgg
samples are obtained using a drilling rig or for shallow depths, through trial pits. The
samples obtained are sent to the laboratory, and subjected to triaxial test to determine
the strength parameters, ¢, and ¢, Depending on the proposed footing configuration,
the allowable bearing stress is then estimated using Terzaghi’s bearing capacity
equation. On the other hand, for cohesionless soils, the methed of determining the
allowable bearing capacity consists of the use of the Standard Penetration Test (SPT)
which is an in-situ test. The SPT, however, is performed as part of site investigations
using the percussion drilling rig whose cost do not make it any more economical than
the use of samples. For example, a typical site investigation within Accra, for simple
structure such as 4 bedroom single-storey house will cost about GH¢ 3,000.00 for 3
boreholes not exceeding 10.0m deep and will require at least 8 days for the fieldwork
alone. This cost is considered too high for average developers of these types of

buildings with estimated total project cost of about GH¢30,000.00 (The site

RAR
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investigation cost therefore represent about 10% of the total project cost). In the light
of these challenges, there is the need to find cost effective ways of undertaking site
investigation for these categories of simple structures. The potentials of the DCP are
therefore being explored for evolving allowable bearing capacity for shallow
foundations. The dynamic cone penetrometer (DCP) is simple and wversatile
equipment which in combination with other methods has the potential of simplifying

site investigations.

1.2 Objective

The objective of the study was to establish a correlation between the
Dynamic Cone Penetrometer Test n-value (number of blows per 100mm) and
allowable bearing stress for shallow foundations using a laboratory model footing

and a sandy CLAY material.

1.3  Justification

The DCP is simple and cost effective equipment and has been recommended to
be an appropriate technology for use in developing countries (Sanglerat, 1972).
However, up to date, not much research has been conducted into the use of DCP in
general and its use in estimating of allowable bearing pressure for shallow
foundation design in particular. Even of the few works done regarding the DCP, the
focus has been on its use in pavement design and in agricultural engineering for the
determination of the consistency of potential cultivatable land and grazing fields
(Amini, 2003; Burham and Johnson 1993 ; Edil and Benson, 2004; Gabr et al., 2000,
Karunaprema and Edirisinghe, 2002; Singh et al., 1973 Uddin, 2002; Vanagas ct al.

2004;). In spite of the very limited research on DCP test for estimating allowable

Crvid Dizitse-Awuku 2 Index No, §2001-03
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bearing stress for shallow foundations design and construction, Sowers and Hedges
(1966), Sanglerat (1972), Cearns and McKenzie (1988) and Ampadu (2005) have
made significant strides in that respect.

Notwithstanding the few attempts to [ind suitable ways of using the DCP
testing effectively for the estimation of allowable bearing stress. the absence of a
credible correlation is leading to a situation where some practitioners in the country
are attempting to use any kind of DCP specification to estimate the allowable bearing
stress of foundation system basing the analyses mainly on the works of Sanglerat
(1972). These weaknesses are leading to inconsistent outputs for the users of the
DCP testing for estimating allowable bearing stress. This study, however, -sciught to
correlate the DCP n-values with directly measured allowable bearing stress using a

laboratory model footing on a sandy CLAY material.

1.4 Scope of Work
The scope of work was limited to:

(i) field work which consisted of manual excavation of test pit to recover
sample for the tests and logging the test pit;

(i)  laboratory work consisting of the characterisation of the test material
and performance of unconsolidated-undrained triaxial test to derive the
undrained strength paramcters , ¢, and ¢,

(iii)  The laboratory work also covered a model footing test on compacted

sample and DCP testing of the model ground.

Lavid Dritse-Awuku 3 Index No, 82001-05
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The use of penetrometers in geotechnical site investigation 1s widespread
(Harison, 1987). Different types of penetrometers are used for site investigation in
response to varying needs. Usually, during the initial exploration stage, penetration
tests are employed to determine the stratigraphy, thickness, the soil type in terms of
consistency, and the lateral extent of the lithologies. At the detailed site investigation
stage, penelration tests are still employed to determine some geotechnical design
parameters (Mayne et al, 1995). In general, there are (wo categories of
penetrometers; static and dynamic penetrometers. Available literature indicates that,
the use of static penetrometers have been extensively researched into far morc than

the dynamic penetromcters.

2.2  The Pocket Penetrometer

This is a static cone penetrometer. It is commonly used on split spoon and
thin walled tube samples to evaluale comsistency and approximate unconfined
compressive strength of saturated cohesive soils. It 15 also used for the same purpose
in freshly excavated test pits and trenches. The pocket penetrometer, Figure 2.1 is
extremely small and portable; typically weighing less than 300g and approximately
15c¢m long. It is a spring-loaded penetrometer. The spring is calibrated against
unconfined compressive strength (in kg,r‘cmzi. Prior to testing, the indicator ring is
positioned at the top of the barrel. Next, the probe is slowly inserted into the soil

until the calibration mark is levelled with the soil surface. The movement of the

David Dizitse-Awaku 4 Index Mo, B2001-05
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indicator ring corresponds to the spring compression. The chamber 1s marked with
unconfined compressive strengths that have been calibrated with the internal
compression of the spring. The mark at which the indicator ring is located is taken as
the unconfined compressive strength of the soil. It must however, be noted that, the
readings oblained [rom the Penetrometer should not replace laboratory test results
due to the fact that a small area of penetration test could give misleading results. The
instrument should not be used for obtaining f{inal foundation design data. [t should
be noted that pockel penetrometer readings are only approximations of actual
strengths and accuracy of about 1/2 division is possible (Humboldt Manufacturing

Company, 2002). One 8- mm interval on the scale is cquivalent to

1kg/em®=98.1kN/m” unconfined compressive strength

Figure 2.1 Pocket Penetrometer (after Humboldt Manufacturing Company, 2002)

2.3  The Cone Penetrometer Test

The Cone Penetration Test (CPT) is traditionally used by most European and
American geotechnical engineers. Original specification for its use has been
designated ASTM D3441 and was adopted in 1974 by the American Society of
Testing and Materials. In this tesl, a small cone is attached to a rod and pushed
steadily into the ground at a rate of 20.32mm of displacement per second. The

penetromelter is attached to a vehicle that provides the large jacking [orces required

LIBRARY
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during testing. The 60” apex angle cone has a base arca of 1032mm’, with a
diameter of 35.56mm and a height of 30.48mm. The cone is attached to a fnction
sleeve having a diameter of approximately 35.6mm as in Figure 2.2. The CPT
equipment is steadily pushed into the ground and has been used to charactenze soils
to depths of 30m below the ground surface. The tip of the cone is typically
instrumented 1o measure the tip resistance using strain gauges, while the sleeve
above the cone is instrumented to measure the sleeve friction. These parameters are
used to obtain a profile of the variation of soil strength and soil type with depth
(Brouwer, 2002). An improvement over the original CPT in 1995, led to the new
electronic CPT called Piezocone Cone Penetrometer Test (PCPT) which has been
produced and its operation outlined in ASTM D-5778. The PCPT combines both
electronic friction cone and piczocone penctrometers. This device produces
computerized log of tip and sleeve resistance, induced pore pressure just behind the
cone tip, pore pressure ratio (change in pore pressure divided by measured pressure)
and lithologic interpretation of each 2 e¢m intervals of subsoil. The data acquisition
systems typically include a portable computer, analog-digital converler, storage
media (hard drive, floppy drives), and strip chart recorder or printer and printed out

(Mayen et al, 1995).

Figure 2.2 Cone Penetration Tip (after D3778)

Davad Dense-Awuku 6 Index Mo, B2001-05
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2.3.1 Applications

The results of the PCPT are used for delineating soil strata and for evaluating
the peotechnical engineering parameters of the subsurface layers. Its exceptional
resolution makes the detection of thin seams and lenses possible, particularly via the
pore pressure channel. This facet is very important and is used in slope stability
evaluations. Considerable effort has been made to derive soil engineering properties
from the results of cone and piezocone data. Methodologies have been developed
using empirical and statistical methods, back-calculations, analytical studies, and
numerical simulation (Mayen et al, 1995). Mayen et al, (1995) report that many
recent developments in CPT have centered on its use for geo-environmental
concerns. The incorporation of additional sensors within the penetrometer to
instantaneously and continuously monitor phenomena offers significant potential for
evaluating subsurface chemical and biological conditions. For example, cone data are
used to infer or detect the presence of anomalies such as contaminants in the pore
fluid. In addition, modifications and add-on modules to the standard cone
penctrometer, such as, direct-push technology has led to other specialized probes for
sampling and testing groundwater and soil during environmental site
characterization, including: push-in soil samplers, push-in water samplers, push-in
piezometers, and soil-gas extraction-type samplers. One example of a specialized
device is the "hydro-trap”, a commercially-made groundwater sampler used to obtain
volatile organic compounds under controlled confining pressures. Routinely, CPT
data are used for the analysis and design of foundations, including bearing capacity
and settlement of spread footings, driven piles, and drilled shafts (bored piles). Both
direct and indirect methods of CPT assessment are used. The CPT is also useful in

assessing compaction control during placement of structural fills and in the

L BRARY
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evaluation of effectiveness of ground modification techniques (e.g., vibroflotation,

dynamic compaction) and site improvement works (Mitchell, 1986).

2.4 The Standard Penetration l'est

This is a dynamic cone penetrometer designed to provide information on the
engineering properties of soils. The test procedure 1s described in the British Standard
BS 1377: Part 9:1990. A typical test operation is as shown in Figure 2.3. The test uses
a split thick-walled sample tube, with an outside diameter of 51mm and an inside
diameter of 35mm and a minimum length of 457mm, Figure 2.4. This is driven into
the ground at the bottom of a borehole by blows from 63.5kg hammer falling through
a distance of 760mm. The sample tube is initially driven 150mm into the ground
(seat-in-drive) and then the number of blows needed to further penetrate each of
75mm of the tube markings to a depth of 300mm 1s recorded. The total number of
blows for the 300mm penetration is the standard penefration resistance N-value. In
cases where 50 blows are insufficient to advance the tube through the 300mm
interval, the penetration after 50 blows is recorded and indicated as refusal. The main
purpose of the test is to provide an indication of the relative density of granular
deposits, such as sand and gravels from which it is virtually impossible to obtain
undisturbed samples for strength testing. The great merit of the test and the main
reason for its widespread use is that, it is simple and relatively inexpensive. Il has
been observed that interpretation of the SPT results depends on the soil type, with
fine-grained sands giving the most useful results, with coarser sands and silty sands
giving reasonably useful resulis, and clays and gravelly soils yielding results which

may be very poorly representative of the true soil conditions.

Diavid Dzitse-Awnku b Imelex Mo, B2001-05
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2.4.1 SPT Correlations

Correlations between SPT-N value and CPT-q have been studied for vanous soils
Table 2.1 shows some of the correlations.

Table 2.1 Correlations between SPT N-value and CPT-q, for various soil matenals

(Afier Arora, 2000)

Relation Soil Material Used
q<=800N to 1000N for gravels
qe=500N to 600N for sands
qe= 300N to 400N for silty sands
q.~200N for silts and clayey silts ,

Where g, is in KN/m”,

qc = 400N Meyerhof (1956)

Peak Shearing Angle and Bearing Capacity Factors from SPT N-values

Figure 2.5 shows the chart for estimating internal friction angle and bearing capacity

factors of a cohesionless soil from SPT N-values.

o ' T ] T [EnEsas
O [, U ; !Z.-—;-u, * [Loose
N R f | Faclium,
2o -{ = 22l annan
o ue “ : - 1 fﬁ‘ - ! o
E il kr—ﬁ—‘—.* L De
== — - 40 |Danse
, iy 4
-Eé . ; 4 fr ; *0| Sarie
I =
& ! LV
g L — — /j é g
a8 — 2ls 2
5 - HEE
Lo
v F
% 3 3
10— ':ﬁr e
= 5
028 3° 33 3k O 38 WO X Lk LS
Angle of shearing resistance, ¢*

Figure 2.5 Relationship between é, N, and Ny with SPT N-values
( After Peck, Hanson & Thombum, 1973)

Davat [hrstser Awshu 10 Iy N £2001 41



MPWLICivil Engmeermp KNUST

Allowable Bearing Pressure- SPT N-Values

Figure 2.6 is a chart for estimating allowable bearing capacity of sand based on SPT

M-values
700 - I ] T
max. settlernant 25 mm
E \\
o 400 40
=
=] ] s
"‘ ——
E. “"-\-‘_._“-- =]
I-..____-__‘r-___ =
£ 300 — -
2 =2
e =]
g | 3
E 200 2 €2
=)
a
100
10
5
v 0 1 2 3 4 5 6
Breadth of footing, 8 (ml

Figure 2.6 Relationship between SPT N-values and Allowable Bearing Pressure
{after Terzaghi and Peck, 1967)

Unconfined Compression Strength -SPT N-Value
The approximate Unconfined Compression Strengths of clay soils have been
correlated with SPT N-Value by Sowers and Terzaghi. This correlation is shown in

Figure 2.7
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Figure 2.7  Comelations between Unconfined Compressive Strength and

SPT N-values, for clays (after Arora, 2000)

2.5  Historical Development of DCP

The earliest record of a subsoil penetration testing device similar to the DCP, the
"ram penetrometer” was developed in Germany at the end of the 17th century by
Nicholaus Goldmann (Burham and Johnson, 1993). The next major development
again came from Germany, when, Kunzel in 1936 developed what was known as
"-Prufstab”. This device was later used by Paproth in 1943 and eventually became
standardized in 1964 as the "Light penetrometer”, the German Standard DIN 4094,
Concurrent with the German standardization of the "Light Penetrometer”, several
other countries and individuals developed their own penetration devices, such as :
Collin of France in 1846; the Swedish Railroads standardized theirs in 1917, Danish

Railroads in 1931 came out with the pocket penetrometer used for approximate

L. BRARY
AWAME NKRuman umivERsITY o5
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evaluation of unconfined compression strength. In 1946, the Soil Mechanics
Laboratory in Delft and Gondsche Machinefabniek oa Gouda also came out with
their versions (Sanglerat, 1972). Notwithstanding the historical development of the
DCP, the advancement of the use of modem DCP i1s attnbuted to Scala who
developed the DCP also known as Scala penetrometer in 1956 in Australia (Scala,
1956). In response to the need for a simple and rapid device for characterization of
subgrade soils. Australia adopted the IDCP used by Scala which mcluded a 9%kg
hammer with a dropping distance of 508mm, a 15.875mm diameter rod and a 30"
apex cone which was used to penetrate up to maximum depth of 762mm into the soil.
After the works of Scala, various rescarchers continued to work on both the testing of
the instrument and the testing procedure. In the late 1960°s , D.J. Van Vuuren in
Zimbabwe continued with the development of the DCP(Van Vuuree, 1969). He used
a similar device as Scala, except for some differences in dimensions: a 10kg hammer
was dropped from a height of 460mm, forcing a 30" apex cone connected to a 16mm
diameter rod into the soil for a maximum depth of 1000mm (Burnham and Johnson,
1993). Kleyn (1982) contribution to the development of DCP was in the area of its
application to determine in-situ properties of road pavement layers and subgrade in
South Africa. Other applications included identification of potential collapsible
soils, compaction construction especially when high lift rates render normal
compaction control techniques to time be consuming to be effective. He further
considered the use of DCP in pavement evaluation and monitoring in terms of
structural evaluation of pavement, comparing in-situ CBR and structural monitoring.

Some of the many versions of the DCP used by various people are tabulated in Table

2.2.

David Dzitse-Awuku 13 Index Mo, 8200105
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Table 2.2 Some Versions of the DCP (adapted from Ampadu, 2005)

Cone ] [ | Energy per Blow
Type hameter | Mass of Hammer | Height of Fall |  per Cone Arca
(mm) (Kg) (mm) (KN-m/m”’)

Sowers &

Hedges (1966) 38 6.8 508 30
Scala (1956) 20 9.08 508 144
Kleyn (1975) 20 8 575 144
Borros Penetrometer 50 63 750 231
Singh (1973) 15 10 500 51
Ampadu (2005) 20 10 460 144

This Study 20 8 578 144

2.6  The Dynamic Cone Penetrometer

The dynamic cone penetrometer in operation consists of a drop weight, an
anvil, rods and a cone. It is traditionally used in testing of subgrade soils for road
projects. It is also used during reconnaissance exploration of soils at shallow depths
for other civil engineering projects. The consistency of cultivatable lands s
determined using DCP testing prior to ploughing. During testing, the drop weight is
allowed to fall through a specified height. As the drop weight hits the anvil, Kinetic
energy is imparted into the DCP system and the cone is driven into the ground. The
depth of penetration with each blow is measured or derived as the D-value. The soil
layering profile and strength are interpreted from the D-values. The test procedure is
described in the ASTM D6951-03, The Transport Rescarch Laboratory(TRL)
Research Report 361(2004) and in the recommendations of the study group created
in 1957 by committee of the International Society for soil Mechanics and foundation
engincering to analyse test methods involving the dynamic and static penetrometers

{Sanglerat 1972).
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A compansm of the main features of SPT and DCPT i1s shown in table 2.3,

Table 2.3 companson between SPT and DCPT Used

SPT DCPT
Dynamic Impact Dynamic Impact
Open Cone(occasionally solid cone) Solid cone
Weight of hammer is 63 5kg Weight of hammer is 8kg
Height of hammer fall is 760mm Height of hammer fall 1s 578mm
Diameter of cone 51mm Diameter of cone 20mm
Energy per blow 232kN-m/m” Energy per blow 144kN-m/m”

2.6.1 Development of Semi Empirical Equations

The principle of the dynamic cone penetrometer test is based on dynamic
resistance offered by soil 1o deformation caused by dynamic penetrometer. The
degree of the resistance is a measure of the soil's shear strength and hence its beanng
capacity., Thus a penetrometer of constant energy (blow) would develop higher -
value in a soil layer of low shear strength as compared to a soil layer of higher shear
strength (Sanglerat, 1972; Singh et al.,, 1973; Peck et al., 1973 and Braja, 1985). The
theory of dynamic cone penetrometer however can be attnibuted to Aimé Nadal, a
French civil engineer of “Ponts ¢t Chaussées™ in Pans and the Dutch. The work of
Aimé Nadal was based on empirical evidence gathered over many years of working
on penetrometer tests and dniving of piles. It was observed that the dynamic
resistance of soil, Ry to advancement of penetrometer was a function of the shear
strength of the soil by the dynamic expression;
U g T e e O S e e o o oo e 2.1
Where fand s are the tip(cone) and skin(rods) resistances respectively; ¢ and ¢ are

angle of internal friction and cohesion factors respectively, whiles 4 and Bare
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reduction factors whose values depend on the nature of the soil into which the
penetrometer is being driven; and the design of the penetrometer.

Because the design of the DCP used in this study is such that, the diameter of the
cone base (20mm) 15 larger than the diameter of the rod behind it (16mm), the total
resistance is theoretically provided by the cone resistance only.

Hence, A =1 and 0B=0

The Dutch Formula is a dynamic formula which is based on the assumption that the
kinetic energy delivered by the hammer dunng penetration by a dynamic
penetrometer is equal to work done by the entire penetrometer system. It is founded
on the Newton’s principle of energy and impact motion. Upon releasing the hammer,
the mobilized maximum potential energy is progressively transferred into kinetic
energy which attains maximum value just at the point of striking the anvil. At point
of strike, most of the kinetic energy is transferred from the hammer to the anvil
which in turn is transmitied to the lower rods and finally to the cone. Theoretically,
when the cone eventually comes to rest, the total kinetic energy imparted has been
dissipated in the soil. Therefore by the law of conservation of energy, the total work
done by the soil to stop the advancing cone and wasted (lost) energy to environment
such as sound and wave energy equals the maximum potential energy attained by the
hammer at the highest point, neglecting sliding friction and air resistance of the
hammer. The main components of energy losses in DCP operation are; sound energy,
heat energy generated, wave energy propagated through the soil and skin friction

energy of the rod.
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The Dutch formula 1s hence expressed as;

M eH

R = b+ P)]

Where Ry= dynamic resistance in kN/m’
M=mass of the hammer in kg;

H= height of hammer fall in mm;

A= cross-sectional area of the cone base in m*
D—penetration per blow in mm:

g~ acceleration duc to gravity, in ms™

P=mass of the penetrometer (without the sliding hammer) in kg; (Sanglerat, 1972).
It should be noted that for a particular dynamic penetrometer, all the parameters in
equation (2.3) are constant except D=penetration per blow which is a variable
dependent on the shear strength of the soil being tested.

Substituting the following specifications of the dynamic cone penetrometer used,

M = 8kg, H=578mm, A =3.142 x 10™ m?, P= 3.864kg, D—penetration in mm per
blow:

equation 2.3 reduces to

97351

2 5 kN /m*

R

Sanglerat (1972) recommends that for shallow foundations, the allowable bearing

pressure, gy, may be estimated by dividing Rg by a factor of 20,

R
Thus, qu=—>
us, Qall 70 - LB
48G7.55 .':ff::!m:h;;u “‘WEHH"
= —asds : —value=10 D TECHNOL pg
T =—p kN/m? , For n-value=100mm/ KUMASi -5 41y Y
qd||=4R.TT'| &b A ..........................................................-..-.......{1.-4}
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2.6.2 Previous Works

Previous altempts to establish relation between n-value and allowable bearing
pressure for the design and construction of shallow foundations includes, Sowers and
Hedges (1966), Sanglerat (1972), Cearns and McKenzie (1988) and Ampadu (2005).
It must however be noted that, the DCP penetration increment of the Sowers and
Hedges(1966) study was only 44 mm instead of the standard 100mm and also the
energy per blow per unit area of cone was only 21% of that used in used in this
work. Virgm Piedmont soil was used for the resecarch. The Sanglerat (1972) work
involved the use of the Dutch formula for the dynamic resistance, R; The obtained
Ry was divided a factor of 20 to obtain the allowable bearing pressure in a
cohesionless soils. Based on the specifications of the DCP used in this work, as

shown in Table 2.2, Sanglerat (1972) correlates q; with n-value as in equation (2.4).

The Cearns and McKenzie (1988) on the other hand, used the Borros penetrometer
that had energy per blow per unit area of cone of about double of that used in this
study. The Ampadu (2005), work involved establishing a correlation between n-
value and allowable bearing capacity. He estimated the allowable bearing capacity
from the strength parameters ¢, and ¢, obtained from triaxial test and then used
Terzaghi bearing capacity formula. The n-values of DCP lesting were correlated with
an allowable bearing stresses obtained. He used sandy to silly CLAY material in his
work to obtain the correlation equation (2.5);

ERTE §h Tt g 0o B o i gl o AR b S gt i i W i Al el 3
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2.6.3 Empirical DCP Test and Strength Correlations

Relationship between D-value and other soil parameters have been
established by many researchers on cmpirical basis. Below are some of the
comelations.
Relationship between D-value and unconfined compression strength (UCS) in kN/m’
have been studied in the laboratory for lime stabilised soil and relation below has
been established;

Log (UCS)=3.21 - 0.809log D (after McElaveney and Djatnika, 1991)

Many studies have been conducted to formulate correlation between D-value and
resilient modulus, My. The results of George and Uddin (2000) shows that;

Mg (MN/m™ = 235304 for coarse-grained soil
My (MN/m?=532.1 D*** for fine-grained soils

Allowable Bearing Pressure - n-value

The relationship between n-value and allowable bearing pressure shown below has
heen derived by Ampadu (2005) from ulimate bearing capacity calculated using
Terzaghi's bearing capacity equation for sandy to silty C.LA4 Y materials.

qau{k‘mez} = 164n - 504 for n-value(blows/100mm.) =6

DCP and CBR
Correlations between D-value and California bearing ratio (CBR) have been
investigated by many researchers using various materials. The Table 2.4 and Table

2.5 show some of the correlations hetween D-value and California Bearing Ratio and

the materials used.
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Table 2.4 Some Relationships between D-value and CBR
Correlation Malterial Invest ggmr_
1 | log (CBR) = 1.145 — 0.336 log D | disturbed soaked CBR Karunaprema
Undisturbed- unsoaked | and Edirisinghe
2 | log (CBR)=1671-0.577 log D | clayey or silty sand (2002)
3 |log (CBR)=2.182-0.872 log D | disturbed unsvaked CBR | (7 <D<75)
4 |log (CBR)=256-1.16log D Claylike soils
5 | Log(CBR)=2.81- 1.32 log D Claylike-Well graded Harison(1987)
Gravels
Table 2.5 Some Relationships between D-value and CBR (after Amini, 2003}
Correlation Material R Ewcstigélm
| |log(CBR)=245-1.12log D | Granular and cohesive Livneh et al. (1992)
2 log(CBR) =2.46- 1.12 log D Various soil types Webster et al. (1992)
3 |10g(CBR)=262-127log D | Unknown Kleyn (1975)
4 |log(CBR)=244-1.07 log 12 Aggregate base course Eseetal. (1995) |
5 |1og(CBR)=2.60-1.07log D | Aggrcgalc base course NCDOT (Pavement,
and cohesive 199%)
6 | log(CBR)=253-1.141lcg D Piedmont residual soil Coonse (1999)

2.6.4 Capabilities of the DCP

The DCP has many capabilities, the following are some of them:

(i) It is not expensive to acquire and can be manufactured in-house; it is

costing about $1,400.00 from Salem Tool Company , USA as compared

to Horager-55 Cable Percussion Rigs cost £14,192.00 (Consallen Group

Sales Ltd , 2008). Locally, the DCP is costing about GHg¢ 1,000.00.

(ii) It is portable and suitable when access and space become a constraint

especially in confined areas such as inside buildings to be rehabilitated or

David Diaise=Awuku
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at congested sites that would prevemt the use of uadional bnn'n;-,
equipment;

It 1s easy to learn how to operate it in matter of minutes;

It 1s a simple device to operate, requining 3 people for its efficient
operation;

It is fast to conduct, leading to large amounts of data over an arex;

Its data are easy to process, especially when used with appropriate
software;

The test results have been comelated to other soil parameters (CBR,
unconfined compressive strength, shear strength and SPT N-values) by
various researchers ;

It is cost-effective to operate, especially when compared with other
traditional site characterization methods (borings and laboratory/field

tests).

2.6.5 Limitations of the DCP

In spite of the many advantages of the DCPT, there are some associated

limitations that have been identified. For example:

(1)
(1)

(111)

It does not permit groundwater conditions to be readily evaluated;

No samples are obtained for cither visual inspection or further analysis,
and

It is not suitable for gravel soils and hard formations such as highly
weathered and fresh rock formations. This is because, the DCP rod may

bend.
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2.7 Bearing Capacity of Shallow Foundations

The ultimate bearing capacity of a soil, g, is classically defined as the value
of bearing pressure that will cause a large increase in settlement of the foundation
without further increase in bearing pressure, resulting in shear failure. The ultimate
bearing capacity of shallow foundations is usually calculated from the Terzaghi
bearing capacity equation by incorporating appropriate soil parameters (cohesion,
internal [riction and unit weight), footing details and foundation depth. The
allowable bearing pressure (gq) 1s the maximum bearing pressures that can safely be
applied to a foundation such that, it is safe apainst instability due 1o shear failure and
maximum tolerable settlement. The allowable bearing pressure is normally
calculated from the ultimate bearing capacity by using appropriate factor of safety,

F.. Typical value of factor of safety for shallow foundation s 3.0.

2.7.1 Factors Affecting Bearing Capacity of Shallow Foundations
A number of factors have been studied and found (o affect the bearing
capacity of shallow foundations. Some of these factors are;
1. The unit weight, shear strength and deformation characteristics of the soil.
i1, The size, shape, depth and roughness of the footing.
iii. Groundwater level and initial stresses in the foundation soil (Dunn et al.,

1980).

2.7.2 Terzaghi Ultimate Bearing Capacity Equation
The present Terzaghi formula which is a modified form of Prandil (1921)
plastic failure theory (Radhakrishnan and Ramanathan, 1965) is used for evaluation

of the ultimate bearing capacity of shallow foundations. Terzaghi,s theory 15 based

David Dzitse-Awuko s Inclex Mo, 8200 -05
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on the observation that the failure surface in soil at ultimate load takes the form
shown in Figure 2 8. thus forming a triangular elastic wedge zone directly under the
footing and two bulges delineated by two log spiral curves extending to the ground
surface. In the theory, the angles o between the footing base and the sides of the

triangular zone were taken to be equal to the soil intemal friction angle, ¢.

L

Limit Welshe=
Ciesion ¢
Friction angle= &

Figure 2.8 General Shear Failure Pattem (after Terzaghi Analysis)

Using the equilibrium analysis, Terzaghi expressed the ultimate bearing capacity for
shallow strip foundation in its simplest form as;

e =eNe-H VBN RVyBN; W i vy . e . <! ARSI (2.6)
Where N, N, and N, are the Terzaghi bearing capacity factors.

Equation (2.6) is subject to the following conditions:
= peneral shear failure ;
®  strip (continuous) footing for which L=5R;
« rough foundation base ; and

e shallow foundation (Dy < 4B).
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On the basis of comparative loading tests with footings of different shapes, equation

(2.6) has been modified into equation (2.7) by mcorporating correction factors for

footing shape configuration (Vesic, 1973).
Quit = CNese +1D; Ngsg + 14yB Nos, ey g
Where s s;and s, are shape factors

Table 2.6 gives the correction factors for footing shape configuration for shallow

foundations,

lable 2.6 Correction Factors for Footing Shape (after Vesic1973)

Shape Factors Sc 5q Sy

Strip footing 1.0 1.0 1.0

Rectangular

Footing 1 FE . 1+Eta:n¢' 1.0.4 B

Limitation B< L L\ N, & *
N q

Circle and square e Lang 0.60

[

L and B are length and breadth of the footing.
For foundations that exhibit local shear failure, equation (2.6) is modified into:

ity =230 N8+ Nigss + Yo¥B Ny 85 ciovansiisanadsnans s s (2.8)

where the values of Ny N4 and N;, are beaning capacity factors obtained after

modifying ¢ using equation (2.8).

e g DU IS o SOOI <.
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2.7.3 Modcs of Foundation Failures

According to experimental results of foundations resting on sands, the mode
of failure likely to occur in any situation depends on the size of the footing relative to
the foundation depth and the relative density of the soil (Vesic, 1973). It must be
stated that while the above stated factors have been observed to be responsible for a
particular mode of failure, there is at present no general numerical criteria that can be
used to predict a particular failure mode., An attempt by Vesic (1973) to link relative
density and depth of foundation relative to footing width to failure mode is shown in

Figure 2.9,

Relative Density
0 0.2 0.4 0.6 0.8 1.0

Fone |
Genera) Shear failure

Qf ZFone 11
B Local{Shear failu

Zone 111 \ \
S

4 Punching Shear failure \
E T -

Figure 2.9 Failure Mode Chart (after Vesic, 1973)

Vesic (1973) classified bearing capacity failures into three main categories for

shallow foundations depending on how the yield surface developed as explained

boio: L.BRARY
KWAME NKRUMAN UNIYERSITY oF
SGIENCE AND TECHNOLOBY
KiMASI =EHEME
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2.74 General Shear Failure

When a load (Q) is gradually applied to a foundation, settlement occurs
which 1s almost elastic to begin with. At the ultimate load, general shear failure
occurs when a plastic yield surface develops under the footing, extending outward
and upward fo the ground surface and catastrophic settlement and/or rotation of the
foundation occurs. The load per unit arca at the point of failure is the ultimate
bearing capacity, q¢ for foundation using model footing. This type of failure has been
noted to be common in highly incompressible svils of definite shear strength such as
very dense sand and hard overconsolidated clays. A heave on the side is always
observed in general shear failure Figure2.10a. A typical stress-settlement praph is

shown in Figure 2.10b

applisd besting pressau'f

4

MEwsas

Figure 2.10a; General Shear Faillure of Soil Figure 2.10b: Typical Stress-Settlement Graph
of General Shear Failure {(after www,
fbe.uwe ac.uk /public /geocal/foundations)

2.7.5 Local Shear Failure

In medium dense sand and clays of medium consistency, significant vertical
settlement may take place due to local shear failure. The local shear results from
partial development of the state of plastic equilibrium close to the lower edges of the
footing, The yield surfaces often do not reach the ground surface and may only

slightly heave Figure 2.11a, Several yield developments may oceur accompanied by

David Dzitse-Awuku 26 Index Mo. 8200105



Pl (T Engineering ), KNUST

settlement in a series of jerks. The bearing pressure at which the first yield takes
place 1s referred to as the first-failure pressure, Qi Figure2. | Ib-the. The term firsi-
failure load Qg is also used (Malandraki and Tell, 1996). Local shear is
charaetensed by relatively large settlements and the ultimate bearing capacity is not
clearly defined (www. fbe.uwe.ac.uk /public fgeocal/foundations) , in these cases

settlement is the major factor in the foundarion design.

applied hearing pressurE

Mawmaas

-

Figure 2.11a: Local Shear Failure of Soil Figure 2.11b: Typical Stress-Settlement Graph f
of Local Shear Failure (after wwwy, |
fhe uwe.ac uk /public /geocal/foundations)

2.7.6 Punching Shear Failure

In weak compressible soils and very loose to loose soils, considerable vertical
settlement may take place with the yield surfaces restricted to vertical planes
immediately adjacent to the sides of the foundation; The ground surface may he
dragged down, Figure 2.12a. There is no heaving of the ground surface away from
the edges and no tilting of the footing occurs. After the first yield has occurred, the
stress - settlement curve will become shghtly steep, but remain fairly flat Figure

2.12b. This is referred to as a punching shear failure.
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applied bearing pressw&'_

91

Jswapas

Figure 2.12a: Punching Shear Failure Figure 2.12b: Typical Stress-Settlement

Graph of Punching Shear Failure (after www.,
fbe.uwe.ac.uk /public /geocal/foundations)

2.7.7 Scale Effect in Model Test

In the studies of Singh et al. (1973), Cerato and Lutenegger (2003), it was
discovered that there is significant scale effect between the footing width and
ultimate bearing capacity for shallow foundations. It was found that increasing the
footing width results in higher ultimate bearing stress for the same soil material.
Similarly, in the works of De Beer (1965) and Vesic (1973), it was realised that
model footings used for bearing capacity studies of width, B less than 150mm gave
results that were higher. This was due to the fact that, the magnitude of N, decreased
significantly with B until B = 50mm when N, becomes fairly constant as illustrated
in Figure 2.13. By this, a condition of lower limit on footing size to use i model
footing experiments is suggested.

F

L 4

150 B (mm)

Figure 2.13: Variation of N, with Footing Width (after Das and Omar|991)
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Some researchers have suggested the seale cffect may be related to gram size

characteristics of the =oil (Cerato and Lutenegger, 2003). Fundamentally, size effect

is the relative size of the footing to that of the particle size of the individual soil

particles carrying the footing. Coarse sandy soils will therefore have significant size

effect than clayey soils carrying the same footing.

Model footing sizes used in previous model footing studies are shown in Table 2.7,

Table 2.7 Some Model Footings Used m Various Studies |
|
Mould Dimension Footing Footing Soil Material [
Authors lxbxh Dimension | Clearance from Used E,'
(mm’") LxB(mm') | MouldEdge | )
| Geogrid Re-
Patra et al (2005 ) 800 x 365 x 700 360 x B0 1.EB | inforced SAND
' Crude oil con-
Shin et al (1999) 1000 %175 = 8OO 178 %70 | (LEB terminated SAND
| Das & Omar (1994) | 1960 x 305 x 914 304.8 x 127 0.7B SAND i
i Geogrid Re-
Dras & Maji (1994) G10x 610 x 610 76.2 x76.2 358 inforced SAND
Ko & Davidson(1973) | 1540x102x 480 100 x Té 0.28 SAND
This Study 609 x 300 x 376 300 x 150 0.5B Sandy CLAY
LB
EWAME NKRyMmay UNIVERSITY gp
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CHAPTER THREE

METHODOLOGY

3.1  The Fieldwork

The fieldwork was carried out near the College of Engineering within the site
carmarked for KNUST/DFR collaborative pavement engineering studies on KNUST
Campus, Kumasi. The work involved manual excavation of a test pit using pick axe and
shovel and then recovery of sample from the test pit. Samples were recovered from a
depth of 0.30m to 0.80m. Two samples were taken, a bulk sample and then a small
sample in an airtight plastic sample bag for the determination of natural moisture
content. The test pit was then logged, after which the samples were taken to the

laboratory for further works.

3.2  The Laboratory Work
3.2.1 Sample Preparation
The bulk sample was air dried for about 72 hours to almost constant moisture
content. It was then sieved through 19mm aperture sieve to remove cobble materials.
Index property and compaction lests were then performed on a representative sample.
The remaining sample was bagged into five sacks for storage awaiting the model tests.
3.2.2 Sample Characterisation
1. The sample for the natural moisture content was taken directly from the test pit
in an air tight plastic bag in accordance with BS 1377: Part 2:1990.
2. The particle size analysis was performed in accordance with BS 1377: Part
2:1990 but first, the sample was sieved through a 19mm aperture sieve in order
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to remove cobble sized particles. Sedimentation by the hydrometer method was

used for the fines.

3. Atterberg limits test was performed on the bulk sample according to BS 1377:
Part 2:1990. The Casagrande method was used for the determination of the liquid
limit.

4. Compaction characteristics were determined according to BS 1377: Part 4:1990

using 2.5kg rammer (Standard Proctor).

3.3  Model Test Set—-Up
3.3.1 The Perspex Mould and Wooden Footing

The mould consisted of 16mm thick perspex of internal dimensions, 609mm
(length) x 300mm (width) x 376mm (height). To minimise lateral yiclding during model
soil compaction and to ensure plane strain (k;) condition during the loading test, the
mould was braced on the outside by three (3no.) Smm thick by 25mm wide steel as

shown in Iigure 3,1.

Figure 3.1 The Perspex Mould used for the Footing Model Test
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The model footing was made of wooden block of dimensions, 300mm (length) x
I50mm (width) and 50mm thick. The base of the model footing was made rough by
gluing 60-grade sandpaper onto it as shown in Figure3.2, to satisfy the rough footing

base condition of Terzaghi’s bearing capacity formula derivation.

Figure 3.2 Wooden Footing with 60-Grade Sandpaper glued to the Base

3.3.2 Loading and Measuring System

The loading system used was strain controlled set to a rate of (.375mm
penetration per minute (resulting in approximately 2hours per loading test). The loading
system consisted of a system of gears that push up the loading system. This system
raised the whole loading platform against the fixed frame Figure 5.3, The proving ring
readings at 0.5mm penetration intervals were taken. Prior to the start of the test, the

proving ring was calibrated. The details of the calibration are presented in Appendix III.
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Figure 3.3 Picture of Triaxial Frame Used [or loading test with the Mould in it

3.4 Model Sample Preparation
. The existing moisture content (EMC) of the sample for each run of the model

compaction was determined. The amount of water to be added to achieve

optimum moisture content was computed from;

d = OMr S
100+ EMC

Amount of water adde
where; OMC-Optimum moisture content,

EMC - Existing moisture content,

M.~ Mass of sample used.
The following procedure was followed for the model compaction;

2. About 120 kg of the stored sample was weighed and divided into four parts of

about 30kg per part.
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3. The amount of water required to achieve OMC was added to each part and mixed
thoroughly in a large pun.
4. After mixing all the four parts, the mixiure was heaped together in a large pan

and covered with polythenc sheet for about 16 hours for curing in order to

equilibrate the moisture content.
3. The sample was then compacted in 6-layers in the perspex mould with each layer

receiving 20 blows of the rammer, dropping through approximately 0.50m
height.

6. The rammer consists of 190mm x 190mm square base wooden hammer with
1.36m long handle, weighing 6.06ke.

7. Steps 1-6 were repeated for 15, 30, 35, 100 and 150 blows respectively.

Figure 3.4 shows details of the wooden rammer used for the model’s compaction.

Wacdan
Handla
LIBR
W::E IHHHHIIH ﬂ'l""fl"“ ne
D T NoLogy
“‘Hlﬂ'ﬁl

Figure 3.4 Wooden Rammer Used for the Model Compaction in Section and Plan

I Mo, B2001-05
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The Model Testing Procedure

The compacted sample in the mould was placed in the triaxial frame. The
wooden footing was centrally positioned on the compacted sample as shown in
Figure 3.5. and Figure 3 6.

The proving ring was lowered to make contact with the footing and the dial
gauge was set fixed to the triaxial frame and making contact with the mould.

The loading system was then engaged and maintained at a rate of 0.375mm
penetration per minute for the loading test until a settlement of at least 25% of
the footing width (37.5mm) was attained.

The proving ring readings were taken at 0.0mm, 0.5mm, 1.0mm, 1.5mm, 2.0mm,
until minimum penetration of 37.5mm was achieved . The dial gauge readings
for the corresponding settlement were taken and recorded.

After the last readings were taken, the loading action was reversed until the
mould came to rest, It was then lowered to the floor using manual crane. The

sample in the mould was then used for the subsequent tests.

00 mim-—

Reinforoing steel

|-.| ..SMmm——|

- Boll & Mut
Oe O
-\____\____':- '“\-\._\__.
S5 Atnm i T DCP Testing
Locatinons

hesded
Foutimg
Losention

300.00mm

_ Perspex Mould in
Man

Iriaxial Sample
— location

Reinfoncing stes]
= Welded at 2 Edjges

Figure 3.5 Plan of location of tests positions
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Triaxial Frame
o ] A i
I " .
Dial Gauge to i Proving Ring
Measure Footing———» '’
Penetration T L e WoodenFooting
¢ G el 18mm-Thick
3 Perspex Mould
”i -Compacted Sample ff
Timber to Reinforce - . i<———Steel Plates to Re-inforce %
Mould Base N = Perspex Mould i
| k——++— Loading Piston

Figure 3.6  The Loading Test Set-Up with Mould filled in Section

36 DCP Test
3.6.1 Equipment

The DCP used in this study, Figure 3.7, consists of two 16mm diameter rods.
The lower rod contains an anvil and a replaceable 60° apex cone. The upper rod contains
8 kg slide hammer with a 578mm drop height, an end plug for connection to the lower
rod and a top grab handle. All materials (except the drop hammer) are stainless steel for

corrosion resistance. The cone diameter (20mm) is made wider than the rod diameter
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(16mm) so that penetration resistance is provided by the cone alone and not side friction

of the rod. Figure 3.7 shows the details of the DCP equipment used.

B n:l_
|=J ]
1 [ T 8 Kg hamme
£
&
L Ji—l‘_ Anvil 1o receive
=t | A impect of hammer
1
é 16-mm diameter
fe—— Iivin rod with
g 100-mm graduntions
b 20-mm diameter
1] 60" cone
L

Figure 3.7 Dynamic Cone Penetrometer

3.6.2 Test Procedure
1. The DCP set up was held vertically and position at the desired test location.
2. The hammer was lifted and dropped from the specified height to initiate the test.
3. Following each blow of the hammer, the depth of penctration was measured and
recorded as the D-value (mm/blow).
4. Steps 2 and 3 were continued until the desired depth of testing was reached.
After the testing was completed, a special adapted jack was used to extract the

device.
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3.7 Triaxial Test
I A 38mm x 76mm sampling thin tube was pushed into the sample at a

location shown in plan in Figure 3.5 in the mould, to obtain a triaxial test

sample.
2 Unconsolidated-undrained triaxial tests were conducted on the cored samples

to determine the undrained shear strength parameters (¢, and $,) using the

triaxial equipments in Figure 3.8 and Figure3.9.

Figure3.8 Triaxial Test Set Up Used Figurel.9 Confining Pressure Unit

£ y wa {5’
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RESULTS ANALYSIS AND DISCUSSIONS

4.1 Material Properties

The formation from which the sample was obtained for this investigation was reddish

brown, sandy CLAY with some silt and muscovite mica. The log of the test pit is

presented in Appendix . The index properties and compaction characteristics of the

sample tested in the laboratory are summarised in the Table 4.1 below and the details in

Appendix II. Figure 4.1 and Figure 4.2 show the grading curve and compaction

characteristics of the test sample respectively.

Table 4.1: Summary of Materials Properties

Clay 46%
Silt [2%
Sand 39%
 Gravel 3%
% passing 75um sieve 58%
Liquid limit (LL) y 56%
Plastic limit (PL) 29%
Plasticity Index (PI) 2% |
Specific gravity 2.65
Mhr}' Ifl?:ﬁsiiy(T[H])
(Standard Proctor) |.68Mg/m’
Optimum Moisture Contﬂnt.{DMC] 19%
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Particle Size Distribution Curve of the Test Sample

-

Com pactiun Charactaristic Curve
(Standard Proctar)
1.70 Y

- MDD- | 68Mg/m’

165 /_\ e . OMC=19%
160 =
1 -

155 ] : — - N

AN

Dry Density(Mg/m )

pal -
e \\
| |
145 g =
r /"
140 =
1.35 v v T v v
5 10 15 20 23 30
Maoisture Conlent (%)
Figure 42  Compaction Characteristic Curve of the Test Sample

Based on the unified soil classification system (ASTM D2487-00), the soil is classified

as inorganic sandy CLAY with high plasticity (CH).
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42  In Mould Model Soil Characteristics

leltiZhehwmmquniMMvﬂimmﬂ:nmddﬁil

in the mould at the top, middie and bottom for each run of the tests.

Table 4.2 Summary of Moisture Content Variation across the Model Sample

Test Moisture Content (%) Dry Density
Number Top Middle | Bowom | Average | (Mpm')
T S D (Y i ey (s (Y g 7
BC-20 19 20.1 RO I
BC-30 17.1 195 173 “is | I8
BC-35 ] 189 18 185 | 1.500
BC-100 197 | 195 19.1 194 | 1648 |
BC-150 18.6 187 19.1 188 1.775

It can be deduced from the results that, it was difficult to obtain uniform moisture
content across the model from top through the middle portions to the bottom. The largest
difference was 2.4% and it occurred between the middle and top of test BC-30. The
lowest moisture content was 16.8% observed in BC-15 while the highest was 20.1 %
observed in BC-20. The range of moisture content variation is therefore 3.3 %. The
moisture contents were, however, within + 2.2% of the OMC. The moisture variation
which could be duc to the mixing, however is within acceptable limits. The sample
may therefore be said to have been prepared at the OMC. Figure 4.3 shows the mossture

content vanation across the in mould sample.
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Figure 4.3 Mositure Content variation of the Model Sample

Figure 4.4 shows a plot of the dry density and average moisture content across the

sample on the compaction curve. Figure 4.4 shows that, the objective of the model

sample preparation for this study, which was to produce samples of different dry

densities, was achieved within the range of 1.326 Mg/m’ to 1.775 Mg/m’. These

correspond to relative compaction of between 79% and 106%.

&e i 1 1
® BC150
1.7~ ¥ BC100
i = A BC35
A'E"' 1.6"__"_ \-& & BC30 |
2 1 —X—BC20
= 1.5+ - 'y —+—BC15 |
2 1 e @
% fd4——
a - X
134
1.2 ' T -y T
5 10 15 20 25 30
Avarage Moisture Content{%)
Figure 4.4 Starting Condition of the Test Sample
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4.3  The Loading Test
4.3.1 Failure Mode

The failure modes of the compacted model sample in the loading test were
observed during and after the test on top of the compacted sample. The failure surface
did not intersect the compacted sample surface besides, significant punching of the
footing into the sample occurred. There was not any significant bulging of the surface.

This suggests that the modes observed in the model footing test were that of local shear.

4.3.2 Yield Stress Criterion
For local shear failures, the ultimate load is not well defined, it therefore

becomes difficult to establish the ultimate load. In this study, the concept of yield stress,

(v criterion is used to define the limit of safe contact pressure at which the creeping

settlement curve increases considerably with the corresponding yield settlement, Sy.
This pressure is the intersection point of the two slopes illustrated in the Figure 4.5
below. This pressure is also considered the allowable bearing pressure in this study. This

definition is consistent with the definition of ultimate load in the evaluation of Plate

Loading Test (BS 5930).

David Dritse- Awuku 43 Index No. 820105
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Figure 4.5

Definition of Yield Pressure

4.3.3 Model Footing Test Results

MPhil{Civil Engineering) KNUST

Six successful sct of tests were conducted. For each set of tests, different

compaction energy was used resulting in different dry density. A summary of the load

test results is given in Table 4.3. Figure 4.6 to Figure 4.11 show the load- settlement

curves for the various model tests with the details given included in Appendix TV,

Table 4.3: Summary of Loading Test Results

Average Yield Stiffness
Test Dry Maoisture Yield Bearing Yield g
Number Density Content stress : settlement V'E
Pary(Mg/ m’) (%a) qv(kN/m~) _S‘E{mm} (kN/m*/mm)
BC-15/1 1.326 18.1 41 7.3 5.6
BC-20/1 |  1.345 19.0 83 12.6 6.6
BC-30/1 |.451 18.0 178 8.6 20.7
BC-35/1 1.500 18.5 183 8.6 213
BC-100/1 1.648 19.4 266 7.1 375
BC-150/1 1.775 18.8 331 8.1 40.9

Pavid Dzitze- Awuku

Index No. 82001-05




MPhil {Civil Engineering) KMUST

Cantact PrassuredkMim’}

1] 40 a0 120 180 200 24n 280
L ¥ y o -
"-_. % Tesi Mumbar HG-150
E .
) a=d1kniim’

- ; Bt o

20 \\

A0 —— - %

Penetratonimm)
kS
1
&
|

Figure 4.6 Load-Settlement Curve for Experiment BC-15

Fl

ConlaciPressurea (kN fm "}

o ] 100 139 200 r5a
1

o Tani Mem e« Ho-70

“‘\"“-, Gy 83 kM im "

20

PENETED o)

23 4

19 . : - 47

i e =1 0 S

0 —) s -~

o 24

L5 ]

Figure 4.7 Load-Settlement Curve for Experiment BC-20
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Load-Settlement Curve for Experiment BC-30
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Figure 4.12 shows positive linear correlation of qy=608py,, - 736 between yield stress, qy
and dry density with R*=0,98. This suggests that there is a linear relation between the

yield stress and the dry density,
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Figure 4.12  Yield Stress against Dry Density

With the possible exception of Test BC20/1 which had a higher yield settlement of
12.6mm, all the other tests showed similar values of yield settlement of between 7.1mm
and 8.6 mm. This suggests that the yicld settlement is not sensitive to the dry density.
This explains why when the yield stress, qy 1s divided by the yield settlement, Sy to
define the slope of the first part of the load-settlement curve, the yield stiffness, the

relationship is similar to that between the yield stress and the dry density, as in Figure

4.13
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44  DCP Test Results

A summary of the results of the DCP test 15 shown in Table 4.4. and plotted in Figure
4.14, Each DCP penetration value is the average of two readings taken from adjacent
test locations. The average D-values also known as the Dynamic Penetration Index
(DPI), is the penetration produced by one drop of the sliding hammer and it is obtained
as the gradient of the line of best fit of the graph of cumulative blows against penetration
in mm as shown Figure 4.14. In field, however, the number of blows required to
advance the cone by 100mm into the soil is what is measured and recorded as the n-
value. The n-values (blows/100mm) in this study were derived from the D-values by

dividing 100mm by the D-values. The details of the DCP test results are presented in

Appendix V.
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Figure 4.14

Plot of Average DCP Penetration against Cumulative No. of Blows

Table 4.4: Summary of DCP Test Results

Eravid Dzitse-Awuku

50

Test D-value Moulding Diry Level of
Number | (mm / blow) Water Density, Compaction,

Content (%) | pan(Mg/m’) LC (%)
BC-15 | 99 18.1 1.326 79
BC-20 70.7 19 1.345 80
BC-30 398 18 1.45]1 86
BC-35 35.1 18.5 1.500 89
BC-100 | 249 19.4 1.648 98
BC-150 | 172 18.8 1.775 106
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MPhl {Tivil Engincering), KNUST

Figure 4.15 shows a plot of level of compaction (LC) against D-value with the
relationship log (LC) = 2326 — 0242 log D with R*=0.997, This relation is consistent
with carlier work of Ampadu and Arthur (2006) who investigated compaction
venfication using the DCP in a lateritic soil for construction of sub-base for roads and

obtained a relationship of , log (LC) = 2.184 — 0.337 log D.

In this present analysis, LC values of test numbers BC-15 and BC-20 showed large
deviation from the remaining four and consequently were not used for the regression
analysis. . The deviations could probably be due to the very high D-values obtained as a

result of the low dry densities of the samples prepared.
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Figure 4.15  Plot of level of compaction (LC) against D-value
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Allowable Bearing Pressure from the Triaxial Test

A summary of the triaxial tests results is shown in Table 4.5 below. The detailed

triaxial tests data and graphs are shown in Appendix V1.

Table 4.5 Summary of the Triaxial Results
TEST | Sample Moisture Dry Density a; g1-G3 Cy ¢ |
NO. | Content (%) (Mg/m*) | (kPa) | (kPa) | (kN/m®) | (B
Number Average Average .
A |16 1.325 150 | 372
BC-15 B 165 | 163 1327 | 1326 | 300 | 469 | 126 | 11
e BT 1.326 | 450 | 517
A 162 1.348 150 | 420
BC-20 B 16.8| 165 1342 | 1345 | 300 | 304 | 135 | 13
& 1511 15 1.367 | 1367 | 450 | 533 by
A 16 1.461 150 | 448
BC-30 B 179 17.1 1.442 | 1451 [ 300 | 524 144 | 13
c [173 1.45 450 | 618
i A |166 1.497 150 | 469
BC-35 B |[163]| 167 | 1.503 | 1.500 | 300 | 545 149 | 13
e (B 1501 450 | 647
A 19.6 1.623 100 | 567 =0
BC-100| B 188 | 185 | 1.674 | 1.648 | 250 | 624 199 | 13
e i - 1.647 400 | 739
A 1184 1.776 100 | 389
Beefso | B [189 87 | L3It | w775 | 250 | 675 | 208 |13
S T 1.779 400 | 770

Most of the triaxial test results did not indicate a clear maximum deviator stress, S;. For
such tests, the fajlure was defined at a strain of 20% in canformity with BS 1377 part 7.

The triaxial test result of sample BC-20 C was not used 1n the analysis. This was due to

drastic loss of moisture prior to the triaxial test. From the stress

Pavid Deitse-fowuku
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triaxial test, the deviator stresses at failure, Sy and confining pressures were used (o plot
Mohr circles. From the Mohr circles, the undrained cohesion intercept, ¢, and angle of
internal friction ¢, were deduced, and used (o calculate the allowable bearing pressure.

The stiffness of the samples tested is defined in terms of the Esp which is the stiffness at
halfl the deviator stress. In order to take into account the effect of confining pressure, the
stiffness values have been divided by the mean pressure, p. These values have been
plotted against the dry density in Figure 4.16. From the graph, there seems to be no

correlation between the two parameters in (his work.

Table 4.6 Stress-Strain Analysis of the Triaxial Results

Test Moisture Dry 03 *p S¢ Esp Esp
Content | Densily, E
Number () | Mgm) | (kKN/m’) | (N/m’) [ (kN/od) | (%) | (kN p
BC-15-150 16.1 1.325 150 274 372| 75| 2480 91
BC-15-300 16.5 1.327 300 456 469 [ 74| 3169 69
BC-15-450 162 | 1326 450 622 5171 68| 3801 6.1
BC-20-150 16.2 1.348 150 290 420 | 29| 7241| 250 |
BC-20-300 | 16.8 1.342 300 468 504 | 23| 10957 234
BC-30-150 16.0 1. 461 150 299 448 | 25 8,960 | 29.9
BC-30-300 179 1.442 300 475 524 | 1.9 13,789 291
BC-30-450 17.3 1.45 450 650 618 | 1.1 28,091 428
BC-35-150 166 | 1.497 150 306 469 | 1.8 | 13,028 425
BC-35-300 16.3 1.503 300 482 545 | 1.7 16,029 333
BC-35-450 17.2 1.501 450 666 647 | 14| 23,107 34.7
BC-100-100 19.6 | 1.623| 100 289 567 | 4.5 6,300 | 21.8
BC-100-250 IX.8 1.674 250 458 624 | 3.1| 10,065 22.0
BC-100-400 17.1 1.647 400 646 739 | 3.1 11,919 184
BC-150-100 184 1.776 100 296 589 | 43| 6849 23.1
BC-150-250 189 | 1.771 250 475 675 | 23| 14674 | 309
BC-150-400 187 1710 400 657 770 | 1.7| 22,647 345
e, G 26,
e 3
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Figure 4.16  Variation of Stiffness with Dry Density

4.5.1 Allowable Bearing Pressure

The allowable bearing pressure from the triaxial results was calculated using the
Terzaghi bearing capacily cquation for local shear failure, taking the footing shape
factors into consideration and applying a factor of safety to the ultimate bearing
capacity, q,u to obtain quu.

Qi =2/3c N8, +y DiNgs, + T 2 L o s e 1
where the values of Ny, Ny, and Ny, are obtained by replacing ¢ by ¢ and reading the

bearing capacity factors from Terzaghi bearing capacity chart.

4 ¢ | A5
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Being a local shear failure mode,

¢r=tan” (2/3tan ¢) and S¢.Sqand s, are the shape factors.

For rectangular footing, the shape factors are

SE““’i[L] and §,=1-04 8 (after Vesic, 1973)
LM, L i
Because the fooling was located at the surface, Dy =0, and £ =! (L=30c¢m and
E 2
B=15cm), equation (4.1) reduces to
qun=2a’3cN;c[l sty d SN BOINILY VG T 4.2)
17N, 50

But allowable bearing pressure, g, = % 4

FS-Factor of safety

Using the bearing capacity factors after Terzaghi and applying factor of safety of 3.0, the

calculated allowable bearing pressures are as shown in Table 4.7.

Table 4.7 Computation of Allowable Bearing Pressure.
] | T
FNII?IFQEI‘ Cu [?} f‘ﬂl] Nio | Ny | Ny, | k}}qu {kI'?I:“I;"ﬁz} fkli?:"nz}
BC-15 |12 |11 | 7 8 1.8 | 0.9 | 151 748 249
BS20° 11135 (13 | 9 | 9 | 231 15.4 918 306 |
(BC-30 [144 13 | 9 | 9 |24 | 1 | 167 | o7 326
BC-35 | 149 |13 | 9 9 |24 | 1 17.2 1013 338
BC-100 (199 |13 | 9 | 9 |24 1 | 192 | 133 | 451 |
(BC-150 [208 |13 | 9 | 9 |24 | t | 207 1415 472

o &
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4.6 Correlation between D-value, n-value and Allowable Bearing Pressure, qq
A summary of model yield stress, allowable bearing pressure by Terzaghi approach, the
D-value and n-values have been presented in Table 4.8, The model yield stress is take to

be the allowable bearing pressure for the model

Table 4.8 Summary of the Allowable Bearing pressures, D-value and n-value.
Allowable Bearing Pressure E
(kN/m’) _ D-value n-Value
Test Number Terzaghi (Mm/blow) (blows/100mm)
Maodel Approach
BC-15 41 249 949 1.0
BC-20 83 306 707 1.4
BC-30 178 326 30.8 2.5 N
BC-35 183 338 35.1 28
BC-100 266 451 24.9 4.0
BC-150 331 472 17.2 5.8

In order to establish the relevant correlations, the allowable bearing pressures have been

plotted against the D-values and n-values in Figure 4.18 and Figure 4.19 respectively.

The regressions for the correlation equations did not include the two data points for the

very soft samples. The regression analysis of the data points gave the following

o m— T il

correlations:
Qali (modely = 48.3n + 57.3, R*=0.988
Qatitmoden = 881-443 9Log;, (D), R*=0.993, by model footing, and
QallTerzaphiy= 46.4n +222 R’=0.921,
R’=0.953 by Terzaghi approach.

QallTerzaghiy = 1030-439. 1 Log 1o(D},

David Dzitse-Awuku S5 Index Mo, 32001-035
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where g,y — allowable bearing pressure is in KN/m’ n-value in blows/100mm and D-
value in mm/blow for D =100, The hi gh R? indicates the existence of a direct

relationship between n-value and Gaii -

4.7  Calibration of the Model

[t may be noted that the correlation equations for the model and the Terzaghi approach
have similar gradients; for the relationship between qy and n-value, the gradients were
48.3 and 46.4 respectively. This suggests that a translational shift of the model equation
is all that 1s required to achicve the Terzaghi equation. Thus by adding 164.7 to the

results of the model footing, the Terzaghi equation can be predicted.

4.8  Comparison of the Model to Similar Works

Analysis of the model and Terzaghi approach indicates that even though the Terzaghi
approach predicts higher values of allowable bearing pressure than the model for the
same n-values, both have almost the same gradient. Comparing the model to that of
Sanglerat (1973) and Ampadu (2005), it can be deduced that the model correlation
predicts higher values than those of Sanglerat (1973), however, when extrapolated into

the n-values region of Ampadu (2005), it gives valucs that are lower than Ampadu

(2005).

. . = Index Boo. B2001-035
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The aim of the project was to establish correlation between DCPT n-value
(blows/100mm) and allowable bearing pressurc using model footing. From the

results obtained and the graphs generated,

1. There 1s a lincar relationship between the yield stress in the model test and

the dry density of the model ground given by qy=608p;, - 736 with

David Daitse-Avwuku

R*=0.98.

. There is a log — log relationship between the level of compaction of the
model ground and the DCP D-value given by
log (LC) =2.326 - 0.242 log(D) with R* =0.997.

. The stiffness of the model ground normalized by the mean pressure as
measured in the triaxial test appears insensitive o the dry density.

. There is a linear relationship between the allowable bearing pressure and the
DCP n-value and this equation has similar gradient for allowable bearing
pressure obtained by both the model footing and by the Terzaghi approach.

. The relationship between n-value and allowable bearing pressure for the
calibrated model is given by (Qan = 48n + 57, for 2<n=<6

This relationship predicts marginal higher allowable bearing pressure values

than that of Sanglerat (1972).

: ™ s 113
60 Imiden Mo B2000 -4
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52 Recommendations
It is recommended that:

* A simple loading system should be procured for this type of work in the
future. The existing loading system makes the work too cumbersome
requiring a lot of physical strength.

e Additional works should be done with higher n-values for similar sandy Clay

malerial so as to validate the established correlation over wider range.

- Imdex Mo 20005
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CIVIL ENGINEERING DEPARTMENT-KENUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
-TENT PIT LOG

Site Location: Near Engineering Snack Bar, KNUST Date: 10/10/2006

Method of Excavation: Manual
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Strsta Description

Depth| Strata Natural Moisture

i Svmbol Content (%s)
Towt e o w
RN e N oyl .
—(Hh e e WK
(e m e »
e w5 = | Drown silty SN Decayved organie
R e g .

< - % ;
0.30 s = 2% | matter in the matrix ( Topsoil).
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DCPT-ULTIMATE BEARING CAPACITY PROJECT

Praate 10 10 2006

NATURAL MOISTU RE CONTENT

[Test Number ) | -
[Container Number s =
[ Container Massig} 350 s
Cantainer + Wet Sample Massiz) 35 08 34000
_Eia_mnincr + Oven Dried Sample Massiz) 317 :ﬁ'?ﬁ
Mossture Content Massig) 4.27 T
Dy Sample Mass (1) 3100 35 10
Maisture Content (") 30 3 30 -
Wyerase Moisture Content %o 0.5
Date: | 7/ 1HW2000

SPECIFIC GRAVITY
Sample Number A B
Pyvenpmeter Nuimber | 3
Empiy Pvenometer hass (2) M1 R4 20 84310
Prcnometer + Oven Dricd Sawple Mass (2) 2 139,70 132210
Pyenometer + Oven Dried Sample — Witer Mass 12] M3 2l o 240561
Pienomneter Full of Water Mass (g) % B! 2 L0, 80 106,60
Oven Dried Sample Mass (2) M2-MI 483,50 179,00
Mass of Water Filling the Empty Pycnometer (29 M4-M | 2540l 1263.50)
Mass of Water in Pvenometer oser and nbove Dry Sainple () M3-M2 107140 1083.50
Mitss of Water having the same Volume as Dry Sample (h (MA-MDM3-MI) 183 20) | 80,00
Specific Gravin (M2-ML) 164 266

k. M=M= MM )
Averape Specilic Gravity .63
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CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
PARTICLE SIZE DISTRIBUTION

Date 19/ 1020606

WET SIEVING
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el T e 100 -
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. o) 0 . .
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CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT

"

ATTERBERG LIMITS DETERMINATION

Liguid Limit

Masticiiy Index (1)

| B

Contriner Number |  mo A43 AT ATd 4
Container Mass ig) 373 374 30 371 166
Number of Blows 43 3% 29 20 17
Wet Samplet+ Container Massip) | %76 1781 1] 2131 2075
Dy Sample + Container Mass(o) 13.71 12,79 133 1504 [4 3
LI Sample Massis ) RV ] [ EH.33 173
;"\-llll:\"'llll_‘L'l.l.'lrt_"]L[ b_i;]:,-;_||__-| ':||_{ 4 '.': -;_I_I ".‘:‘. Il_‘t}
Moisture Content (") 3T 57 353 33 302
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-
58 —
R e
‘E | ]
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2
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| 4
SD T | T T ] T 1
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Mo of Bl
Plastic Limit
Conlainer number 3 L]
Caainer mass (g) 33T 16l
Wet Sample+ Container Massiv) 4 68 R 4
Doy Sample + Container Mass( o) §:29 7.76
B Bample Misar e f.72 414
ilisture Content Mass () .34 [ 1%
Moishire Content (%) 204 285
Average Moisture Content (%) 200}
Plastic Limit =29%
Liu“ld. Limnt I_r!u] Sh
Plastic Lt (%) 24
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Thate: 25/ 10y 28
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CIVIL ENGINEERING DEPAR IMENT-KNUST
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APPENDIX IV

DYNAMIC CONE PENETROMETER TEST
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CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
DYNAMIC CONE PENETROMETER TEST

Test Mo.: BC-15/1

Diate: 23/04/2007
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CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
DYNAMIC CONE PENETROMETER TEST

Test No.:BC-20/1 Date: 19/04/2007
Cumulative Penetration(min)
Blows i, ds Aveg.d=(d,+d.)2
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Test Moo BC-3071

CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
DYNAMIC CONE PENETROMETER TEST

Date; 260442007
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CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
DYNAMIC CONE PENETROMETER TEST

Test No.; BC-35/1 Date; 1/05/2007
Cumulative Penetrationi mm)
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CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
DYNAMIC CONE PENETROMETER TEST

Test No.: BC-100/] Date: 2505 2007
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CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
DYNAMIC CONE PENETROMETER TEST

Test MNo.: BC-150/1 Date: 300052007
Cumlntive Penetration| mm)
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APPENDIX VI

UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST
TRIAXTAL STRESS-STRAIN CURVES
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UNCONSOLIDATED-LINDRAINED TRIAXIA L TEST ANALYSIS

Test No.: BC-13/1

CIVIL ENGINEERING DEPA RITMENT-ENUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT

SAMPLE CHARACTERISTICS

Date :24/4/2007

Sample Mumber A Iz cC Averages
Iniitial Sample Hetight (om) 760 7.60 7.60
mitial Sample Diasscier fcm) 3.80 380 3.80
Inittal Sample Volumefom') 56.19 86.19 B6.10
Initial Wet Sample Mass (z) 13260 | 13321 132.85
Wet Bulk Density [g'em’) 153K 1.546 1.541 1.542
Container Number 5 D9 D10
Container Mass (g) 16.45 16.01 18.24
Cont, + Final Wet Sample Mass {g) | 14670 L4881 150.62
Container + Dry Sample Mass (g) | 12B.67 | 129.99 132,13
Moaisture Content Mass (g) 18.03 18.82 LE.49
Dry Sample Mass (g) 112.22 [ 113.98 113.89
Muoisture Content (%) 16.1 16.5 16.2 16.3
Dry Density (g/cm ') 1.325 1.327 1.326 1.326
TEST CONDITION
Sample Number A B C
Confining Pressure (kpa) [ 5 300 450
|Proving Ring Constant 000816 | 0.00207 0.001%99
TEST RESULTS
ample Number A (a;=150kPa [ Sample Number B (5,=300kPs i Sample Number C {a;=450kFa |
Bang Dewiator
Change in Mewarea | Reading | Devistor Siress | Proving Ring Stress Froving Ring |Deviator Stress)
Length {mm) |Strum (%]  fmm®) {div) q =00y kPa) R:ading@] q=0-03(kPa}| Keading (div) | g=o0,-7,{kPa)
0.00 0.00 114009 | 0.0 0 0.0 0 0.0 0
0.25 0.33 1143 9] 1.0 7 17.0 3] 10.0 52
.51 0.67 1147.75 2.0 14 27.0 49 37.0 6
0.76 1.60 1151.61 3.0 21 30.0 54 420 73
1.02 1.33 1155.50 4.0 28 37.0 66 47.0 g1
L27 1.67 1159.42 5.0 15 420 75 52.0 89
1.52 2.00 1163.36 6.0 3 471 B4 57.0 08
178 233 1167.33 7.0 ) 0.0 D 63.0 107
2.03 767 1171.33 8.0 56 55.0 7 60.0 117
2,29 3.00 1175.36 9.5 66 SR.0 102 75.0 127
2.54 333 1179.41 11.0 76 66,0 116 80.0 135
3.03 4.00 1157.60 13.0 59 77.5 135 95.0 159
3.56 4.67 119590 | 15.0 102 89.5 155 111.0 185
406 5.33 120433 18.0 122 105,0 180 126.0 208
4.57 6.00 1212.87] 210 141 113.0 193 136.0 223
5.08 6.67 1221.53 25.0 167 127.0 215 155.0 253
6.35 833 [243.74 | 325 213 156.0 260 193.0 09
7.62 10.00 1266.77 | 39.0 251 180.0 300 229.0 160
5.8 11.67 130067 | 45.0 285 216.0 346 263.0 406
10.16 13.33 131549 | 505 313 2483 307 291.0 440
11.43 15.00 134129 | 550 333 6410 an7 310.0 a60)
12.70 6.6/ 1368.11 | 58.0 336 2895 438 332.0 483
13.97 18,33 1309603 61.0 337 305.0 452 3510 500
15.24 20.00 1425.12 | 65.0 372 323.0 460 700 S17
17.78 23.33 [487.08 | 71.0 3090 3520 450 402.0 53K
20.32 2667 1554.67 | 76.0 390 3830 510 440.0 563
22 85 30.00 1528.71 76.0 406 035 513 4480 583




Test Number.: BC-15/1

'L:.'T\’IL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
UNCONSOLIDATED-UNDRAINED TRIA XIAL TEST GRAPH
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Test No.: BC-20/]

CIVIL ENGINEERING DEPARTMENT-KNUST
_ DCPT-ULTIMATE BEARING CAPACITY PROJECT
UNCONSOLIDATED-LUNDRAINED TRIAXIAL TEST AMALYSIS

SAMPLE CHARACTERISTICS

Drate 2000472007

Sample Mumber A I C Averages
[nstinl Sample Height feen) 7.60 760 7.60
Initial Samphe Disrmeter (cn) 3.80 150 3.80
Initial Sample Vn]unu-,{cm}:l 2619 £6.19 £6.19
Initial Wet Sample Mass (2) 13492 | 135.14 135.66
Wet Bulk Densily (gem') 1.565 1.568 1.574 1.560
Container Number 11z D2 b1
Container Mass {g) 939 0.47 20.21
Cont. + Final Wet Sample Mass(2) | 142.11 152.90 155.74
Container + Dry Sample Mass (2) 2365 | 13076 (3707
Muoisture Content Mass (o) 18.46 20.64 17.83
Diry Sample Mass (g) 114.26 | 122.79 117.70
Muoisture Content (%) 16.2 16,8 15.1 16.5
Dry Dengity (g'em”) 1.348 1.342 1.367 1.345
TEST CONDITION
Sample Number M B C
Confining Pressure (kpa) 150 300 450
Proving Ring Constant 0.00816 | 0.00207 | D.00199
TEST RESULTS
Sample Number A (#,=150kPa }| Sanple Number B {0,=300kPa )| Sample Number C {0;=450kFa )
Ring Dewriztar
Chiunge in New arca | Reading | Deviator Stress | Proving Ring Stress Proving Ring | Dewiator Stress
Length imm)  |Strain (%) (mm*) [div) q =a-7; (kPa) Reading (div) |q=s-7,(kPa)] Reading (div) | g =04-0: (kPa)
(.00 0.00 1140.09 0.0 { 0.0 1] 0.0 1]
(.25 .33 1143.91 13.0 23 10,0 18 25.0 43
0.5] 0.67 1147.75 20.0 50 5.0 63 55.0 95
0.76 1.00 1151.51 450 T8 50.0 106 83.0 143
1.02 1.33 115550 60.0 103 82.0 147 109.0 158
1.27 1.67 115942 T80 129 104.0 | 56 133.0 228
1.52 2.00 L163.36 £0.0 152 125.0 222 1550 265
1.78 2.33 1167.33 1 103.0 176 145.0 257 1753.0 298
2.03 267 117133 | 1160 197 164.0 290 193 0 328 |
2.29 3.00 117536 1290 213 182.0 321 209.0 354
2.54 3133 1179.41 | 141.0 218 1980 348 224.0 37R
3.05 4.00 | 187.60 155.0 260 2120 370 239.0 400
3.56 4.67 [ 195.90 169.0 281 22440 18R 254.0 423
4.06 533 1204.33 183.0 302 234.0 402 260.0 444
457 6.00 121287 196.0 322 244.0 416 2E3.0 464
5.08 6.67 122153 2080 EEL] 254.0 30 29610 482
% 8.33 1243.74 | 220.0 352 266.0 443 309.0 494
T.62 10.00 | 266.77 232.0 364 278.0 454 322.0 506
8.89 11.67 1290.67 244.0 376 290.0 465 334.0 ala
10.16 13,33 131549 | 256.0 387 302.0 475 345.0 522
11.43 15.00 134129 | 26850 U8 314.0 485 355.0 527
1270 16.67 1364.11 2800 407 3260 493 165.0 531
13.97 %33 39603 | 291.0 415 337.0 500 374.0 533
15 74 .00 1425 12 301.0 420 147.0 504 I82.0 e
1778 23.33 148708 3100 415 3560 496G 389.0 521
2032 26.67 155467 | 318.0 407 364.0 485 395.0 06
2283 30,00 152871 | 3200 417 3710 502 400.0 521




CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST GRAPH
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UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST ANALYSIS

Test No.: BC-30/1

CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT

Date 27/04/2007

SAMPLE CHARACTERISTICS
Sample Number A B C Averages
ninial Sample Height (cm) 7.60 7.60 760 e
Initial Sampl Dianveter (cm) 3.0 380 380
Initial Sample Yolume(cm') 86.19 86.19 ¥5 10
Initial Wet Sample Mass (g) 146,08 | 146.52 146.65
Wet Bulk Density (g/em’) 1.695 | 1.700 1.701 1.699
Container Number K5 D15 DI2
Container Mass () 17.45 6.44 14.40
Cont. + Final Wet Sample Mass(g) | 162,33 175.27 160,24
Container + Dry Saniple Mass (g} | 142.34 1449.66 [ 8. 70
Maoisture Content Mass (g) 1900 25.61 21.54
Dry Sample Mass {e) 124.89 143.22 124.30
Moisture Content (34) 16.0 17.9 17.3 17.1
Dry Density (g/cm’) 1461 | 1442 1450 1.45]
TEST CONDITION
Sample Number A B C
Confining Pressure (kpa) 150 300 450
Proving Ring Constant 0.00199 | 0.00207 Q00816
TEST RESULTS
Sample Ilhn-nber A (r=150kPa | Sample Number B (oy=300kFa il Sample Number C (07=450kPz
Ring Deviator
Change in Mewarea | Reading Desigtor Stresz | Proving Ring Siress Proving Ring | Deviator Stress|
Length (mm) | Stain N (mm’) [div) {q =0, =7, (kFa) Reading (div) |4 =a,-0: (kFa)] Reading {(div) | q =0,y (kPa)
.00 0.00 140,09 0.0 0 0.0 2] 0.0 4]
0.25 0.33 1143.9] 200 33 30.0 54 15.0 107
(151 0.67 1147.75 35.0 68 58.0 105 290 206
0.76 [.00 1151.61 374 98 E4.0 151 39.0 276
1.02 1.33 1155.50 T4.0 127 108.0 193 45.0 339
1.27 1.67 1159.42 91.0 136 130.0 232 55.0 387
[.52 2.00 1163.26( 107.0 184 | 5171 167 (AT 471
1.78 233 1167.33 123.0 210 169.0 300 G3.0 440
2.03 267 1171.33 135.0 234 187.0 330 6.0 446
2.29 3.00 1175.36 1530 259 204.0 359 06,0 458
2.54 333 1179.41 1670 282 220.0 386 68.0 470
3.05 4.00 | 187.60 151.0 103 235.0 410 70.0 431
3.56 4.67 1 195.90 1350 324 250.0 433 72.0 491
4.06 533 1204.33 2089.0 345 264.0 454 74.0 501
4.57 6.00 1212.87 22310 366 277.0 473 76.0 511
5.08 6.67 1221.53 | 236.0 154 2805.0 490 78.0 521
633 £33 124374 24810 397 301.0 a1 80.0 323
7.62 10.00 1266.77 | 259.0 407 312.0 S0 83.0 535
8.80 1167 | 1290.67 | 270.0 416 322.0 516 86.0 544
10L16 13.33 1315.49 | 281.D 425 3310 521 20.0 558
11.43 15.00 1341258 291.0 432 3300 523 94.0 372
12.70 16.67 136811 301.0 435 346.0 524 09,0 L]
13.97 18.33 120603 [ 3110 443 3520 522 104.0 IR
15.24 20,00 142512 | 321.0 448 357.0 519 108.0 618
17,78 2333 148708 | 330.0 442 610 a03 117.0 G642
20,32 26.67 155467 | 339.0 434 364.0 4R35 126.5 654
2285 20,00 152871 347.0 452 366.0 490 127.0 678




CIVIL ENGINEERING DEPARTMENT-KNUST
DCFT-ULTIMATE BEARING CAPACITY PROJECT
UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST GRAPH
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Test No.: BC-35/1

CIVIL ENGINEERING DEPARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST ANALYSIS

SAMPLE CHARACTERISTICS

Date -2/052007

Sample Number A B C Av
lnitial Sarmple Height {cm) 7.60 7.60 7.60 s
Iniial Sample Dinmeter (cam) 3.80 3.80 3.80
Initial Sample Volume(cr') 86.19 | 86.19 £6.19
Initial Wet Sample Mass () 150,49 | 15066 151.61
Wet Bulk Density (g'cm”) 1.746 1.748 [.759 1.751
Container Number B D21 Di4
Container Mass (g) 22.72 15.59 9.67
Cont. + Final Wet Sample Mass (g) | 173.04 166.21 160.24
Container + Dry Sample Mass (g) 151.60 145.06 138.13
Moisture Content Mass (g) 21.44 21.15 22.11
Dry Sample Mass (g) 128.88 | 129.47 1258 46
Muisture Content (%) 16.6 16.3 17.2 16.7
Dry Density (g/em’) 1.497 1.503 1.501 1.500
TEST CONDITION
Sample Number A B C
Confining Pressure (kpa) 150 300 450
[Proving Ring Constant 0.00199 | 0.00207 0.00816
TEST RESULTS
Sample Number A (g;=150kPa ) | Sample Number B {0,=300kPa )| Sample Number © {oy=450kPa )
Proving Deviator
Change in New aréa Ring Dieviator Stress | Proving Ring Stress Proving Ring  |Deviator Stres
Length {(mm) _|Strain ) e Reading | q=o,7, (kPa) Reading (div) |q=0,-0;(kPa)| Reading (div) |q=o0-0,(kPa}
0.00 0.00 1 140.09 0.0 0 0.0 0 0.0 0
0.25 0.33 114391 [ 400 70 60.0 100 22.0 157
051 0.67 | 1147751 700 121 90.0 162 34.0 242
0.76 1.00 1151.61 95.0 164 115.0 207 40.0 283
1.02 1.33 1155.50 115.0 198 135.0 242 46.0 325
1.27 1.67 1159.42 133.0 228 155.0 277 50.0 352
.52 2.00 1163.36 1490 255 173.0 108 54.0 379
1.78 2.33 1167.33 163.0 278 1830 125 SE0 405
203 267 1171.33 175.0 297 1930 141 &60.0 418
2.29 3.00 1175.36 185.0 13 203.0 158 63.0 437
2.54 3.13 1179.41 195.0 329 213.0 374 &6.0 457
305 4.00 1187 60 205.0 344 2230 LT 68.0 467
1.56 4.67 1195.90 215.0 358 237.0 410 705 481
4.06 5.33 120433 | 2240 170 250.0 430 73.0 495
4.57 6.00 121287 | 2320 381 260.0 444 75.0 505
5.08 6.67 1221.53 2380 38R 270.0 423 71.0 514
6.35 B33 1243.74 256.0 410 285.0 474 B0.5 528
7.62 10.00 1266.77 2720 427 3000 490 £5.5 551
8.89 11.67 1290.67 286.0 441 314.0 S04 9.0 5649
1016 1333 131549 298.0 451 327.0 515 95.0 589
11.43 15.00 1341.29 309.0 458 3319.0 523 99.0 602
12.70 16.67 1368.11 3190 464 351.0 531 104.0 620
13.97 1833 | 1396.03 | 3280 468 363.0 538 109.0 6317
15.24 20.00 1425.12 3360 469 375.0 545 113.0 647
1778 23.33 1487.08 343.0 459 1R7.0 339 122.0 669
2032 26.67 1554.67 3490 447 399.0 531 131.0 HER
22.85 30,00 I528.71 354.0 461 402.0 a4 1320 705
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Test No.; BC-100/1

CIVIL. ENGINEERING DEPA RTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST ANALYSIS

Date :28/05/2007

SAMPLE CHARACTERISTICS
Hample Number A B C Averages
Lieltia | Sarngle Hedght {cem) 7.60 7.60 7.60 =
Tnitial Sample Dianscter (e 380 3.80 3.80
Initial Sample Volumefcm”) 86.19 B6.19 %6 19
Initial Wet Sample Mass (g} 167.33 | 17148 166.17
Wet Dulk Dcnsl'l_}r{,_g.-‘:;mj} 1.941 1.990 1.928 1.953
Container Nirber 211 X100 o
Container Mass (g) 17.90 17.58 17.92
Cont. + Final Wet Sample Mass () 184.25 188.21 183.54
(Containier + Dry Sample Mass (z) 156,98 | 1&1.15 152 40
Moisture Content Mass (g) 2727 27.06 24.14
Diry Sample Mass (g) 129.08 143.57 141 .48
Mabisture Content (34) 19.6 18.8 171 18.5
Dry Density (giem ) 1.623 1.674 1.647 1.648
TEST CONDITION
Sample Number A B C
Confining Pressure (kpa) 1K) 250 404
Proving Ring Constant 00199 | 0.00207 0.00816
TEST RESULTS
Sample Mumber A (75~ 100kPa ) | Sample Number B (5y=250kPa )| Sample Mumber C (T =dkPa )
Proving Deviator Dewiator
Change in Mew area Ring Dievigtor Streas Proving Ring Siress Pruving Ring Sress
Length {mm)  |Strmain ()]  {mm® Reading | q=oy-0,(kPa) | Reading{div) |q=0,-0,(kPa)| Reading (div) |q =00, (kPa)
0,00 0.00 | 140,09 0.0 0 0.0 L] 0.0 {
(.25 (.33 114381 35.0 61 50.0 i 19.0 136
0.5l 0.67 1147.75 60.0 [ (4 700 126 25.0 178
.76 1.00 1151.61 £80.0 |38 £8.0 158 0.0 213
|.02 1.33 1155.50 950 164 1040 186 34.0 240
1.27 1.67 115942 105.0 180 118.0 211 370 260
152 2.00 1163.36 114.0 195 130.0 231 4ann 281
[.78 PR I 116733 1220 208 141.0 250 45.0 315
2.03 2.67 1171.33 129.0 219 151.0 267 47.0 127
229 3.00 117536 1440 237 168.0 2065 520 LG
2.54 3.33 1179.4] 1500 254 184.0 323 56.0 387
.05 .00 1187.60 162.0 271 199.0 347 G0 412
1.56 4.67 119590 173.0 28R 213.0 369 6.0 437
4.06 5.33 1204.33 183.0 302 2260 ELH 680 461
4.57 6.00 1212.87 192.0 315 238.0 406 72.0 484
5.08 667 1221.53 | 2030 331 256.5 435 a0 501
6.35 B33 1243.74 | 230.3 369 286.0 476 83.0 545
7.62 10.00 1266.77 | 256.3 403 312.0 310 90.5 583
589 [1.67 1290.67 | 28210 435 331.5 532 98.5 623
10.16 13,33 131549 3100 4649 354.0 357 104.5 648
11.43 15.00 1341.29 ] 33235 S04 377.5 583 111.0 G735
12.70 16.67 1368.11 363.5 529 402.0 a8 118.0 704
13.97 18.33 139603 | 386.5 23] 418.0 620 124.5 728
1524 20,00 142512 | 406.0 567 429.5 624 129.0 739
17.78 23.33 1487.08 | 428.0 573 450.0 26 133.5 733
20.32 26.67 15534.67 | 4305 551 461.0 al1d 1125 GUS
22 85 30.00 1528.71 3705 494 4325 586 124.5 665




CIVIL ENGINEERING DEFARTMENT-KNUST
DCPT-ULTIMATE BEARING CAPACITY PROJECT
UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST GRAPH

Test Number: BC-100/1 Date :28/05/2007
800 T , .
00— e _I == |_.Fl:""- d__-:__ = Et—:.... P
i i ] Ac? } T
600 | i - T e .h A I T
. - L A : s e S
i S SR e
f{- | i R . |
Z 500 & et Eoaus S ISR S T
b . ’IT’ P : ,,i"'"-. 'I i |_ !
T L N o
S\ | '
in by Tl ' I
S S S Y S O ) B
g 1w -"’. | !
§ 2004 "A4" — 0 T e | { S -
r'a - ! ' 5 '
100 : I_I = | - ! —i!_'l'mt Hunibrer: BCS-10001
| [ I — M — 400kPa
| | ! ik DROkPa
04— ; ! . : | : | . l; ] rnmpa :
0 S i0 15 20 25
Strain (%)
o3 kPa 003 kPa o kPa
100 567 66T
250) 624 874
40 7310 1139

CIVIL ENGINEERING DEPARTMENT-KHUST

DCFT-ULTIMATE BEARING CARPACTTY PRUJECT

“'-ISC[
Fowl Mumksers 1UUAL
'31;}“ @ Tttty
Lot
;-’59
T
thPoj
Eag

- r 1.
{t} \jg':_"-u. =5 Sag S “=dg




Test No.: BC=150/1

CIVIL ENGINEERING DEPARTMENT-KNUST
EIJ{".'P'I’-UI.TIMA TE BEARING CAPACITY PROJECT
UNCONSOLIDATED-UNDRAINED TRIAXIAL TEST ANALYSIS

SAMPLE CHARACTERISTICS

Date :31/05/2007

Sample Nimber A B C Averages
Initial Sarmple Height {cm) 760 7.60 7.60
Enitial $ampls Dismeicr {om) 380 3.80 3.80
Initial Sample Volumefem®) 86.19 86.19 86.19
Initial Wet Sample Mass (5) 181.28 | 181.46 182.00
Wet Bulk Density (g/cm’) 2,103 2.105 2112 2,107
Container Numbecr DE D& X7
Container Mass {g) 18.02 18.60 18,14
Cont. + Frnal Wet Sample Mass (&) | 197.62 196.32 198.11
Comainer + Dry Sample Mass (g) 169.67 168.07 16%.80
Moisture Content Mass (g) 27.95 28.25 28.31
Dry Sample Mass (g) 15165 | 14947 151.66
Muisture Content (%4) 18.4 15.9 18.7 13.7
Diry Density (g/cm ') 1.776 1,771 1.779 1.775
TEST CONDITION
Sample Mumher A B c
Confining Pressure (kpa) 100 250 400
Proving Ring Constant 0.00199 | 000207 0.00816
TEST RESULTS
Sample Number A {g,=100kPa )| Sample Number B (o,=250kP2 )| Sample Number € {g.=400kPa )
Proving Devrator
Change in New arei Ring Deviator Stress | Proving Ring Stresy Proving Ring | Deviator Stress
Length {mm)} | Strain (% (mm’) Reading q =o;-ay (kPa} Reading (div) Jg =0,-0, (kPa)| Reading (div) | g=o,-0 (kPa)
0.00 0.00 1140.09 0.0 0 0.0 0 0.0 0
0.25 0.33 114391 20,0 5 69.0 123 32.0 228
0.51 (.67 1147.75 41.0 7l 10,0 180 40.0 284
(.76 1.00 1151.61 62.0 109 126.0 226 46.0 326
1.02 1.33 1155.50 86,0 148 147.0 263 51.0 Jol
E2] 1.67 1159.42 110.0 189 165.0 205 55.0 387
.52 2.00 1163.36 | 118.5 203 178.0 317 300 414
178 2033 1167.33 128.0 218 189.0 335 6l1.0 426
2.03 2.67 1171.33 ] 1350 220 199.0 352 3.0 439
2.29 300 117536 13040 254 208.0 66 66.0 458
2.54 3,33 1179 41 1580 267 1610 ?I-HT-"_."J__ 6.0 470
3.05 4.00 118760 | 172.0 2EE 231.0 403 72.0 495
3.56 4.67 119590 | 184.0 306 243.0 421 750 s12
4.06 5.33 1204.33 | 2000 330 253.0 435 78.0 528
4.57 6.00 1212.87 1 216.0 354 266.0 454 80,0 538
5.08 6.67 1221.53 | 233.0 g 280.0 474 84.5 564
6.35 8.33 1243.74 | 2550 408 303.0 504 03.0 610
7.62 10.00 1266.77 | 284.0 446 327.0 534 100.5 647
E.89 11.67 1290.67 | 320.0 493 is4.0 5648 108.0 683
10.16 13.33 131549 | 339.0 513 372.0 585 113.5 704
11.43 15.00 134129 | 3600 534 400.0 617 120.5 733
12.70 16.67 1368.11 | 382.D 536 421.5 6% 1255 749
13.97 18.33 139603 | 401.0 572 44310 637 130.5 763
15.24 20000 [42512 | 42240 SRy 4645 675 134.5 770
17.78 23.33 148708 | 4570 62 496.0) 6o 141.0 774
20,32 26.67 1554.67 | 467.0 598 512.0 682 1460 Thib
22,85 30,00 1528.71 | 450.0 586 482.0 653 134.0 113
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