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Abstract 

Various sectors of the country’s economy (health, energy, agriculture, planning and 

many others) depend on climate, and as such availability of quality climate data 

becomes essential for climate impact studies in these sectors. In this study, rainfall 

climatology database has been developed for Ghana using GMet station datasets 

distributed over the four agro-ecological zones and spanning a 33-year period (1980 

– 2012). Datagaps within the rainfall time-series were filled by Regularized 

Expectation Maximization (RegEM) and homogenization of the time-series was 

performed by Quantile Matching Adjustments (QMadj). The homogenized datasets 

were then gridded at a high-spatial resolution (0.25o x 0.25o) using Minimum Surface 

Curvature (MSC) with tensioning parameter. Seasonal rainfall for the four agro-

ecological zones have been derived based on the grids covering the entire country 

and this allowed a clear evidence of the migration of Inter-Tropical Discontinuity (ITD) 

from the South of the country to the North and back; thus, establishing a uni-modal 

rainfall regime over the Northern part of the country and a bi-modal rainfall regime 

over the Southern part of the country. Finally, Climatic Research Unit Time-Series 

3.22 (CRU TS 3.22) monthly precipitation data was used to validate the gridded 

dataset, obtaining high Pearson’s correlation co-efficients (0.5 – 0.9), low relative 

mean difference (0 – 0.3) and low relative root mean square error values (0 – 8). At 

present, a country-wide rainfall climatology has been developed from GMet rainfall 

time-series which will serve as a precursor for further climate impact study, in the 

aforementioned sectors, across the country.  
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CHAPTER 1 

Introduction 

1.1 Research Background 

Present increase in global warming and subsequent climate change has necessitated 

a more rigorous research geared towards finding and understanding their possible 

cause. According to Barnet et al. (1996), knowing both the spatial and temporal 

patterns of climate change over the past several centuries remains a key to assessing 

a possible anthropogenic impact on post-industrial climate. To this end, availability 

of climate data is very vital to climate change studies. Climate researches, over time, 

have been carried out using various climate variables. Precipitation is one climate 

variable, almost as important as atmospheric surface temperature, employed in 

providing rich evidence of climate change at different spatial scales (Mengistu Tsidu, 

2012). 

Such climate researches tend to rightly represent the phenomenon but a major 

limitation of them is the handling of gaps inherent in the dataset and homogeneity 

testing (Mengistu Tsidu, 2012). Manzanas et al. (2014) also makes the assertion that 

one major challenge of such climate researches is the lack of dense-instrumental 

network. Rainfall tends to be highly differential on a spatial scale across the sub-

region unlike temperature. Due to this, employing a synoptic station’s temperature 

measurements for neighbouring areas would not be too erroneous as in the case of 

rainfall. 
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Rainfall records are often incomplete because of missing rainfall data in the measured 

period, or insufficient rainfall stations in the study region (Feng-Wen and Chen-

Wuing, 2012). It is much more expedient finding ways that will estimate rainfall data 

gaps to a higher degree of accuracy. A common means of resolving rainfall data gaps 

is by using interpolation techniques. Such interpolation techniques include Minimum 

Surface Curvature (Smith and Wessel, 1990), nearest neighbour (Yakowitz, 2008), 

global and local polynomial (Feng-Wen and Chen-Wuing, 2012), Thiessen polygons 

(Kopec, 2010) and inverse distance weighting (Lu and Wong, 2008; Feng-Wen and 

Chen-Wuing, 2012) methods. Others include various forms of Kriging method (Price 

et al., 2000; Jeffrey et al., 2001; Li and Heap, 2008; Yeh et al., 2011; Mengistu Tsidu, 

2012). Using appropriate interpolation techniques will aid in the development of a 

quality climate database that will allow for further climate-related impact studies. 

This work seeks to reconstruct quality and high-resolution, gridded rainfall database 

for Ghana. 

1.2 Problem Statement 

Climate-related study is still at its growing stage in Ghana. Paramount among other 

reasons for this limited study is inhomogeneity and inherent gaps within the climate 

data such as rainfall and temperature. These gaps within the data-time series yield 

difficulties in the analysis and sampling of the climate. Most rainfall studies carried 

out represent missing data as -99.9 or 0 mm (no rain) for convenience in analysis. 

This, although might not affect the result of the study holistically, but in exact terms, 

is not a true depiction of the variability of the rainfall parameter. 
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Also, very sparse meteorological station network exists countrywide and as such, not 

every location’s rainfall can be quantified and further used to carry out quality impact 

studies. 

Due to the insufficient manning and supervision of climatological and 

agrometeorological stations, data collected from these observatories may have poor 

quality as compared to data from synoptic stations. 

Lastly, there is lack of a very organised countrywide rainfall climatological database 

to enhance quality climate-based impact studies. 

1.3 Justification of the Study 

With advances in recent climate studies, availability of quality climate data becomes 

very essential. Most sectors of the country’s economy are climate change dependent, 

thus, climate impact studies in these sectors such as agriculture, health, energy 

among others will require quality climate data (Ofori-Sarpong, 2001; Singh and 

Ranade, 2010; Mathugama and Peiris, 2011). Reconstructing the rainfall dataset will 

be a very good resolve to eliminate data gaps, which are known to introduce 

inconsistencies in climate data-time series and as such, aid in quality climate impact 

studies. The study intends to develop a highly-resolved rainfall database that will aid 

in quality impact studies countrywide. 

Reto et al. (2010) accounts that, with precipitation being the most challenging aspect 

of climate modeling, there is therefore a strong need for quality estimates of 

precipitation. The development of a quality rainfall dataset at a high resolution will 
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help in dealing with the challenge, since the ground-based rainfall measurements 

serve as input data for climate models and their simulations. 

1.4 Main Objective 

This study seeks to develop a high-resolution rainfall climatology for Ghana. 

1.4.1 Specific Objectives 

• To estimate missing values in the gauge data by regularized expectation 

maximization (hereafter referred to as RegEM). 

• To homogenize rainfall dataset by Quantile Matching Adjustment (hereafter 

referred to as QMadj) Regression Fit. 

• To grid homogenized datasets on spatial scales at a high resolution 

(0.25o×0.25o) by Minimum Surface Curvature (hereafter referred to as MSC) 

Method. 

• To validate generated datasets with climate data from Climate Research Unit 

Time Series 3.22 (CRUTS 3.22). 

1.5 Organization of the thesis 

The thesis is organized into five chapters as follows: 
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Chapter one presents a general overview of data reconstruction, homogenization and 

gridding, the motivation for the study, the significance of the study, the objectives 

and the thesis structure. 

The first section of Chapter two focuses on the Climate of Ghana. A review of various 

studies conducted, with regards to climate data reconstruction, is carried out in the 

second section of Chapter two. The third section highlights the processes of 

homogenization and works carried out in that light. 

Chapter three focuses on data organization and various methods employed in the 

study. 

This Chapter holistically presents the RegEM algorithm for missing data estimation, 

Homogenization by QMadj Regression Fit, Gridding by Minimum Surface Curvature 

and a flowchart of the steps undertaken in the study. 

The results are presented in the fourth chapter. Various panels showing the 

reconstructed and homogenized datasets have been presented and analysed in the 

first section. In the second section, rainfall seasonality is shown and discussed. The 

homogenized datasets have also been gridded on a high-resolution in the next 

section. Validation of generated dataset with CRU TS dataset is presented in the final 

section. 

Chapter five comprises of conclusions based on the objectives of the study. 

Recommendations have also been made to individuals and institutions that the 

project will be beneficial to, for future research work. 

CHAPTER 2 
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Literature review 

2.1 Rainfall - formation and measurement 

2.1.1 Rain formation 

Rainfall is condensation of water droplets from atmospheric water vapor, which 

becomes heavy enough to fall under gravity. It forms a dominant input for water 

within the hydrological cycle and affords a suitable condition for many ecosystem 

types, as well as water for hydroelectric power plants, crop irrigation and other 

domestic and industrial purposes. Rain is formed when a sharp contrast occurs 

between two distinct air masses which are of different physical properties such as, 

temperature, moisture and others. Precipitation falls from convective clouds if there 

is enough moisture and upward motion. Rainfall can be classified into three types. 

Convective Rain 

Convective rain occurs from convective clouds. Heating from the surface causes the 

air mass below to be warmer and less dense, thus rising. As it is lifted, the water vapor 

encounters clod condensation nuclei (CCN) and thus condenses on them. They then 

accumulate and form heavy drops. Gravity acts on the heavy drops and so they fall 

back to the ground. As it falls, buoyancy acts on it and the force tends to split the 

huge droplet into smaller and finer ones. Also, the drops as they fall, hit against each 

other, thereby causing further disintegration. Convective rains fall as showers with 

rapidly changing intensity. 
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Orographic Rain 

Orographic rain forms on the windward side of mountains and is caused by the rising 

air motion of a large-scale flow of moist air across the mountain, resulting in adiabatic 

cooling and condensation. A more moist climate usually prevails on the windward 

side of a mountain than on the leeward or downwind side. Moisture is removed by 

orographic lift, leaving drier air on the descending and generally warming, leeward 

side where a rain shadow is observed (Pidwirny, 2008). 

Frontal Rain 

Stratiform and dynamic precipitation occur as a consequence of slow ascent of air in 

synoptic systems, such as in the vicinity of cold fronts and near and poleward of 

surface warm fronts. These frontal rains occur when two contrasting air masses (cold-

warm air masses or cold-colder air masses) tend to displace each other, thereby 

causing an ascent with subsequent rainfall associated with the ascent. 

2.1.2 Measurement of Rainfall 

Rain is measured in units of depth per unit time (for example mm hr−1, inches hr−1), 

as a representation of the depth of rain water that would be accumulated on a flat, 

horizontal and impermeable surface during a given period (Cerveny and Balling, 

1998). 

The standard raingauge is used in measuring rainfall. The raingauge is kept in a 100 

mm (4 in) plastic and 200-mm (8-in) metal varieties. The inner cylinder is filled by 25 
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mm (0.98 in) of rain, with overflow flowing into the outer cylinder. Other types of 

gauges include the tipping bucket rain gauge, and the weighing rain gauge. 

For remote locations, in the advent of rigorous climatic studies, remote sensing 

provides a better alternative for rainfall data collection and analysis. The weather 

radar and rain-observing satellites are also used in order to assess the amount of 

precipitation over remote areas. These rainfall estimates also compliment surface 

station data which can be used for calibration. These remote sensing methods also 

better represent spatial distribution of rainfall than the former approach. 

2.2 Climate of Ghana 

Interaction of the West African Monsoon (WAM) and the Inter-Tropical Discontinuity 

(ITD) dominates the climate of Ghana (Stanturf et al., 2011). The ITD is a region of 

calm winds separating the north-easterly (NE) and south-easterly (SE) trade winds. 

This region is important for African agriculture, because the rising air and water vapor 

caused by the warmth of the sun at that region leads to formation of clouds and 

rainfall (Hastenrath, 1995). The ITD migrates all year round, reaching its 

northernmost apex during the northern hemisphere summer and its southernmost 

apex during the northern hemisphere winter. The migration of the ITD downwards 

(southwards) brings the dry, dust-laden Trade Winds (Harmattan) countrywide and 

its migration upwards (northwards), brings in moisture-laden Monsoon winds 

countrywide as shown in Figure 2.1. 
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Figure 2.1: Annual migration of the Inter-Tropical Discontinuity (ITD). The red fill 
indicates the position of the ITD in July and the blue shows its position in January 
(accessed from https://en.wikipedia.org/wiki/Intertropical_Convergence_Zone). 

The movement of the ITD is very variable within the overall repeating pattern, 

thereby causing variations in rainfall patterns. There are two distinct wet seasons (bi-

modal rainfall pattern) in Southern Ghana, but Northern Ghana has only one 

(unimodal rainfall pattern). The ITD position does not move gradually over several 

months, but there are many processes that impact the ITD at various time-scales, 

from daily low-level jets (Flamant et al., 2009) to multi-day pulsations with cycles of 

about 5 days (Couvreux et al., 2010). These pulsations are associated with increased 

meridional low-level winds and bring additional moisture to the north. The diurnal 

cycle of the ITD is one of the atmospheric processes that play a crucial role in the 

WAM system. With the associated (mainly nocturnal) low-level winds, the diurnal 

variation of the ITD position has been recognized in several previous studies as a key 

factor in the northward transport of moisture (Lothon et al., 2008). 
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Studies have also shown that the climate of Ghana is getting warmer. In a recent 

study by Stanturf et al. (2011), the authors identified temperature data and patterns 

to be depicting a warming climate in Ghana with the drier northern area warming 

more rapidly than southern Ghana. Their study show a 1.0 oC rise in mean annual 

temperature since 1960 as well as, an increase in ’Hot’ days and nights. 

2.3 Surface Climate Data 

Climate data provides great depth of information about the atmosphere that impacts 

almost all aspects of human life (Peterson et al., 1998). Global change research and 

impact studies are highly dependent on the description of the mean state and 

variablity of recent climate (New et al., 1999). As such, continuous and quality climate 

datasets are precursors for excellent climate-impact studies. An example is the 

indication by Segond et al. (2007) that high spatial and temporal rainfall resolutions 

are required for urban drainage and urban flood modeling applications. 

In another study, Brohan et al. (2006) indicated that impact models for determining 

the possible consequences of climate change often require continuous and evenly 

spaced data. Historically, surface climate data which describe variability in space and 

time (Easterling, 1997), have had incomplete spatiotemporal coverage. Until recent 

times, the instrumental record of such climate variables have been quite poor and 

full of gaps. This has necessitated several works of surface climate data 

reconstruction and gridding by various scientists with varying interpolation methods 

and schemes. Such interpolated datasets allow best estimates of climate variables at 
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locations away from observing stations, thereby allowing studies of local climate in 

data-sparse regions (Atkinson and Lloyd, 1998). 

2.3.1 Climate Data Reconstruction 

Various interpolation methods have been applied widely for data reconstruction in 

many disciplines. Jeffrey et al. (2001) constructed a comprehensive archive of 

Australian rainfall and climate data from ground-based observational data using 

spatial interpolation algorithms. In their study, ordinary kriging was used for 

interpolation of rainfall and thin plate smoothing spline for interpolation of the other 

climate variables. In another study, high-resolution gridded dataset for surface 

climate variables (precipitation, temperature) for the period 1950 - 2006 over Europe 

was developed by Haylock et al. (2008). The developed dataset improved on earlier 

products in spatial resolution and extent, time period, number of contributing 

stations, and attention to finding the most appropriate method for spatial 

interpolation of climate observations. To enable direct comparison with Regional 

Climate Models (RCMs), each dataset was designed to provide the best estimate of 

grid box averages rather than point values. Haylock et al. (2008) interpolated monthly 

precipitation totals and monthly mean temperature using three-dimensional thin-

plate splines, then interpolated the daily anomalies using indicator and universal 

kriging, then combined the monthly and daily estimates. The authors quantified 

uncertainty of interpolation by providing daily standard errors for every grid square. 

The daily uncertainty averaged across the entire region was shown to be largely 

dependent on the season and number of contributing observations. 
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Feng-Wen and Chen-Wuing (2012) also utilized inverse distance weighting (IDW) 

method to estimate the rainfall distribution in the middle of Taiwan. The authors 

evaluated the relationship between interpolation accuracy and two critical 

parameters of IDW: power (α value), and a radius of influence (search radius). To 

obtain optimal interpolation data of rainfall, the value of the radius of influence, and 

the control parameter-α were determined by root mean squared error. Per their 

study, the optimal parameters for IDW in interpolating rainfall data have a radius of 

influence up to 30 km in most cases. 

Li and Heap (2011) also analysed the performance of some methods/sub-methods. 

The impacts of sample density, data variation and sampling design on the estimations 

the methods were quantified. The authors identified inverse distance weighting 

(IDW), ordinary kriging (OK), and ordinary co-kriging (OCK) as the most frequently 

used methods. According to Li and Heap (2011), data variation is a dominant impact 

factor and has significant effects on the performance of the methods. Data variation 

inversely relates the accuracy of all methods, while the magnitude of performance is 

method dependent. Irregular-spaced sampling design might improve the accuracy of 

estimation and the effect of sampling density on the performance of the methods is 

insignificant. Due to the deterministic nature of IDW, it remains a suitable method of 

spatial interpolation for estimation of probable rainfall at a reference station, 

provided the neighbouring stations have high quality rainfall dataset. Imputation by 

the IDW scheme, in the study area, will be insufficient due to lack of dense network 

of meteorological stations and also due to the fact that, most agrometeorological and 

climatological stations have sparse data. 
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Canonical correlation analysis (CCA) was also tested for paleoclimate field 

reconstructions of pseudoproxy experiments assembled from the millennial 

integration of the National Center for Atmospheric Research Community Climate 

System Model by Smerdon et al. (2010). The authors presented a method for 

selecting the order of the CCA model. Their results suggested that the method can 

resolve multiple (3-13) climatic patterns given the estimated proxy observational 

network and the observational uncertainty. Comparison of CCA reconstructions to 

derivations of regularized expectation maximization method using ridge regression 

regularization (RegEM–Ridge) was made. The authors found that CCA and RegEM-

Ridge yielded similar skill patterns, characterized by high correlation regions 

collocated with dense pseudoproxy sampling areas. The two schemes generated 

reconstructed datasets characterized by spatially variable warm biases and variance 

losses, particularly at high pseudoproxy noise levels. RegEM–Ridge in particular is 

subject to significantly larger variance losses than CCA, even though the spatial 

correlation patterns of the two methods are comparable. Their results showed the 

importance of testing the performance of methods that target spatial climate 

patterns during the last several millennia and are indications that results of available 

climate field reconstructions should be carefully interpreted. 

Bo et al. (2009) also reiterated the need to compare recent changes with past 

variability and as such, presents a study on comparison of the properties of some 

reconstruction methods. In the authors’ study, a systematic study of the properties 

of reconstruction methods (both direct hemispheric-mean reconstructions and field 

reconstructions, including reconstructions based on canonical regression and RegEM 

algorithms) is presented. The study was based on temperature fields where the 
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target of the reconstructions is known, and with emphasis on how well the 

reconstructions reproduce low-frequency variability, biases, and trends. Bo et al. 

(2009) employed a climate simulation from an ocean-atmosphere general circulation 

model of the period 1500 – 1999, including both natural and anthropogenic forcings. 

The reconstructions, however, included large elements of stochasticity, and 

reconstructions of a large ensemble of realistic temperature fields were needed to 

draw robust statistical interferences. The authors developed a technique to generate 

surrogate fields with similar spatio-temporal characteristics as the original surface 

temperature field from the climate model. The authors found that all reconstruction 

methods contained large elements of stochasticity, and it was not possible to 

compare them and draw conclusions from a single or a few realizations. This, they 

further explained that, very different results can be obtained using the same 

reconstruction method on different surrogate fields and this could be a possible 

explanation for some of the recently published divergent results. 

Schneider (2001) proposed that the RegEM scheme is applicable to climate datasets, 

in which the number of variables typically exceeds the sample size. According to 

Schneider (2001), estimation of the mean and covariance matrix of incomplete 

dataset and filling in missing values is a nonlinear problem, which demands an 

iterative solution. The author considers the expectation maximization (EM) algorithm 

for Gaussian data, as departure for the development of RegEM algorithm. 

Schneider (2001) cites that the RegEM algorithm can estimate, and exploit for the 

imputation of missing values, both synchronic and diachronic covariance matrices, 

which may contain information on spatial covariability, stationary temporal 

covariability, or cyclostationary temporal covariability. A test of the RegEM algorithm 
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with simulated surface temperature data, by the author, showed that the scheme 

can be applied to typical sets of climate data and that it leads to more accurate 

estimates of the missing values than a conventional noniterative imputation 

technique. 

Mengistu Tsidu (2012), in his recent study, also addressed the concern regarding the 

extent and quality of historical climate data for Ethiopia. The author employs rainfall 

records of selected gauge stations over Ethiopia for the 1978-2007 period in an 

analysis that involved homogenization, reconstruction, and gridding onto a regular 

0.5o x 0.5o resolution grid. Inhomogeneity was detected and adjusted based on 

quantile matching. The RegEM and multichannel singular spectrum analysis (MSSA) 

algorithms were also used for missing value imputation. The latter was determined 

to have quite a slim advantage. Mengistu Tsidu (2012) further used ordinary kriging 

to create a set of gridded monthly rainfall data. An assessment of spatio-temporal 

coherence of the dataset was performed with harmonic analysis (HA), self-organizing 

maps (SOMs), and intercomparison with global datasets which included Global 

Precipitation Climatology Project (GPCP), Climate Prediction Center (CPC) Merged 

Analysis of Precipitation 

(CMAP), Climatic Research Unit time series version 3 (CRUTS3.0), Tropical Rainfall 

Measuring Mission (TRMM), and interim ECMWF Re-Analysis (ERA-Interim) rainfall. 

Correlation values of the datasets typically ranged from 0.52 to 0.95 over sparse to 

dense rain gauge regions. 

In another study, Smith and Wessel (1990) used minimum curvature to grid geological 

datasets. The authors identified that minimum curvature surfaces may have large 

oscillations and extraneous inflection points which make them unsuitable for 
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gridding in many of the applications where they are commonly used. As a resolve, a 

tension is added to the elastic-plate flexure equation. Thus, solutions under tension 

require no more computational effort than minimum-curvature solutions, and any 

algorithm which can solve the minimum-curvature equations can solve the more 

general system. The authors further included this in the development of their Generic 

Mapping Tools (GMT) programming language. 

2.4 Data Homogenization 

The level of consistency in the trend of climate data time-series is often referred to 

as data homogeneity. Data homogenization is a two-phase technique. The first phase 

deals with the detection of the inhomogeneities in the data whereas the second 

phase has to do with the adjustment of the data in order to remove the 

inhomogeneities. 

According to Blair (2012), the detection of inhomogeneities in a dataset is a 

wellexplored problem, both in climate science and in statistics. Costa and Soares 

(2009) and Mengistu Tsidu (2012) further classified data homogenization into two 

sets: absolute and relative homogenization. Relative homogenization deals with 

augmenting the inhomogeneities in the station using data from neighbouring stations 

whereas absolute homogenization employs statistical approaches to identify 

changepoints within the data from the station and augment based on the degree of 

variations within the detected trends. In further explaining some possible causes of 

inhomogeneity, Blair (2012) asserted that most climate instrumental networks 

change over time primarily due to the importance of a fixed network for monitoring 
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climate variability and change being less appreciated in the past than in more recent 

times. In addition, various socioeconomic considerations, such as changes in 

demographics and infrastructure, affect the ability to maintain a fixed station 

network over a long period of time. 

Inhomogenieties, as discussed by Menne and Williams Jr. (2008) and Lei et al. (2014), 

can also be induced by an alteration in instrumentation or observation practice. The 

relocation, replacement, or recalibration of an instrument, for example, can lead to 

an abrupt shift in time-ordered observations that is unrelated to any real change in 

climate. Various homogenization studies have been carried out using climate data. In 

a study by Menne and Williams Jr. (2008), the authors described an automated 

homogenization algorithm based on the pairwise comparison of monthly 

temperature data. The algorithm works by developing pairwise difference series 

between monthly temperature values from a network of observing stations. 

Undocumented shifts and stations responsible for the shifts are then sampled by 

evaluating each difference series. The algorithm also makes use of available station 

metadata to improve the identification of artificial shifts in temperature data. In their 

study, when magnitude of a shift linked to a particular station was reliably estimated, 

an adjustment was made for the target series. Pairwise homogenization algorithm 

was seen to be robust and efficient at detecting undocumented step changes under 

varying scenarios with step- and trend-type inhomogeneities. The approach has been 

shown to yield lower false-alarm rate for undocumented changepoint detection 

relative to the more common approach (use of a 

reference series). 
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In another study, Lei et al. (2014) performed relative homogenization on temperature 

data of Huairou station in Beijing for a 49-year period by applying data of two nearby 

stations. The authors estimated and compared the linear trends of the original and 

adjusted temperature series and concluded that the significant discontinuities in 

their data series was linked to relocation of the station from downtown to suburb in 

1996. The homogenized data was then used to study the change in climate, which 

further revealed that inhomogeneous data can lead to a significant overestimate of 

rising trends of climate variables, and this necessitates a careful evaluation and 

adjustment for urban biases before the data is used to analyse local and regional 

climate change. 

Peterson et al. (1998) reviewed the methods and techniques developed for 

homogeneity adjustments and described many different approaches involved in 

adjusting in situ climate data. Some findingss are made in the researchers’ study and 

these include the effect of inhomogeneities on temperature being often opposite 

during winter and summer. Therefore, evaluating annual mean temperatures, if the 

series are intended for studies of seasonal trends, is not recommended. Evaluation 

can be done on single months, but the noise level is then increased. The authors 

further proposed the use of metadata alongside the annual mean homogeneities for 

seasonal trend studies of temperature. For precipitation, the authors suggested the 

use of both seasonal and annual test results in conjuction with metadata, to state if 

and when there is an inhomogeneity. 

Noise levels are larger for seasonal testing, therefore, many inhomogeneities are 

most easily detected using annual values. The authors admonish that series tested 

and adjusted only on annual basis should not be used for seasonal trend studies. In 
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confirming the work of Hanssen-Bauer et al. (1997), the authors stated that the 

adjustment values for precipitation may vary throughout the year. 

Time-consistent homogeneity, in high-resolution investigations, can rely on strong 

correlations among series, which must meet the quality standard in terms of 

completeness (Eccel et al., 2012). The authors pre-processed fifty-nine daily 

precipitation and temperature series of 50 years from Trentino, northern Italy, for 

climatic analysis. The authors first filled the data gaps using geostatistical correlations 

on both horizontal and vertical domains and then developed an algorithm to reduce 

inhomogeneity owing to the systematic snowfall underestimation of rain gauges. 

Finally, the processing protocol to factor any source of undocumented discontinuities 

in series, was described. Homgenization was performed by the F-test and T-test as 

designed by Wang et al. (2010). Pre-processing showed straightforward results; 

homogenization increases the strength of the climatic signal and reduces the 

scattering of time trends, assessed over a few decades, by a factor of 2. 

Lanzante and Klein (2002) in another study, performed temporal homogenization on 

radiosonde data to determine long-term trends. The homogeneity methods were 

applied to a network of 87 stations using monthly temperature data, spanning a 50 

year period and at mandatory pressure levels. The first phase dealt with identification 

of artificial inhomogeneities through visual examination of graphical and textual 

materials, including temperature time series, transformations of the temperature 

data, and independent indicators of climate variability, as well as station history 

metadata. Modification, in the form of data adjustment or data deletion, was then 

applied to correct each problem encountered. The authors performed various 

analyses, particularly trend, in a second part of the study using the homogenized 
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datasets. Application of the procedures to the station network revealed a number of 

systematic problems. Some stations show a tendency for episodic drops in 

temperature that produce spurious downward trends. Stations from Africa and 

neighboring regions were found to be the most problematic with the character of the 

interannual variability being unreliable. Temporal variations in observation time were 

also found to lead to inhomogeneities as serious as the worst instrument-related 

problems. 

Costa and Soares (2009) also reviewed the characteristics of several widely used 

procedures and discusses the potential advantages of geostatistical techniques. The 

geostatistical simulation approach is applied to precipitation data from 66 stations 

located in the southern region of Portugal for a 22-year period. The results from this 

procedure were then compared with those from three well established statistical 

tests: the Standard normal homogeneity test (SNHT) for a single break, the Buishand 

range test, and the Pettit test. The case study provided promising results that open 

new research perspectives on the homogenization of climate time series. 

The greater concern at the moment is that such studies have not been carried out on 

GMet datasets, hence this study becomes essential towards addressing the challenge 

of datagaps and inhomogenieties within rainfall time-series from meteorological 

stations across the country, through the application of interpolation and 

homogenization techniques. 

CHAPTER 3 
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Data and Methodology 

3.1 Study Area and Data Source 

3.1.1 Climate of the Study Area 

Two main seasons dominate the country due to its location in the tropics. These are 

the dry (Harmattan) and the wet (Monsoon) seasons. The Harmattan spans the 

months of November to March, with the remaining months being the rainy period. 

Rainfall in this region is mainly associated with mesoscale convective systems and 

controlled by the advection of moisture from the Gulf of Guinea in the low level 

atmosphere (Sultan and Janicot, 2003). This system is usually referred to as the West 

Africa Monsoon (WAM) and it is driven by energy and temperature gradient between 

the Gulf of Guinea and the Sahara. The maritime tropical air mass which originates 

from the Atlantic Ocean is moisture laden and converges with the dry north-east 

continental tropical air mass usually along the Inter-Tropical Discontinuity 

(ITD)[(Amekudzi et al. (2015) and references therein)]. The north and south 

movement of the ITD regulates the dynamics of the seasons in Ghana (Biederlack and 

Rivers (2009); Manzanas et al. (2014)). There is a change in the rainfall regime from 

the north to the south of the country. A uni-modal egime dominates the northern 

part and a bi-modal regime dominates the southern parts of the country [(Yamba 

(2010) and references therein)]. 
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3.1.2 Data Source 

3.1.2.1 Observed Data 

Monthly rainfall datasets for various meteorological (synoptic, agrometeorological 

and climatological) stations over Ghana were acquired from the Ghana 

Meteorological Agency (GMet) database. Almost all the datasets had inherent data-

gaps. A criteria was set for sorting the datasets. RegEM is less well-suited to deal with 

datasets that exhibit relatively long continuous gaps (Mengistu Tsidu, 2012) so 

rainfall data with 10% or more gaps were discarded, as well as data with continuous 

gaps. A total of 113 stations that met this criteria were employed in this study. The 

sampled stations are spread over the four agro-ecological zones (Northern, 

Transition, Forest, Coastal) as shown in Figure 3.1, with a dense station-network in 

the Forest zone. 

 −3˚ −2˚ −1˚ 0˚ 1˚ 

 

 (Agro− & Climo−) Stations  
Synoptic Stations 
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Figure 3.1: Spatial distribution of 113 meteorological (synoptic, agrometeorological 
and climatological) stations employed in the study. 
The percentage of data gaps in each station’s data is illustrated in Figure 3.2 and 

Figure 3.3 shows the percentage of missing data as a function of cummulative 

number of stations with data gaps. Data were collected for a 33-year period, from 

1980 to 2012. 

 

 ~ No Gap  < 2 %  
< 5 % 

 
< 10 % 

Figure 3.2: Percentage of missing data in each of the 113 station. Green circles show 
stations with approximately no data gap, blue circles show stations with less than 2% 
gap, brown circles show stations with less than 5 % gaps and the red circles show 
stations with less than 10 % gaps. 
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Figure 3.3: Percentage of missing data as a function of cummulative number of 
stations with data gaps. 

3.1.2.2 Classification of the Various Meteorological Stations 

3.1.2.2a Synoptic Station 

The synoptic stations are manned, per WMO standards, to observe majority of the 

climate variables. Observations at the synoptic stations can be classified into two: the 

minor and major observations. Minor observations are carried out at every 3 hour 

interval (i.e 0000, 0300, 0600, 0900, 1200, 1500, 1800, 2100 Greenwich Mean Time) 

and the major observations are carried out at every 6 hour interval (i.e 0000, 0600, 

1200, 1800 Greenwich Mean Time). Rainfall, however, is recorded at 0900 GMT in 

the synoptic station. 

3.1.2.2b Climatological Station 
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These stations are primarily manned for meteorological data archiving. Observations 

are taken at every hour and they carry out lesser observations than the synoptic 

stations. 

3.1.2.2c Agrometeorological Station 

Agrometeorological stations are manned to carry out agricultural-relevant 

meteorological observations. Some of these observations include rainfall, 

evapotranspiration, soil matrix potential, and others. Lesser observations are taken 

in the agrometeorological station than the synoptic station. 

3.1.2.3 CRU TS Data 

CRU TS datasets are monthly variation in climate over the last century produced by 

the Climatic Research Unit (CRU) at the University of East Anglia. They are gridded 

datasets at a high-resolution of 0.5ox0.5o with precipitation datasets provided by 

more than 4000 weather stations distributed around the world. 

CRU also generates data of other climate variables such as diurnal temperature 

range, daily mean temperature, vapour pressure, wet day frequency, monthly 

average daily maximum temperature, wet day frequency and cloud cover, which 

allow for the study of climate variability. The latest data time series (CRU TS 3.22) are 

generated for the period 1901 – 2013. The CRU TS data are monthly gridded fields 

based on daily values -hence its precipitation storage files contain monthly total 

mean values. 
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3.2 Methods 

3.2.1 Regularized Expectation Maximization Algorithm for Miss- 

ing Data Estimation 

Regularized Expectation Maximization (RegEM) algorithm described by Schneider 

(2001), is used in reconstructing the rainfall data-time series. RegEM works on the 

principles outlined in equations 3.1 - 3.7. 

An unobservable population parameter that maximizes the log-likelihood function is 

extensively estimated using the maximum likelihood method described in equation 

3.1  (3.1) 

where, observations, X = {xi|i = 1,...,n} are independently drawn from the distribution 

P(x) parameterized by Θ. The Expectation-Maximization (EM) algorithm iteratively 

computes the maximum-likelihood estimates when the observations are an 

incomplete data with existence of additional but missing data Y = {Yi|i = 1,...,n} 

corresponding to X . The EM algorithm maximizes the log-likelihood of the 

incomplete data by exploiting the relationship between the complete and the 

incomplete data. 

Two processes (E-step and M-step) are involved in each iteration (t = 1,2,3,...,n). In 

the E-step, the expectation of log-likelihood of the complete data, based on the 

incomplete data and the current parameter (Θ(t)) is determined from equation 3.2 
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 Q(Θ|Θ(t)) = E (log P(X,Y|Θ)|X,Θ(t)) (3.2) 

The algorithm determines a new parameter by maximizing Q, in the M-step (see 

equa- 

tion 3.3). 

 Θ(t+1) = argmax Q(Θ|Θ(t)) (3.3) 
Θ 

Each iteration is guaranteed to increase the likelihood, and finally the algorithm 

converges to a local maximum of the likelihood function. The missing data, Y, has 

strong effect on performance of the EM algorithm since the optimal parameter Θ∗ is 

obtained by maximizing E (logP(X,Y|Θ)). With the incomplete-data, X , there exists 

several different ways to define Y. The choice of a suitable Y to make the solution 

more plausible is an unadressed question in EM algorithm because the likelihood 

function reflects no influence of the missing data. The information about one object 

contained in another object can be measured from equation 3.4 

H(X|Y ) = XP(y)H(X|Y = y) = −XXP(x,y)logp(x|y) 
 y x y 

The relationship between entropy (H) and information (I) in equation 3.5 

(3.4) 

I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X) (3.5) 

demonstrates that the mutual inforamtion measures the amount of information that 

one random variable contains about another one. 

The conditional entropy H(Y |X) measures the uncertainty of Y on the average when 

X is known. In fact, H(Y |X) = 0 if and only if Y is a function of X. Thus, H(Y |X) is 

expected to be small if the observations X and the missing data Y have a strong 

correlation. 

To optimize the regularized likelihood, there is the need for a modification in the 

Mstep of the EM algorithm, which is given as 
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Θ(t+1) = argmax Qe(Θ|Θ(t)) 
Θ 

where 

(3.6) 

Qe(Θ|Θ(t)) = Q(Θ|Θ(t)) − γH(Y |X;Θ) (3.7) 

This modified algorithm is the Regularized Expectation Maximization algorithm (see 

equation 3.6). 

3.2.2 Homogenization 

There are two types of homogenization (absolute and relative) procedures. Absolute 

homogenization considers information in the particular station’s climate data-time 

series alone whereas relative homogenization uses data from other neighbouring 

observatories to approximate the observatory of interest, and thus is more reliable, 

provided that neighbouring stations have high quality datasets (Mengistu Tsidu, 

2012). 

Due to the sparse datasets from neighbouring observatories, absolute 

homogenization was carried out in this study, using the RHtests V4 package described 

by Wang et al. (2010). The homogenization is based on a linear regression analysis of 

the reference series as shown in equation 3.8. 

Yi = Xi − β(ti) (3.8) 

where Yi is the homogenized dataset, Xi is the reference series observed at time (ti) 

and β(ti) is the common linear trend component. 

Homogenized datasets are based on quantile matching adjustments. 
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3.2.3 Gridding by Minimum Surface Curvature With a Tension 

Parameter 

Minimum Surface Curvature (MSC) is a surface interpolation method which is 

analogous to a thin, linearly-elastic plate moving through each of the data values with 

minimal amount of bending. The method interpolates the data with a surface having 

continuous second derivatives and minimal total squared curvature (Smith and 

Wessel, 1990). MSC generates smoothest possible surface but has been shown not 

to be an exact interpolator, implying that the data is not always honored. 

A better resolve is the introduction of a tension parameter (T) to the algorithm. The 

general algorithm is a numerical solution of modified biharmonic differential 

equation given in equation 3.9 as 

(1 − T)∇4f(x,y) − (T)∇2f(x,y) = 0 

with three boundary conditions in equations 3.10, 3.11 and 3.12. 

(3.9) 

  (3.10) 

(3.11) 

(3.12) 

where T is the tension parameter for the boundary which varies from 0 to 1, ∇2 is the 

Laplacian operator, ∇4 is the biharmonic operator and n is the boundary normal. 
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3.2.4 Validation 

Validation in this study helps in the quantification of the disparity or agreement 

between the gridded GMet data and CRU TS data. In the effort of such quantification, 

three statistical measures (Relative mean difference, Pearson’s correlation 

coefficient and Relative root mean square error), described by Amekudzi et al. (2007) 

and Quansah et al. (2014) have been used. These show the level of agreement 

between the two datasets or the deviation of the reconstructed from the CRU TS 

data. 

3.2.4.1 Relative Mean Difference 

  (3.13) 

  (3.14) 

3.2.4.2 Pearson’s Correlation Co-efficient 

  (3.15) 

3.2.4.3 Relative Root Mean Square Error 

  (3.16) 

where x is the reconstructed dataset, y is the satellite data, µ is the arithmetic mean, 

S is the standard deviation, rxy is the Pearson Correlation Coefficient (r ∈ -1,1), RMD 

is the Relative Mean Difference and RRMSE is the Relative Root Mean Square Error. 
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3.3 Summary of Methodology 

The steps for reconstruction (missing data estimation, homogenization and gridding) 

of rainfall datasets have been summarised in a flowchart in Figure 3.4. 

With less than 10% missing data, the gaps were estimated using RegEM and passed 

on for homogenization. With no data gap present, data was passed on for 

homogenization. If changepoints were detected during homogenization stage, 

datasets were augmented using QMadj. Homogenized data was then gridded on 

0.25o x 0.25o spatial scale. 

Datasets with more than 10% data gaps were discarded. 

The percentage of each station’s inherent missing data is shown in Appendix A. 
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CHAPTER 4 

Results: analysis and discussion 

4.1 Data Reconstruction 

RegEM was used in missing data estimation, and QMadj regression fit used for 

homogeneity testing. Some of the results are shown and discussed below in this 

section. 

 

 

Figure 4.1: Homogenization by QMadj performed on Abetifi data. In Fig. 4.1a, the 
black line represents the detrended data (base series) and the red line is the 
regression fit (trend line) with any red vertical mark indicating a changepoint. Fig. 
4.1b shows the homogenized dataset. The difference between the base series and 
the adjusted series is shown in Fig. 4.1c. An overplot of the two time-series is 
illustrated in Fig. 4.1d. Base series are the gap-filled datasets and QM-adjusted are 
the homogenized datasets. 
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Four different changepoints are identified within the datasets (see Figure 4.1a). These 

changepoints are associated with non-climatic shifts in the trend of the data 

timeseries. Such shifts are likely attributed to a total shift of the station or 

rearrangement of instruments in the observatory and other factors as described in 

section 2.4. Figure 4.1b shows the homogenized datasets. The detrended datasets 

are augmented based on the identified changepoints. Figure 4.1c also shows the 

relative changepoints (i.e the difference between the homogenized datasets or QM-

adjusted series and the base series), ranging from 0 to 150 mm. An overplot of the 

base (black line) and QM-adjusted (red line) datasets is shown in Figure 4.1d. A clear 

indication of the magnitude of deviation of the homogenized datasets from the base 

series is clearly seen. 

 

 

Figure 4.2: Homogenization by QMadj performed on Aburi data. In Fig. 4.2a, the black 
line represents the detrended data (base series) and the red line is the regression fit 
(trend line) with any red vertical mark indicating a changepoint. Fig. 4.2b shows the 
homogenized dataset. The difference between the base series and the adjusted 
series is shown in Fig. 4.2c. An overplot of the two time-series is illustrated in Fig. 
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4.2d. Base series are the gap-filled datasets and QM-adjusted are the homogenized 
datasets. 

No changepoint is detected in the rainfall data-time-series for Aburi-Parks.

 This is clearly seen by the 0 mm difference between the 2 datasets, as shown 

in Figure 4.2c. This indicates that variability of rainfall over the station is solely driven 

by climatic factors as discussed in Section 2.4 

 

 

Figure 4.3: Homogenization by QMadj performed on Asuansi data. In Fig. 4.3a, the 
black line represents the detrended data (base series) and the red line is the 
regression fit (trend line) with any red vertical mark indicating a changepoint. Fig. 
4.3b shows the homogenized dataset. The difference between the base series and 
the adjusted series is shown in Fig. 4.3c. An overplot of the two time-series is 
illustrated in Fig. 4.3d. Base series are the gap-filled datasets and QM-adjusted are 
the homogenized datasets. 

Five changepoints (non-climatic shifts) are detected in the rainfall data-time-series 

for Asuansi in 4.3a. Relative difference between the two datasets (typically between 

-50 to 120) is shown in Figure 4.3c. An overplot of the two datasets in 4.3d, reveals 

the deviation between the base series and QM-adjusted series. 
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a)  Base Series and Regression Fit b)  QM-Adjusted Base Series 

 Year Year 

 

Figure 4.4: Homogenization by QMadj performed on Atebubu data. In Fig. 4.4a, the 
black line represents the detrended data (base series) and the red line is the 
regression fit (trend line) with any red vertical mark indicating a changepoint. Fig. 
4.4b shows the homogenized dataset. The difference between the base series and 
the adjusted series is shown in Fig. 4.4c. An overplot of the two time-series is 
illustrated in Fig. 4.4d. Base series are the gap-filled datasets and QM-adjusted are 
the homogenized datasets. 

No changepoint is detected in the rainfall data-time-series for Atebubu. The 

difference of 0 mm between the 2 datasets, as shown in Figure 4.4c, is an indication 
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a)  Base Series and Regression Fit b)  QM-Adjusted Base Series 

of the detection of no changepoint within the trends of rainfall data-time-series and 

as such variability of rainfall over the station is solely driven by climatic factors. 

 Year Year 

 

Figure 4.5: Homogenization by QMadj performed on Damango data. In Fig. 4.5a, the 
black line represents the detrended data (base series) and the red line is the 
regression fit (trend line) with any red vertical mark indicating a changepoint. Fig. 
4.5b shows the homogenized dataset. The difference between the base series and 
the adjusted series is shown in Fig. 4.5c. An overplot of the two time-series is 
illustrated in Fig. 4.5d. Base series are the gap-filled datasets and QM-adjusted are 
the homogenized datasets. 
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a)  Base Series and Regression Fit b)  QM-Adjusted Base Series 

Damango in Figure 4.5a. Relative difference between the two datasets is shown in 

Figure 4.5c. An overplot of the two datasets in Figure 4.5d, reveals the deviation 

between the base series and QM-adjusted series. 

 Year Year 

 

Figure 4.6: Homogenization by QMadj performed on Winneba data. In Fig. 4.6a, the 
black line represents the detrended data (base series) and the red line is the 
regression fit (trend line) with any red vertical mark indicating a changepoint. Fig. 
4.6b shows the homogenized dataset. The difference between the base series and 
the adjusted series is shown in Fig. 4.6c. An overplot of the two time-series is 
illustrated in Fig. 4.6d. Base series are the gap-filled datasets and QM-adjusted are 
the homogenized datasets. 
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a)  Base Series and Regression Fit b)  QM-Adjusted Base Series 

Eight changepoints (non-climatic shifts) are detected in the rainfall data-time-series 

for Winneba in Figure 4.6a. Relative difference between the two datasets is shown in 

Figure 4.6c. An overplot of the two datasets in Figure 4.6d, reveals the deviation 

between the base series and QM-adjusted series. 
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4.2 Rainfall Seasonality in the Agro-Ecological Zones 

4.2.1 Northern Zone 

a) Rainfall Seasonality (Babile) 

 

b) Rainfall Seasonality (Damango) 

 

Figure 4.7: Seasonal Rainfall Patterns over selected stations in the Northern Zone for (a) 
Babile and (b) Damango. 
A unimodal pattern of rainfall is observed in the Northern Zone (see Figure 4.7), with 

the onset of rains in April and its cessation in October. The unimodal pattern of 

rainfall over the area is associated with the once-in-a-year migration of the ITD 
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northwards. August marks the month of maximum rainfall in Babile (see Figure 4.7a) 

whereas August and September are the peak months of rainfall in Damango (see 

Figure 4.7b). Within these periods, the ITD is directly over the area. Damango, due to 

its location closer to the Transition zone, tends to have a rainfall pattern that shows 

some similarities to that of the transition. November to March are the dry months in 

the northern zone. This dryness is attributed to the southward location of the ITD 

below the area and as such, dry, dust-laden Trade Winds dominate the area within 

this period.  
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4.2.2 Transition Zone 

a) Rainfall Seasonality (Bui) 

 

b) Rainfall Seasonality (Wenchi) 

 

Figure 4.8: Seasonal Rainfall Patterns over selected stations in the Transition Zone for 
(a) Bui and (b) Wenchi. 
The transition zone is characterized by a bi-modal rainfall pattern with maximum 

rainfall recorded in the minor rainy season (see Figure 4.8). The transition zone has a 

longer growing season and thus, serves as the food hub of the country. Its very slim 
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temporal cessation is as a result of the very sharp return of the ITD downwards after 

it has moved northwards. 

The transition zone has its rainy season spanning the months of April to October. 

Rainfall peaks over areas in the upper transition zone such as Bui are recorded in 

September (see Figure 4.8a) while rainfall peaks over areas in the lower transition 

zone such as Wenchi are recorded in September-October (see Figure 4.8b). 

A temporal cessation – associated with the location of the ITD above the zone – is 

observed in August and this separates the two rainfall regimes. The temporal 

cessation is however pronounced in the lower transition zone and this creates a 

rainfall pattern with some similarities to that of the Forest Zone. The Harmattan 

season dominates the months of November to March in the transition zone. It is 

attributed to the location of the ITD below the Zone, and as such the dry, dust-laden 

Trade Winds dominate the zone within that period. 

4.2.3 Forest Zone 

a) Rainfall Seasonality (Tarkwa) 

 

b) Rainfall Seasonality (Kumasi) 
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Figure 4.9: Seasonal Rainfall Patterns over selected stations in the Forest Zone for (a) 
Tarkwa and (b) Kumasi. 
The forest zone is characterized by a bi-modal (major and minor) rainfall regime (see 

Figure 4.9). Rainfall onset and cessation are in April and October respectively in the 

upper forest zone (see Figure 4.9a) whereas the lower Western forest zone has onset 

and cessation are in March and November respectively (see Figure 4.9b). The major 

rainy season has rainfall peaks in the months of May and June. September marks the 

rainfall peaks of the minor rainfall season in the upper forest zone whereas October 

marks the rainfall peaks of the minor rainfall season in the lower forest zone. The 

major (minor) rainy season is associated with ITD migration northwards(southwards) 

over the forest zone. The recess of the ITD is observed to be sharper than its 

northward advancement, resulting in a shorter minor season and a bit longer major 

season. 

In the month of August, the ITD migrates northwards beyond the forest zone, thereby 

establishing a rainfall cessation over the zone. The periods of November to the March 

mark the dry (Harmattan) season which is attributed to ITD location below the zone. 

Dry, dust-laden Trade Winds dominate the zone within this period. 
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4.2.4 Coastal Zone 

a) Rainfall Seasonality (Winneba) 

 

b) Rainfall Seasonality (Accra) 

 

Figure 4.10: Seasonal Rainfall Patterns over selected stations in the Coastal Zone for (a) 
Winneba and (b) Accra. 
The coastal zone is also characterized by a bi-modal (major and minor) rainfall pattern 

[see Figure 4.10]. There is a similarity in the rainfall pattern of the coast and the forest 

zone, however, rainfall amounts are lower in the coastal zone than the forest zone. 

Rainfall onset and cessation are in April and October respectively in the Coastal zone. 
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The major rainy season has rainfall peaks in the months of May and June whereas 

October marks the rainfall peaks of the minor rainfall season. The recess of the ITD is 

again observed to be sharper than its northward advancement, resulting in a shorter 

minor season and a longer major season. 

In the month of August, the ITD migrates northwards beyond the forest zone, thereby 

establishing a temporal cessation over the zone. Also, the months of November to 

March are the dry (Harmattan) season in the Coastal Zone which is associated with 

the location of the ITD below the zone.  
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4.3 Gridding 

4.3.1 Monthly Rainfall Climatology 
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Figure 4.11: Gridded Monthly Rainfall Total. (a) represents January and (b) represents 
February. 

January is a dry month country-wide. The ITD is located at its southward apex beyond 

the country and as such, the dry, dust-laden Trade Winds are expected to dominate 

over the entire country. The gridded data shows monthly rainfall totals to be ranging 

up to a maximum of ∼ 120 mm (see figure 4.11a) over the four agro-ecological zones 

of Ghana. 

February is also a dry month over the entire country, with similarities to the January 

rainfall trend. The ITD, although has begun its migration northwards, is still located 

southwards beyond the country and as such, the dust-laden Trade Winds are 
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expected to continue dominating the country. Rainfall amounts over the entire 

country for February, as shown in figure 4.11b, ranges up to a maximum of 

approximately 150 mm. 

 
mm 

(a) March 

mm 

(b) April 
Figure 4.12: Gridded Monthly Rainfall Total. (a) represents March and (b) represents April. 

The month of March happens to be the rainfall onset month for some grids within 

the forest zone. This is associated with the continuous and gradual, northward 

migration of the ITD. Rainfall within these months range up to a maximum of 

approximately 200 mm as shown in figure 4.12a. 

Owing to the gradual northward migration of the ITD, all forest and coastal grids fully 

experience the onset of the rainy season latest by April as shown in figure 4.12b, with 

monthly rainfall totals ranging up to 250 mm. An inflexion point is observed at grid 

“9.5N 1.0W” in the Northern Zone and grids directly beneath it (see Figure 4.12b). 
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These grids are the point of confluence for the Black and White Volta. The high 

inflexions are likely associated to local hydroclimatic factors that tend to impact on 

the climatology of the area. 

 
mm 

(a) May 

mm 

(b) June 
Figure 4.13: Gridded Monthly Rainfall Total. (a) represents May and (b) represents June. 

By May, more rains feed in over the Coastal and Forest Zones, with rainfall amounts 

ranging up to 300 mm. Sections of the Northern and Transition Zones now experience 

the onset of rains within this month. Rainfall amounts over the Transition Zone ranges 

up to about 200 mm. The Northern Zone also has rainfall amounts ranging to 150 

mm. Again, the inflexion point is observed at the locations of confluence for the Black 

and White Volta (see Figure 4.13a). 

June is the wettest month for the Forest and Coastal Zone, with rainfall amounts ranging 

to an approximate of 450 mm and 350 mm respectively. Within this period the ITD is 



 

50 

directly overhead the Forest Zone and as such, accounts for the annual rainfall maxima 

over the zone. Also, rainfall amounts in the Transition Zone ranges up to 320 mm and the 

North ranges up to 200 mm. Similarly, portions of the Transition zone and lower portions 

of the Northern zone record high rains as shown in Figure 4.13b. 

 
mm 

(a) July 

mm 

(b) August 
Figure 4.14: Gridded Monthly Rainfall Total. (a) represents July and (b) represents August. 

By July, the ITD is expected to be traversing the Upper Transition and the Northern 

Zone, and continuing its northward migration (see Figure 4.14a). Rainfall, as such is 

expected to be quite high over portions ranging from the mid Forest Zone upwards. 

Rainfall values are expected to be up to a maximum of approximately 270 mm. The 

Coastal Zone, within this period is nearing a temporal cessation. Rainfall amounts are 

expected to be reducing within this period, with values less than 150 mm. 

The ITD reaches its northward apex in the month of August. Due to its location at the 

upper Northern Zone, the zone tends to receive its all year-round maximum rainfall 
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within this month as shown in Figure 4.14b. Rainfall over the North ranges up to 

approximately 350 mm. The Upper Transition Zone also receives quite substantial 

rainfall amounts (less or equal to 350 mm). On the contrary, the Forest and Coastal 

Zones are in a temporal cessation period with rainfall totals ranging up to 180 mm. 

 
mm 

(a) September 

mm 

(b) October 
Figure 4.15: Gridded Monthly Rainfall Total. (a) represents September and (b) represents 
October. 

Upon reaching its northwards apex, the ITD returns downwards. Its return is sharper 

than its advancement. The very sudden return of the ITD causes the Transition zone 

and some lower parts of the Northern zone to experience maximum monthly rainfall 

within September (in the minor rainy season). Rainfall amounts over the transition 

Zone ranges up to about 350 mm. Upper North, Forest and Coastal Zones record 

rainfall values up to about 200 mm. 
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October happens to be the peak months for rainfall in the minor rainy season over 

the Forest and Coast. Rainfall amounts typically range up to 300 mm and 200 mm 

respectively. As earlier stated, these peaks are associated with the Southward 

migration of the ITD. Within this month, the ITD is expected to be over the Forest 

Zone. Within this month, rainfall over the Northern Zone is expected to be low with 

amounts typically of 100 - 150 mm. 

 
mm 

(a) November 

mm 

(b) December 
Figure 4.16: Gridded Monthly Rainfall Total. (a) represents November and (b) represents 
December. 

Due to the southward ITD migration, the Trade Winds start to dominate over the Northern 

and upper Transition Zone in the month of November. This is the onset of the Harmattan 

periods for the country. The Forest Zone records some few rains, especially around the 

south-west shorelines, within the month of November before the Harmattan sets in. 

Rainfall amounts over the entire country are less than 250 mm as shown in Figure 4.16a. 
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The entire country is dominated by the dry, dust-laden Trade Winds (Harmattan) in 

December due to the southward ITD location, approaching its southwards apex. 

Rainfall amounts over the entire country, within the month of December, are less 

than 150 mm as shown in Figure 4.16b. 

4.3.1.1 Summary of Monthly Rainfall Climatology 

Table 4.1: Estimates of monthly rainfall total in the four agro-ecological zones. 

Month  Rainfall ( mm)   

 North Transition Forest Coast 

January < 100 < 100 < 100 < 100 

February < 100 < 100 < 150 < 100 

March < 150 < 150 < 250 < 150 

April 50 - 200 50 - 200 100 - 250 50 - 200 

May 50 - 200 50 - 200 100 - 350 100 - 250 

June 100 - 300 100 - 300 150 - 450 100 - 300 

July 100 - 300 100 - 300 100 - 250 < 200 

August 100 - 300 100 - 300 50 - 200 < 150 

September 50 - 300 50 - 300 50 - 300 < 150 

October 50 - 150 50 - 200 50 - 300 < 200 

November < 100 < 100 < 200 < 100 

December < 100 < 100 < 100 < 100 

Monthly rainfall totals of the four agro-ecological zones are presented in Table 4.1, 

with each entry representing the probable range of monthly rainfall total for any grid 

that lies within a particular zone. 

The north records monthly rainfall peaks of about 300 mm in any of the months 

between June and September. The forest is the zone with the overall highest 

cumulative rainfall amount (450 mm) amongst the four agro-ecological zones, 

whereas the coast is the zone with the least cumulative rainfall amount. The coastal 
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zone has rainfall pattern similar to that of the forest zone, however, rainfall amounts 

over the coast are lesser. All the zones tend to record their maximum monthly rainfall 

within the period of June to August, and their minimum between November and May.  
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4.3.2 Seasonal Rainfall Climatology 
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Figure 4.17: Gridded Seasonal Rainfall Total. (a) represents December-
JanuaryFebruary(DJF) and (b) represents March-April-May (MAM). 

The very first trimester (DJF) are the driest periods for the entire country. The whole 

country, within these periods, receive very minimal rains. These total to about 300 

mm or less for the entire three months period over the entire country (see Figure 

4.17a). Within these trimestry, ITD is located southwards beyond the country and as 

such the prevailing winds are the Trade Winds which are dry and dust-laden, thereby 

establishing the Harmattan periods over the country within these months. 

The second trimester (MAM) happens to be the rainfall onset periods for the various zones 

(see Figure 4.17b). Within these periods, rainfall amounts are expected to be higher than 

the first trimester. By this trimester, the ITD has started migrating northwards, bringing in 

rains. These periods, being onsets of rains, are ideally the best months for farmers to start 
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planting. Since the onset for the Forest and Coastal Zone precedes that of the Transition 

and North in that respective order, rainfall amounts over the former zones will be higher 

than the latter, with rainfall amounts up to 700 mm over the three months duration. The 

transition and Northern Zones are expected to record up to 500 mm over the period. 

 
mm 

(a) JJA 

mm 

(b) SON 
Figure 4.18: Gridded Seasonal Rainfall Total. (a) represents June-July-August(JJA) and (b) 
represents September-October-November (SON). 

The third trimester (JJA) is the very wet period of the year countrywide. Within these 

periods, the ITD is migrating over the country and thus, feeds in more rains over the 

country. Total rainfall within this period can peak to as high as 800 mm (see Figure 4.18a). 

In June, more rains feed in to the Coast and Forest Zones and in August, more rains feed 

in to the North and Transition Zones. 

The fourth trimester (SON) is the minor rainy period for the Transition, Forest and 

Coastal Zones. Rainfall amounts within this period ranges up to about 700 mm in the 
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aforementioned zones and about 400 mm in the upper part of the Northern Zone. 

This minor season is attributed to the sharp return of the ITD southwards. A near-dry 

condition is observed at the upper Northern Zone (see Figure 4.18b). 

4.3.3 Annual Rainfall Climatology 

 
mm 

Figure 4.19: Annual rainfall total over the four agro-ecological zones. 

Figure 4.19 illustrates the annual rainfall climatology over the four agro-ecological 

zones. It is observed that the entire country receives high cummulative rainfall 

amounts per year, with the Forest zone receiving the most of rains (ranging up to 

approximately 2000 mm). The North and Transition zones also record substantial 

annual rainfall amounts (with majority of the grids recording rains up to 

approximately 1500 mm), however, annual rainfall totals in the coast are the least of 
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the four zones. Nonetheless, the west-Coastal zone recorded a relatively high rainfall 

amount (up to 1500 mm) than the east-Coastal zone (less than 1000 mm). 

4.3.3.1 Summary of Seasonal & Annual Rainfall Climatology 

Table 4.2: Estimates of seasonal & annual total in the four agro-ecological zones. 

Month  Rainfall ( mm)   

 North Transition Forest Coast 

Dec - Jan - Feb (DJF) < 300 < 300 < 400 < 400 

Mar - Apr - May (MAM) 100 - 500 100 - 500 100 - 900 100 - 700 

Jun - Jul - Aug (JJA) 200 - 800 200 - 800 300 - 800 200 - 600 

Sep - Oct - Nov (SON) 200 - 600 200 - 600 200 - 800 100 - 500 

Annual 600 - 1800 800 - 2000 900 - 2000 600 - 1400 

Table 4.2 shows estimates of seasonal rainfall totals for the four agro-ecological 

zones, with each column representing the range of rainfall total for any grid lying 

within a particular zone. The forest zone has an all-year maximum seasonal rainfall, 

with the coastal zone recording the least seasonal rainfall. In all zones, the second 

trimester (MAM) was found to be the rainfall onset over the country and thus, is the 

best season for farmers to engage in planting. The third trimester (JJA), is identified 

as the season of probable extreme events over the entire country. The very first 

trimester, however, is the driest period over the entire country. Within this period, 

the dry and dust-laden, North-East Trade Winds dominate the whole country, 

thereby establishing dry conditions over all zones. This is associated with the location 

of the ITD southwards, beyond the country. 

On an annual basis, the coast tends to record the least of rains of the four zones while 

the Forest zone and portions of the Transitional zone record the highest rains.  
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4.4 Validation 

CRU TS precipitation datasets are on a 0.5 o x 0.5 o spatial resolution, hence GMet 

point rainfall datasets were re-gridded on a 0.5 o x 0.5 o spatial resolution in order for 

the various statistical analyses to be performed to assess the agreement between the 

two datasets. 

 GMet CRU TS 

 mm
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 mm

 
mm 

 (c) June (d) June 



 

60 

Figure 4.20: Validation of GMet dataset with CRU TS. (a) represents November rainfall 
from GMet dataset, (b) represents November from CRUTS, (c) represents that of June 
from GMet data while (d) represents June from CRUTS. 
A good agreement is observed between the observed rainfall grids and CRU TS 

gridded precipitation, with many of the grids showing just little disparity. In the dry 

season, CRU TS tends to underestimate rainfall amount in all four zones (see Figure 

4.20 a and 4.20 b ), however, in the rainy period, CRU TS tends to over-estimate 

rainfall values within the South-West forest zone, with the exception of the very last 

grid, where an under-estimation is observed (see Figure 4.20 c and 4.20 d ). 

 

 (a) RMD (b) Pearson’s Correlation (r) 

Figure 4.21: RMD and RMSE Statistical Tests. (a) represents RMD and (b) represents 
Pearson’s Correlation. 

RMD was used to quantify the magnitude of the variation between the CRU TS and 

the observed datasets. Low RMD values of about 0 to 0.3 was observed over the 

country between the two datasets (see Figure 4.21a): an indication of minimal 

variation between the observed and the CRU TS datasets. Also, some high inflection 

points were observed over some of the coastal grids. 



 

61 

The country-wide low RMD is corroborated by high positive Pearson’s correlation between 

the two datasets, with correlation co-efficients ranging from 0.5 to 0.9 as shown in Figure 

4.21b. This confirms a good agreement between the reconstructed grids and CRU TS 

precipitation data. 

 

RRMSE 

Figure 4.22: Relative Root Mean Square Error 

Finally, RRMSE was computed to quantify the magnitude of variation between the 

two datasets at each grid. RRMSE values attained over the country ranged between 

0 and 8, with inflection points located over some grids along the country’s shoreline 

(see Figure 4.22). Low RRMSE values were observed over the interior parts of the 

country. 

CHAPTER 5 
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Conclusion and recommendations 

5.1 Conclusion 

Monthly rainfall datasets from various meteorological (climatological, 

agrometeorological and synoptic) stations distributed over the four agro-ecological 

zones of Ghana, spanning a 33-year period (1980-2012), with inherent missing data 

have been reconstructed using various interpolation schemes. Regularized 

Expectation Maximization has been used in this study to estimate the missing data. 

RegEM was found to perform well for datasets with less and non-continuous data 

gaps. As such, a tolerance of 10 % datagap and non-continuous gaps were allowed in 

the missing data estimation. Absolute homogenization was performed to detect the 

various changepoints within observed data. These changepoints are supposed to be 

non-climate related discontinuities within the dataset. In the absence of station 

metadata, no reference series were used. The inhomogenized datasets were then 

detrended, per the magnitude of each changepoint within the time-series, using 

Quantile Matching Adjustments. 

The reconstructed rainfall datasets were gridded at a high (0.25o × 0.25o) spatial 

resolution, both on monthly and seasonal timescales using the MSC algorithm with 

tensioning parameter. The grids revealed the all-year north-south migrations of the 

ITD which is clearly identified based on the latitudinal movement of the rains. From 

the gridded datasets, the Transition Zone was noted to have a longer growing season 

and as such, is the food hub of Ghana. 
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The gridded monthly and seasonal rainfall datasets were validated with Climatic 

Research Unit Time Series 3.22 (CRU TS 3.22) satellite data using three statistical tests 

(Pearson’s Correlation, Relative Mean Difference and Root Mean Square Error). The 

satellite and reconstructed data showed a high agreement between them. Pearson’s 

correlation coefficients were high (between the range of 0.5 to 0.9). Also, relative 

mean difference was between 0 to 0.3 which is low and thus, is an indication of 

minimal variation between the two datasets. The relative root mean square error 

also proved same with low values ranging from 0 to 8. 

Although local factors influence daily rainfall variations, the overall seasonal 

variability of rainfall has been identified in this work to be linked with the migration 

of the ITD. 

Finally, a highly-resolved rainfall climatological database has been developed from 

the GMet dataset over the entire country which will now serve as precursor for 

quality countrywide climate impact studies. 

5.2 Recommendations 

5.2.1 Recommendation for Policy 

With regards to the high correlation levels of the reconstructed data and the CRU TS 

gridded data, the latter can be used as a substitute for the former when conducting 

climate-impact studies in the absence of observed data. By the statistical analysis, 
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CRU TS satellite data, if used for climate-impact studies will give a representation 

close to that of the gauge measurements. 

Since the second trimester (MAM) is the rainfall onset period, it behoves on farmers 

to start their planting within this period since that is the set-in phase of the rains. 

Planting within this trimester, will afford crops quality time of sufficient rains to 

produce better yields. 

Moreover, the third trimester (JJA) was found to be extremely wet and that is a 

possible period of climate extremes, such as flood. Precautionary measures (both on 

domestic and national scales) should be put in place to ameliorate the impact of these 

extremes that are likely to occur within this trimester. 

Furthermore, the Transition Zone is characterized by a longer growing season and as 

such is a zone that could really boost agricultural yields. Since agriculture is the main 

propeller of the Ghanaian economy, it is recommended that much more efforts be 

principally focused within the Transition Zone since that is the country’s food hub. 

5.2.2 Recommendation for Future Research 

Deterministic approaches such as IDW can be used to estimate missing data at a 

particular station, provided the reference (neighbouring) stations have quality data. 

A suitable approach will be to use the RegEM or other non-deterministic methods to 

reconstruct the reference station’s data and then merging it with the deterministic 

approach to estimate data over remote areas. 
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Also, I recommend that further studies be carried out using other climate variables 

(eg. temperature) so as to develop quality countrywide climate database to aid in 

quality impact studies. 

Finally, I recommend that further hydroclimatic studies be carried out to ascertain 

the impact of the confluence of the Black and White Volta on the climatology of its 

surrounding grids.  
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Appendix A 

Appendix 

Table A.1: Percentage of missing data for meteorological stations in the Northern Zone. 

Station Missing Data [%] Station Missing Data [%] 

Babile 1.77 Binduri 1.77 

Bolgatanga-Agromet 0.63 Bole 0.00 

Cherponi 6.99 Chira 2.53 

Daboya 5.80 Damango 0.63 

Dorimon 3.16 Lawra 1.77 

Gambaga 7.34 Garu 0.88 

Manga-Bawku 1.14 Kugri 3.03 

Navrongo 0.38 Pong-Tamale 2.53 

Salaga 1.52 Sampa 2.40 

Walewale 1.39 Worawora 7.43 

Vea 1.14 Funsi 6.33 

Table A.2: Percentage of missing data for meteorological stations in the Transition Zone. 

Station Missing Data [%] Station Missing Data [%] 

Bui 2.53 Kintampo 0.38 

Sunyani 0.25 Forifori 1.77 

Goaso 2.27 Nsoatre 5.69 

Dormaa-Ahenkro 1.82 Bechem 1.39 

Prang 1.39 Atebubu 0.76 

Ejura 0.63 Berekum 2.15 

Table A.3: Percentage of missing data for meteorological stations in the Forest Zone. 

Station Missing Data [%] Station Missing Data [%] 

KNUST 6.06 Aburi-Parks 0.51 

Agogo 0.76 Asuansi 0.25 

Akropong-Akwapim 0.25 Akropong-Wassaw 1.01 

Asamankese 0.51 Begoro 2.02 

Kibi 3.26 Effiduasi 0.38 

Akuse 0.13 Akosombo 1.64 

Jasikan 5.17 Kade 1.39 

Bekwai-Ashanti 1.14 Mampong 1.77 

Enchi 1.81 Bobiri 1.77 

Pankese 0.13 Nkawkaw 2.27 

Asesewa 0.88 Konongo 0.40 

Adidome 2.46 Akokoaso 4.80 
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Amedzofe 1.14 Anyinasi 3.16 

Atieku 1.14 Avedotoe 1.04 

Asantekrom-Dodi 3.90 Benso 0.76 

Bogoso 0.76 Boso 0.63 

Bunso 2.40 Dunkwa 0.51 

Hohoe 1.64 Inchaban 1.64 

Half-Assini 0.76 Komenda 0.13 

Kpedzeglo-Mafi 2.78 Kpeve 1.14 

Kusi 0.13 Kwanyako 2.53 

Mpraeso 4.42 Nkroful 1.26 

Prestea 2.27 Princes-Town 1.77 

Somanya 2.65 Tarkwa 1.14 

Tsito 3.79 Twifo-Praso 1.14 

Table A.4: Percentage of missing data for meteorological stations in the Coastal Zone. 

Station Missing Data [%] Station Missing Data [%] 

Pokuase 0.13 Pomadze 0.38 

Winneba 0.38 Agona-Swedru 3.16 

Breman-Asikuma 0.38 Brimso 0.88 

Afienya 2.65 Afife-Weta 3.54 

Nsawam 0.13 Sogakope 7.95 

Appendix B 

Appendix 

RegEM MatLab Code by Schneider (2001) function [X, M, C, Xerr] = 

regem(X, options) error(nargchk(1, 2, nargin)) % check number of 

input arguments if ndims(X) > 2, error(’X must be vector or 2-D 

array.’); end % if X is a vector, make sure it is a column vector (a 

single variable) if length(X)==prod(size(X)) X = X(:); end 

[n,p] = size(X); 

% number of degrees of freedom for estimation of covariance matrix dofC 

= n − 1; % use degrees of freedom correction 

% ============== process options ======================== 
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if nargin ==1 | isempty(options) 

fopts = []; else fopts = 

fieldnames(options); end 

% initialize options structure for regression modules 

optreg = []; 

regpar_given = 0; if strmatch(’regress’, fopts) 

regress = lower(options.regress); switch regress 

case ’mridge’, ’iridge’ if strmatch(’regpar’, fopts) 

regpar_given = 1; if ischar(options.regpar) 

error(’Regularization parameter must be a 

number’) else optreg.regpar = options.regpar; 

regress = ’mridge’; end end 

case ’ttls’ if isempty(strmatch(’regpar’, 

fopts)) trunc_criterion = ’ne08’; elseif 

ischar(options.regpar) trunc_criterion 

= lower(options.regpar); else 

regpar_given = 1; trunc = 

min([options.regpar, n-1, p]); end if 

strmatch(’neigs’, fopts) neigs = 

options.neigs; 

else 

neigs = min(n − 1,p); end otherwise 

error([’Unknown regression method ’, 

regress]) end 
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else regress = 

’mridge’; end 

if strmatch(’stagtol’, fopts) 

stagtol = options.stagtol; 

else 

stagtol = 5e − 3; end if 

strmatch(’maxit’, fopts) 

maxit = options.maxit; 

else 

maxit = 30; end 

if strmatch(’inflation’, fopts) 

inflation = options.inflation; 

else inflation = 1; end if 

strmatch(’relvar_res’, fopts) 

optreg.relvar_res = 

options.relvar_res; else 

optreg.relvar_res = 5e − 2; 

end if strmatch(’minvarfrac’, 

fopts) optreg.minvarfrac = 

options.minvarfrac; else 

optreg.minvarfrac = 0; end if 

strmatch(’disp’, fopts); 

dispon = options.disp; else 
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dispon = 1; end if 

strmatch(’Xmis0’, fopts); 

Xmis0_given= 1; Xmis0 = options.Xmis0; if 

any(size(Xmis0) ∼= [n,p]) error(’OPTIONS.Xmis0 must 

have the same size as X.’) end 

else 

Xmis0_given= 0; end 

if strmatch(’C0’, fopts); 

C0_given = 1; 

C0 = options.C0; 

if any(size(C0) ∼= [p, p]) error(’OPTIONS.C0 has 

size incompatible with X.’) end 

else 

C0_given = 0; end if 

strmatch(’Xcmp’, fopts); 

Xcmp_given = 1; Xcmp = options.Xcmp; if 

any(size(Xcmp) ∼= [n,p]) error(’OPTIONS.Xcmp must 

have the same size as X.’) end sXcmp = std(Xcmp); 

else 

Xcmp_given = 0; end 

% get indices of missing values and initialize matrix of imputed values 

indmis = find(isnan(X)); nmis = length(indmis); 

if nmis == 0 



 

77 

warning(’No missing value flags found.’) 

return % no missing values end 

[jmis,kmis] = ind2sub([n,p],indmis); 

Xmis = sparse(jmis, kmis, NaN, n, p); % matrix of imputed values Xerr = sparse(jmis, kmis, 

Inf, n, p); % standard error imputed vals. 

% for each row of X, assemble the column indices of the available 

% values and of the missing values kavlr = cell(n,1); kmisr = cell(n,1); 

for j=1:n kavlrj = find( isnan(X(j,:))); kmisrj = find(isnan(X(j,:))); end if 

dispon disp(sprintf(’nREGEM:’)) disp(sprintf(’Percentage of values 

missing: %5.2f’, nmis/(n*p)*100)) disp(sprintf(’Stagnation 

tolerance: %9.2e’, stagtol)) disp(sprintf(’Maximum number of 

iterations: %3i’, maxit)) if (inflation ∼= 1) disp(sprintf(’Residual (co-

)variance inflation: %6.3f ’, inflation)) end if Xmis0_given & 

C0_given 

disp(sprintf([’Initialization with given imputed values and’ ... 

’ covariance matrix.’])) elseif C0_given 

disp(sprintf([’Initialization with given covariance’ ... 

’ matrix.’])) elseif Xmis0_given disp(sprintf([’Initialization 

with given imputed values.’])) else 

disp(sprintf(’Initialization of missing values by mean 

substitution.’)) end switch regress case ’mridge’ 

disp(sprintf(’One multiple ridge regression per record:’)) 

disp(sprintf(’==> one regularization parameter per 

record.’)) case ’iridge’ disp(sprintf(’One individual ridge 
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regression per missing value:’)) disp(sprintf(’==> one 

regularization parameter per missing value.’)) case ’ttls’ 

disp(sprintf(’One total least squares regression per 

record.’)) end switch regress case ’mridge’, ’iridge’ if 

regpar_given disp(sprintf(’Fixed regularization 

parameter: %9.2e’, optreg.regpar)) end 

case ’ttls’ if regpar_given disp(sprintf(’Fixed truncation parameter: 

%5i’, trunc)) else disp(sprintf([’Truncation choice criterion: ’, 

upper(trunc_criterion)])) end end 

if Xcmp_given disp(sprintf([’Iter mean(peff)•|X-

Xcmp|/std(Xcmp) ’ ... 

’|D(Xmis)|/|Xmis|’])) else 

disp(sprintf([’Iter mean(peff)•|D(Xmis)| ’ 

... 

’|D(Xmis)|/|Xmis|’])

) end end 

% initial estimates of missing values if Xmis0_given 

% substitute given guesses for missing values 

X(indmis) = Xmis0(indmis); 

[X,M] = center(X); % center data to mean zero 

else 

[X,M] = center(X); % center data to mean zero 

X(indmis) = zeros(nmis, 1); % fill missing entries with zeros 

end if C0_given 
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C = C0; 

else 

C = X’*X / dofC; % initial estimate of covariance matrix 

end it = 0; rdXmis = Inf; while (it < maxit & rdXmis > 

stagtol) it = it + 1; 

% initialize for this iteration ... 

CovRes = zeros(p,p); % ... residual covariance matrix peff_ave 

= 0; % ... average effective number of variables 

% scale variables to unit variance D = sqrt(diag(C)); 

const = (abs(D) < eps); % test for constant variables 

nconst = const; if sum(const) ∼= 0 % do not scale 

constant variables D = D .* nconst + 1*const; end 

X = X . repmat(D’, n, 1); 

% correlation matrix 

C = C . repmat(D’, p, 1) . repmat(D, 1, p); 

if strmatch(regress, ’ttls’) 

% compute eigendecomposition of correlation matrix 

[V,d] = peigs(C,neigs); 

% compute truncation selection criteria if 

needed if ∼regpar_given trunc_pars = [0: 

length(d)-1]; 

[mdl,ne08,aic,aicc] = pcatruncationcriteria(d,p,truncpars,n); end 

end for j=1:n % cycle over records pm = length(kmisrj); % number 

of missing values in this record 
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if pm > 0 

pa = p − pm; % number of available values in this record 

% regression of missing variables on available variables 

switch regress case ’mridge’ 

% one multiple ridge regression per record [B,S,h,peff] = 

mridge(C(kavlrj,kavlrj),... 

C(kmisrj,kmisrj), ... 

C(kavlrj,kmisrj), n-1, optreg); peff_ave = peff_ave + peff*pmnmis; % 

add up eff. number of variables dofS = dofC - peff; % residual degrees 

of freedom 

% inflation of residual covariance matrix 

S = inflation * S; 

% bias-corrected estimate of standard error in imputed 

values Xerr(j, kmisrj) = dofCdofS * sqrt(diag(S))’; case 

’iridge’ 

% one individual ridge regression per missing value in this record [B,S,h,peff] = 

iridge(C(kavlrj,kavlrj),... 

C(kmisrj,kmisrj), ... 

C(kavlrj,kmisrj), n-1, optreg); peff_ave = peff_ave + sum(peff)nmis; % 

add up eff. number of variables dofS = dofC - peff; % residual degrees 

of freedom 

% inflation of residual covariance matrix 

S = inflation * S; 

% bias-corrected estimate of standard error in imputed values 
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Xerr(j, kmisrj) = ( dofC * sqrt(diag(S)) . dofS)’; 

case ’ttls’ 

% truncated total least squares if ∼regpar_given imax = max(find(trunc_pars 

<= min(pa, length(d)-1))); [dum,imin] = eval([0min(0,trunc_criterion,0 (1 : 

imax))0]); trunc = trunc_pars(imin); end peff_ave = peff_ave + trunc ∗ 

pmnmis; % add up eff. number of variables 

[B,S] = pttls(V,d,kavlrj,kmisrj,trunc); dofS = dofC − 

trunc; % residual degrees of freedom 

% inflation of residual covariance matrix 

S = inflation * S; 

% bias-corrected estimate of standard error in imputed 

values Xerr(j, kmisrj) = dofCdofS * sqrt(diag(S))’; end 

% missing value estimates 

Xmis(j, kmisrj) = X(j, kavlrj) * B; 

% add up contribution from residual covariance 

matrices CovRes(kmisrj, kmisrj) = CovRes(kmisrj, 

kmisrj) + S; end end % loop over records 

% rescale variables to original scaling 

X = X .* repmat(D’, n, 1); 

Xerr = Xerr .* repmat(D’, n, 1); 

Xmis = Xmis .* repmat(D’, n, 1); 

C = C .* repmat(D’, p, 1) .* repmat(D, 1, p); 

CovRes = CovRes .* repmat(D’, p, 1) .* repmat(D, 1, p); 

% rms change of missing values dXmis = 

norm(Xmis(indmis) - X(indmis)) sqrt(nmis); 
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% relative change of missing values nXmis_pre = 

norm(X(indmis) + M(kmis)’) sqrt(nmis); if nXmis_pre < 

eps rdXmis = Inf; 

else 

rdXmis = dXmis nXmis_pre; end 

% update data matrix X 

X(indmis) = Xmis(indmis); 

% re-center data and update mean 

[X,Mup] = center(X); % re-center data 

M = M + Mup; % updated mean vector 

% update covariance matrix estimate 

C = (X’*X + CovRes)dofC; 

if dispon if 

Xcmp_given 

% imputed values in original scaling 

Xmis(indmis) = X(indmis) + M(kmis)’; 

% relative error of imputed values (relative to values in Xcmp) dXmis 

= norm( (Xmis(indmis)-Xcmp(indmis)).sXcmp(kmis)’ ) ... 

sqrt(nmis); 

disp(sprintf(’ %3i• %8.2e•

 %10.3e• %10.3e’, ...• it, peff_ave, 

dXmis, rdXmis)) else disp(sprintf(’ %3i•

 %8.2e• %9.3e• %10.3e’, ...• 
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it, peff_ave, dXmis, rdXmis)) end end % 

display of diagnostics end % EM iteration 

% add mean to centered data matrix 

X = X + repmat(M, n, 1);  
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Appendix C 

Appendix 

Generic Mapping Tools (GMT) Code for Gridding 

#!/bin/bash 

# Define the names of the input and output files 

name= <name>; folder= New_Plot2 out= 

$folder/$name.eps; #seis_data= jan.dat topo= 

Grid/trial.grd ; ext= extract_data.xyz pdf= 

$folder/$name.pdf; png= $folder/$name.png 

mask= mask.dat if [ -s $out ] || [ -s $pdf ] ; then 

rm $out ; rm $pdf 

fi 

# Define your area -R-3.25/1.75/3.75/12.25 north= 11.20; south= 4.40; 

east= 1.3; west= -3.35 tick= ’-Ba1f1/a1f1.:’$name’:WSen’; proj= ’-JM6i’; 

palette= ’-Cjeff1.cpt’ GMT psbasemap -R$west/$east/$south/$north $proj 

$tick -Y5.0 -P -K > $out awk ’if (NR > 0) print $2, $3, $4’ Stat_Loc.dat > dat1 

awk ’print $1, $2, $3 ’ dat1 > $ext 

GMT blockmean -R$west/$east/$south/$north -I0.25 -V $ext > 1_$ext 

GMT surface 1_$ext -R$west/$east/$south/$north -I0.25 -G$topo -V 

GMT psscale -D3i/-0.9i/6i/0.15ih $palette -B:mm: -O -K » $out 

GMT grdimage $topo -R -J -O -K $palette » $out 

GMT pscoast -R$west/$east/$south/$north $proj -O $tick -A12000 -Di -N11/3p,black 

-W5p,black -P -K » $out 

GMT psxy -R -JM -W10.0,black -O -K « EOF» $out 
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-2.5 8.2 ; -2.3 8.3 ; -2.0 8.5 

-1.7 8.6 ; -1.3 8.7 ; -1.0 8.75 

-0.3 8.79 ; 0.45 8.8 

EOF 

GMT psxy -R -JM -W10.0,black -O -K « EOF» $out 

-3.2 6.7 ; -3.0 6.8 ; -2.8 6.85 

-2.4 6.84 ; -2.1 7.1 ; -1.8 7.08 

-1.6 7.2 ; -1.1 7.4 ; -1.0 7.39 

-0.8 7.38 ; -0.6 7.37 ; -0.4 7.35 

0.0 7.45 ; 0.2 7.52 ; 0.52 7.57 

EOF 

GMT psxy -R -JM -W10.0,black -O « EOF» $out 

-1.42 5.07 ; -1.3 5.2 ; -0.8 5.5 

-0.6 5.59 ; -0.4 5.69 ; 0.0 5.8 

0.8 6.2 ; 1.05 6.23 

EOF 

convert $out $pdf ; convert $out $png gv 

$out & 


