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CHAPTER 1 

 

INTRODUCTION 

 

1.0 BACKGROUND OF STUDY 

The first banks were the religious temples of the ancient world, and were established in the third 

millennium B.C. Banks probably brought about the invention of money. Deposits initially 

consisted of grain and later other goods including cattle, agricultural implements, and eventually 

precious metals such as gold, in the form of easy-to-carry compressed plates. Temples and 

palaces were the safest places to store gold as they were constantly attended and well built. As 

sacred places, temples presented an extra deterrent to would-be thieves. There are extant records 

of loans from the 18th century BC in Babylon that were made by temple priests and monks to 

merchants. (Wikimedia Foundation, Inc, 2010) 

Banking in the modern sense can be traced to medieval and early Renaissance Italy, to the rich 

cities in the north like Florence, Venice and Genoa. The Bardi and Peruzzi families dominated 

banking in 14th century Florence, establishing branches in many other parts of Europe. Perhaps 

the most famous Italian bank was the Medici bank, set up by Giovanni Medici in 1397. The 

earliest known state deposit bank, Bancodi San Giorgio (Bank of St. George), was founded in 

1407 at Genoa, Italy. (Wikimedia Foundation, Inc, 2008) 

The Central Bank of Ghana traces its roots to the Bank of the Gold Coast (BCG), where it was 

nurtured. On the 4th March 1957, just two days before the declaration of political independence, 

the Bank of Ghana was formally established by the Bank of Ghana Ordinance (No. 34) of 1957, 

passed by the British Parliament. Frantic preparations then began to put in place an 
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organisational structure for the new central bank. By the middle of July 1957, all was set for the 

official commissioning of the new Head Office of the Bank on the High Street. (Wikimedia 

Foundation, Inc, 2010) 

In his opening address at the end of July 1957, the then Leader of Government Business (Prime 

Minister) stated with pleasure that the occasion marked the beginning of independent monetary 

administration in the newly independent Ghana – a cherished dream had at long last become a 

reality. The Leader of Government Business had put the aspiration of the country in establishing 

the central bank as follows: ―In the modern world a central bank plays a very important and 

decisive role in the life of a country. It is essential to our own independence that we have a 

government-owned bank and that the central bank follows a policy designed to secure our 

economic independence and to further the general development of our country.‖ (Wikimedia 

Foundation, Inc, 2010) 

The principal objects of the new central bank, as enshrined in the 1957 Ordinance, were ―to issue 

and redeem bank notes and coins, to keep and use reserves and to influence the credit situation 

with a view to maintaining monetary stability in Ghana and the external value of the Ghana cedis 

and to act as banker and financial adviser to the Government. The opening ceremony paved the 

way for the Bank to commence formal banking operations on 1st August 1957, when the 

Banking Department opened for business. The Issue Department did not commence operations 

until July 1958. (Wikimedia Foundation, Inc, 2008) 

The (Bank of Ghana) has since 1957 undergone various legislative changes. The Bank of Ghana 

Ordinance (No.34) of 1957 was repealed by the Bank of Ghana Act (1963), Act 182. This Act 

was subsequently amended by the Bank of Ghana (Amendment Act) 1965, (Act 282).The Bank 
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of Ghana Law, 1992 PNDCL 291 repealed Acts 182 and 282.  (Wikimedia Foundation, Inc, 

2008) 

The current law under which the Bank operates is the Bank of Ghana Act, 2002 (Act 612). This 

enable suitable locally incorporated bodies to file applications for licences to operate as banking 

institutions. Subsequently, a number of corporate entities were licensed to operate as banks, in 

the country (Ghana). (Wikimedia Foundation, Inc, 2010) 

 

1.1 TYPES OF BANKS 

There are various types of banks which operate in the country to meet the financial requirements 

of different categories of people engaged in agriculture, business, profession, etc. On the basis of 

functions, the banking institutions in Ghana may be divided into the following types; 

(ghanaWeb.com, 2010) 

                

 

1.1.1 CENTRAL BANK 

Central Bank, Reserve Bank or Monetary Authority is a public institution that usually issues the 

currency, regulates the money supply and controls the interest rates in a country. Central Banks 

often also oversee the commercial banking system within its country's borders. A central bank is 

distinguished from a normal commercial bank because it has a monopoly on creating the 

currency of that nation, which is usually that nation's legal tender. The primary function of a 

central bank is to provide the nation's money supply, but more active duties include controlling 

interest rates, and acting as a lender of last resort to the banking sector during times of financial 

crisis. It may also have supervisory powers, to ensure that banks and other financial institutions 
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do not behave recklessly or fraudulently. Example is Bank of Ghana (Wikimedia Foundation, 

Inc, 2009) 

 

1.1.2 COMMERCIAL BANKS 

A commercial bank is owned by a group of individuals or an individual or the state, for-profit 

entity that is licensed by the Central Bank (Bank of Ghana) to conduct overall banking activities. 

These activities include deposit taking, lending, bank-owned securities and various banking 

services for its clientele. Commercial banks, if properly licensed, may also conduct trust, 

insurance and portfolio management business. All commercial banks are dependent upon the 

acquisition of deposits in order to make loans and provide a source of liquidity. The basic types 

of deposits offered are checking, savings and time deposits. (Carl Wolf, 2010). Examples are;  

Ghana Commercial Bank, Standard Chartered Bank (Gh) Ltd., Barclays Bank (Gh) Ltd., SG-

SSB Limited, Metropolitan Allied Commercial Bank, the Trust Bank, Zenith Bank, 

Intercontinental Bank, Standard Trust Bank, Fidelity Bank, Guaranty Trust Bank (Ghana) 

Limited. (GhanaWeb.com, 2010) 

 

1.1.3 DEVELOPMENT BANKS 

The Development Bank fosters, empowers and finances up coming and already exiting ventures.  

The Bank provides finance for private sector start-ups and expansions, equity deals, bridging 

finance, enterprise development finance, trade finance, small and medium enterprises, public 

private partnerships, public sector infrastructure, local authorities, and bulk finance to 
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responsible micro-finance providers. Examples are; National Investment Bank, Agricultural 

Development Bank, International Commercial Bank, the Trust Bank, Prudential Bank, 

Amalgamated Bank, Ghana Commercial Bank, ARB Apex Bank. (GhanaWeb, 2010) 

 

1.1.4 MERCHANT BANKS  
 

Merchant bank is a financial institution primarily engaged in offering financial services and give 

advice to corporations and to individuals. The term can also be used to describe the private 

equity activities of banking. The Merchant bank is that a merchant bank invests its own capital in 

client companies. Merchant banks provide fee-based corporate advisory services, including those 

in mergers and acquisitions. Examples are; Merchant Bank of Ghana Ltd., Ecobank Ghana Ltd., 

Continental Acceptances Ltd. and First Atlantic Merchant Bank, CAL Bank, HFC Bank. 

(GhanaWeb, 2010) 

  

1.2 MONEY 
 

Money is any object that is generally accepted as payment for goods and services and repayment 

of debts in a given country or socio-economic context. Money originated as commodity money, 

but nearly all contemporary money systems are based on fiat money. Fiat money is without 

intrinsic use value as a physical commodity, and derives its value by being declared by a 

government to be legal tender; that is, it must be accepted as a form of payment within the 

boundaries of the country for all debts, public and private. (Wikimedia Foundation, Inc, 2010) 
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 1.3 LOAN 

A loan is a type of debt. Like all debt instruments, a loan entails the redistribution of financial 

assets over time, between the lender and the borrower. In a loan, the borrower initially receives 

or borrows an amount of money, called the principal, from the lender, and is obligated to pay 

back or repay an equal amount of money to the lender at a later time. Typically, the money is 

paid back in regular instalments, or partial repayments; in an annuity, each instalment is the same 

amount. (Wikimedia Foundation, Inc, 2010) 

The loan is generally provided at a cost, referred to as interest on the debt, which provides an 

incentive for the lender to engage in the loan. In a legal loan, each of these obligations and 

restrictions is enforced by contract, which can also place the borrower under additional 

restrictions known as loan covenants. Although this article focuses on monetary loans, in 

practice any material object might be lent. Acting as a provider of loans is one of the principal 

tasks for financial institutions. For other institutions, issuing of debt contracts such as bonds is a 

typical source of funding. (Wikimedia Foundation, Inc, 2010) 

 

1.4 ADVANTAGES OF LOAN 

Loan is a form of debt, often with interest. There are several reasons why people apply for loans. 

Usually they borrow money to purchase a house, buy a car, or start a business. Often, applying 

for a loan is necessary because most do not have available financial resources they need to make 
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a purchase. Other forms of loans, like the student loans have helped a lot of students get through 

school. Those who use student loan debt consolidation clearly have multiple student loans. They 

do this to manage their obligations better. (hubpages.inc, 2010) 

 

1.5 DISADVANTAGES OF LOAN 

Since loan is borrowed, the lender expects to receive payment with the interest specified. In 

addition, borrowers should make the payments at the specified date for a certain period. This is 

where most people have problems. Most problems start when people cannot make the monthly 

payments required due to different circumstance. Some finds it difficult to pay their loan because 

of the many other debts they have. Some encounter additional problems such as medical 

emergencies and job loss. (hubpages.inc, 2010) 

 

1.1.6 COLLATERAL  

In lending agreements, collateral is a borrower's pledge of specific property to a lender, to secure 

repayment of a loan. The collateral serves as protection for a lender against a borrower's default - 

that is, any borrower failing to pay the principal and interest under the terms of a loan obligation. 

If a borrower does default on a loan (due to insolvency or other event), that borrower forfeits 

(gives up) the property pledged as collateral and the lender then becomes the owner of the 

collateral. In a typical mortgage loan transaction, for instance, the real estate being acquired with 

the help of the loan serves as collateral. Should the buyer fail to pay the loan under the mortgage 
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loan agreement, the ownership of the real estate is transferred to the bank. The bank uses a legal 

process called foreclosure to obtain real estate from a borrower who defaults on a mortgage loan 

obligation. (Wikimedia Foundation, Inc, 2010) 

 

1.7 INTEREST RATE 

An interest rate is the rate at which interest is paid by a borrower for the use of money that they 

borrow from a lender. For example, a small company borrows capital from a bank to buy new 

assets for their business, and in return the lender receives interest at a predetermined interest rate 

for deferring the use of funds and instead lending it to the borrower. Interest’s rates are 

fundamental to a capitalist society. Interest rates are normally expressed as a percentage rate over 

the period of one year. Interest rates targets are also a vital tool of monetary policy and are taken 

into account when dealing with variables like investment, inflation, and unemployment. 

(Wikimedia Foundation. Inc, 2010) 

 

1.8 INFLATION 

In economics, inflation is a rise in the general level of prices of goods and services in an 

economy over a period of time. When the general price level rises, each unit of currency buys 

fewer goods and services; consequently, inflation is also erosion in the purchasing power of 

money – a loss of real value in the internal medium of exchange and unit of account in the 

economy. A chief measure of price inflation is the inflation rate, the annualized percentage 
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change in a general price index (normally the Consumer Price Index) over time. (Wikimedia 

Foundation. Inc, 2010) 

1.9 PROFILE OF UNIBANK 

Unibank (Ghana) Limited was incorporated as a private company in December 1997 to operate 

as a bank. It is a wholly owned Ghanaian and authorized to undertake a broad range of banking 

business. The Bank opened its door to customers in January 2001.UniBank has carved a niche 

for itself in the Small and Medium Enterprises (SME) sector. The bank (Unibank) objective is to 

see the growth of small and medium sized enterprises into giants that can propel the economy to 

great heights. The bank has shown remarkable strength in the face of stiff competition and 

endeared itself to the hearts of customers.  

 

1.10 PROBLEM STATEMENT 

Unibank has the welfare of it customers at interest, hence provide a flexible loan payment term 

across all the types of loans at their door steps. As time went on, it was identified by 

Management Board of the bank, that a section of loan types always end up in bad debt,  both the 

principal and the interest which can never being retrieved. Management of the bank decided to 

give loan to its customers on just a few number of loan types which can be retrieved. 

Furthermore, some customers bank in a particular bank because of it favourable and reliable   

loan policy in their favour, so when this favour does not exist anymore he or she (customer) finds 

its way to other banks. This reduces the number of account holders as against the amount of 

money the bank (Unibank) generate as profit which affect the development of the bank.   
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1.11 OBJECTIVES 

1. To model disbursement of loan funds of Unibank to their customers as a Linear 

Programming Problem.  

2. To optimize the loan disbursement model using Karmarkar interior point method. 

 

1.12 METHODOLOGY 

The main challenge of the loan portfolio is to minimize, bad debt and maximize returns on the 

loans disbursed. This challenge could be solved by properly modeling funds allocated for loan to 

its customers. For this thesis to be successful and achieve its goals a secondary data on loan 

formulation portfolio was collected from Unibank and interior point method categorically, the 

potential reduction algorithm (karmarkar’s algorithm) was used to analyse the data.  Resource 

materials would be from required books, programming language used was Matlab and more 

importantly the internet. 

 

 1.13 JUSTIFICATION  

The relevance of this research was to come out with a long lasting programme or model for the 

disbursement of loan as against it returns to enable the bank (Unibank) continue with it 

developmental projects and proper services to its customers. Achieving this goal, could lead a 

long way in creating a favourable opportunity for the populace to go for loan irrespective of the 

purpose of it. Thus, Customers’ burden with domestic problems can amicably resolve it with an 



ease and whoever has the intention to invest or create a job which would go a long way to reduce 

unemployment in the country. This research would improve  the maximization of profit on loans 

a as well as proper allocation of funds for  the various types of loans the bank (Unibank) operate 

on, which would increase the number of  account holders for the bank (Unibank).  

 

1.14 STRUCTURE OF THE THESIS 

The thesis consist five (5) chapters where Chapter 1 sheds light on the introduction, problem 

statement, objectives of the thesis, justification, methodology and structure of the thesis. Chapter 

2 reviews work done by other people on the topic (literature review). Chapter 3 contains the 

method used to carry out this research. Chapter 4 talks about the analysis and results. Finally 

chapter 5 contain conclusion and recommendation. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER TWO 

 

LITERATURE REVIEW 

 

This chapter of the thesis talks about people’s works of various fields of research using linear 

programming programs will be considered. 

 

Quintan et al. (2000), stated that since Karmarkar's first successful interior-point algorithm for 

linear programming in 1984, the interest and consequently the numbers of publications in the 

area have increased tremendously. They reviewed and classified major publications on interior-

point methods theory, on the practical implementation of the most successful interior-point 

algorithms and on their applications to power systems optimization problems. 

 

Xihui et al.  (1996), dealt with the application of a feasible interior point method to optimal 

power flow problems. Besides discussing the problem formulation, the project offers a detailed 

description of the feasible interior point algorithm; it also addresses some important 

implementation issues such as the determination of the barrier parameter, the choice of the initial 

point, and the efficient solution of the optimality-condition equations by sparse matrix 

techniques. Some suggestions are proposed that significantly improve the performance of the 



algorithm. Computational results on large-scale power systems have shown that the algorithm is 

fast and robust, suitable to real-time applications. 

Panos and Mauricio (1996), explained how interior point methods, originally invented in the 

context of linear programming, have found a much broader range of applications, including 

global optimization problems that arise in engineering, computer science, operations research, 

and other disciplines. The project also overviews the conceptual basis and applications of interior 

point methods for some classes of global optimization problems. During the last decade, the field 

of mathematical programming has evolved rapidly. New approaches have been developed and 

increasingly difficult problems are being solved with efficient implementations of new 

algorithms.  

 

Todd (1990), showed variant of Karmarkar's projective algorithm for
 
linear programming can be 

viewed as following the approach of
 
Dantzig-Wolfe decomposition. At each iteration, the current

 

primal feasible solution generates prices which are used to
 
form a simple sub problem. The 

solution to the sub problem is
 
then incorporated into the current feasible solution. With a

 
suitable 

choice of step size a constant reduction in potential
 
function is achieved at each iteration.  

 

Ferris and Philpott (1988), described how a new polynomial-time algorithm for linear 

programming was announced by Narendra Karmarkar of Bell Laboratories in 1984. This 

algorithm is claimed by Bell Labs significantly to outperform the simplex method. Many 

numerical experiments have been carried out by other workers in the field which show a much 



smaller iteration count than the simplex method but larger computational times. Some have 

shown that, by using advanced numerical linear algebra and heuristics to exploit the problem 

structure, it is possible occasionally to beat the simplex method even in terms of computation 

time. A brief description of the main features of Karmarkar's algorithm is presented, along with 

the results of some numerical experiments. Another closely related interior-point method which 

involves the rescaling of the variables is also discussed, and some details of the sparse matrix 

manipulations involved in an implementation of the algorithm are mentioned. 

 

Monteiro (1991), analyzed the convergence and boundary behaviour of the continuous
 

trajectories of the vector field induced by the projective scaling
 
algorithm as applied to (possibly 

degenerate) linear programming
 
problems in Karmarkar's standard form. They showed that a 

projective
 
scaling trajectory tends to an optimal solution which in general

 
depends on the starting 

point. When the optimal solution is
 
unique, they prove that all projective scaling trajectories 

approach
 
the optimal solution through the same asymptotic direction. The analysis was based on 

the affine scaling trajectories for
 
the homogeneous standard form that arises from

 
Karmarkar's 

standard form by removing the unique
 
non homogeneous constraint.  

 

 Ponnambalam et al. (1989), said that optimization of multi-reservoir systems operations is 

typically a very large scale optimization problem. The following are the three types of 

optimization problems solved using linear programming (LP): 
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(i) deterministic optimization for multiple periods involving fine stage intervals, for 

example, from an hour to a week.  

(ii) implicit stochastic optimization using multiple years of inflow data 

(iii) explicit stochastic optimization using probability distributions of inflow data.  

Until recently, the revised simplex method has been the most efficient solution method available 

for solving large scale LP problems. They showed that an implementation of the Karmarkar's 

interior-point LP algorithm with a newly developed stopping criterion solves optimization 

problems of large multi-reservoir operations more efficiently than the simplex method. For 

example, using a Micro VAX II minicomputer, a 40 year, monthly stage, two-reservoir system 

optimization problem is solved 7.8 times faster than the advanced simplex code in MINOS 5.0. 

The advantage of this method is expected to be greater as the size of the problem grows from two 

reservoirs to multiples of reservoirs. This presents the details of the implementation and testing 

and in addition, some other features of the Karmarkar's algorithm which makes it a valuable 

optimization tool are illuminated. 

 

Zhenghua et al. (1998), presented a new interior point method—combined homotopy interior 

point method (CHIP method) for convex nonlinear programming. Without strict convexity of the 

logarithmic barrier function and boundedness and non emptiness of the solution set, they prove 

that for any ε > 0, an ε-solution of the problem can be obtained by the CHIP method. To our 

knowledge, strict convexity of the logarithmic barrier function and non emptiness and 

boundedness of the solution set are the essential assumptions of the well-known center path-

following method. Therefore, the CHIP method essentially reduces the assumptions of the center 

path-following method and can be applied to more general problems. 



 

 

 

Wei-Tai
 
and Ue-Pyng (2001), presented a modified interior point algorithm for solving linear 

optimization over the efficient set problems. Using computational experiments, they showed that 

the modified algorithm provides an effective and accurate approach for solving the linear 

optimization over the efficient set problem.  

 

Kojima (1999), said Karmarkar proposed a new interior-point method for linear programs in 

1984, the interior-point method has made dramatic progress in these fifteen years. Competing 

with the traditional simplex method, the interior-point method is now known as the most 

powerful computational method for solving huge scale linear programs. In the field of 

continuous optimization, the interior-point method has been successfully extended to convex 

quadratic programs, semi-definite programs, and more general convex programs, while, in the 

field of discrete optimization, the interior-point method has been playing an important role in 

terms of the semi-definite programming relaxation of 0-1 integer and nonconvex quadratic 

programs.  

 

Jabr et al. (2002), explained how the solution of the optimal power flow dispatching (OPFD) 

problem by a primal-dual interior point method is considered. Several primal-dual methods for 

optimal power flow (OPF) have been suggested, all of which are essentially direct extensions of 

primal-dual methods for linear programming. The aim of the work is to enhance convergence 



through two modifications, a filter technique to guide the choice of the step length and an altered 

search direction in order to avoid convergence to a non minimizing stationary point. A reduction 

in computational time is also gained through solving a positive definite matrix for the search 

direction. Numerical tests on standard IEEE systems and on a realistic network are very 

encouraging and show that the new algorithm converges where other algorithms fail. 

 

Rider et al. (2004), used an interior point method (IPM) to solve the optimal power flow (OPF) 

problem. The IPM uses a combination of the predictor corrector, multiple predictor corrector and 

multiple centrality correction methods (all belong to the family of higher order interior point 

methods). The proposed IPM uses the best properties of each method to obtain a more robust 

IPM with faster convergence characteristics. The active power loss minimisation, minimum load 

shedding and maximum load ability problems are formulated as an OPF problem and solved with 

the proposed methodology. The IEEE 30, 57, 118, and 300 bus systems, and two realistic power 

systems, a 464 bus corresponding to the interconnected Peruvian system, and a 2256 bus 

corresponding to part (South-Southeast) of the interconnected Brazilian system were tested 

successfully. Results have indicated that good convergence performance is obtained and the 

computational time is small. 

 

Mitchell et al. (2006), discussed how beneficiary interior point methods for large-scale linear 

programming, were useful for problems arising in telecommunications. They gave the basic 

framework of a primal-dual interior point method, and consider the numerical issues involved in 
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calculating the search direction in each iteration, including the use of factorization methods 

and/or preconditioned conjugate gradient methods. They also looked at interior point column 

generation methods which can be used for very large scale linear programs or for problems 

where the data is generated only as needed.  

de Miguel et al. (2004), stated how an interior-point method can solve mathematical programs 

with equilibrium constraints (MPECs). At each iteration of the algorithm, a single primal dual 

step is computed from each sub problem of a sequence. Each sub problem is defined as a 

relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous 

approaches, the proposed relaxation scheme preserves the nonempty strict feasibility of each sub 

problem even in the limit. Local and super linear convergence of the algorithm is proved even 

with a less restrictive strict complementarily condition than the standard one. Moreover, 

mechanisms for inducing global convergence in practice are proposed.  

 

Jaan-Willem and Dieter (2010), said that a
 
new interior-point algorithm for the computation of 

shakedown loads has
 
recently been developed. The analytical formulation is

 
based on the statical 

shakedown theorem which leads
 
to a nonlinear convex optimization problem. The algorithm's 

efficiency results
 
from the close adaption of the solution procedure to the

 
specific problem of 

shakedown analysis. This project focuses on algorithmic
 
aspects of the proposed method.  

 

 Smelyanskiy et al. (2007), described how parallelization of interior-point method (IPM) aimed 

at achieving high scalability on large-scale chip-multiprocessors (CMPs). IPM is an important 

computational technique used to solve optimization problems in many areas of science, 

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Simon%2C+Jaan-Willem&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://portal.acm.org/author_page.cfm?id=81100017639&coll=DL&dl=ACM&trk=0&cfid=18201429&cftoken=83675166


engineering and finance. IPM spends most of its computation time in a few sparse linear algebra 

kernels. While each of these kernels contains a large amount of parallelism, sparse irregular 

datasets seen in many optimization problems make parallelism difficult to exploit. As a result, 

most researchers have shown only a relatively low scalability of 4X-12X on medium to large 

scale parallel machines. This project proposes and evaluates several algorithmic and hardware 

features to improve IPM parallel performance on large-scale CMPs. Through detailed 

simulations, they demonstrated how exploring multiple levels of parallelism with hardware 

support for low overhead task queues and parallel reduction enables IPM to achieve up to 48X 

parallel speedup on a 64-core CMP. 

 

Fonseca et al. (2010), presented a primal-dual interior-point algorithm to solve a class of multi-

objective network flow problems. More precisely, our algorithm is an extension of the single-

objective primal infeasible dual feasible inexact interior point method for multi-objective linear 

network flow problems. Our algorithm is contrasted with standard interior point methods and 

experimental results on bi-objective instances are reported. The multi-objective instances are 

converted into single objective problems with the aid of an achievement function, which is 

particularly adequate for interactive decision-making methods. 

 

 Lukšan et al. (2005), proposed a primal interior-point method for large sparse minimax 

optimization. After a short introduction, the complete algorithm is introduced and important 

implementation details were given. They proved that this algorithm is globally convergent under 

http://www.kybernetika.cz/articles.html?author=818


standard mild assumptions. Thus the large sparse non convex minimax optimization problems 

can be solved successfully. The results of extensive computational experiments given in this 

project confirm efficiency and robustness of the proposed method. 

 

Forsgren et al. (2002), said that interior point methods are an omnipresent, conspicuous feature 

of the constrained optimization landscape today. Primarily in the form of barrier methods, 

interior-point techniques were popular during the 1960s for solving nonlinearly constrained 

problems. However, their use for linear programming was not even contemplated because of the 

total dominance of the simplex method. Vague but continuing anxiety about barrier methods 

eventually led to their abandonment in favour of newly emerging, apparently more efficient 

alternatives such as augmented Lagrangian and sequential quadratic programming methods. By 

the early 1980s, barrier methods were almost without exception regarded as a closed chapter in 

the history of optimization. This picture changed dramatically with Karmarkar’s widely 

publicized announcement in 1984 of a fast polynomial-time interior method for linear 

programming; in 1985, a formal connection was established between his method and classical 

barrier methods. Since then, interior point methods have advanced so far, so fast, that their 

influence has transformed both the theory and practice of constrained optimization. This research 

provides a condensed, selective look at classical material and recent research about interior point 

methods for nonlinearly constrained optimization. 

 

Xinwei and Jie (2003), explained how mathematical program with equilibrium constraints 

(MPEC) has extensive applications in practical areas such as traffic control, engineering design, 



and economic modeling. Some generalized stationary points of MPEC were studied to better 

describe the limiting points produced by interior point methods for MPEC.A primal-dual interior 

point method is then proposed, which solves a sequence of relaxed barrier problems derived 

from MPEC. Global convergence results are deduced without assuming strict complementarity 

or linear independence constraint qualification. Under very general assumptions, the algorithm 

can always find some point with strong or weak stationarity. In particular, it is shown that every 

limiting point of the generated sequence is a piece-wise stationary point of MPEC if the penalty 

parameter of the merit function is bounded. Otherwise, a certain point with weak stationarity can 

be obtained.  

 

Srijuntongsiri and  Vavasis (2004), showed a way to exploit sparsity in the problem data in a 

primal-dual potential reduction method for solving a class of semidefinite programs. When the 

problem data is sparse, the dual variable is also sparse, but the primal one is not. To avoid 

working with the dense primal variable, they apply Fukuda theory of partial matrix completion 

and work with partial matrices instead. The other place in the algorithm where sparsity should be 

exploited is in the computation of the search direction, where the gradient and the Hessian-

matrix product of the primal and dual barrier functions must be computed in every iteration. By 

using an idea from automatic differentiation in backward mode, both the gradient and the 

Hessian-matrix product can be computed in time proportional to the time needed to compute the 

barrier functions of sparse variables itself. Moreover, the high space complexity that is normally 

associated with the use of automatic differentiation in backward mode can be avoided in this 

case. In addition, they suggested a technique to efficiently compute the determinant of the 

positive definite matrix completion that is required to compute primal search directions. The 

http://arxiv.org/find/cs/1/au:+Srijuntongsiri_G/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Vavasis_S/0/1/0/all/0/1


method of obtaining one of the primal search directions that minimizes the number of the 

evaluations of the determinant of the positive definite completion is also proposed. They then 

implement the algorithm and test it on the problem of finding the maximum cut of a graph.  

 

Silva et al. (2008), analyzed the rate of local convergence of the Newton primal-dual interior-

point method when the iterates are kept strictly feasible with respect to the inequality constraints. 

It is shown under the classical conditions that the rate is Q-quadratic when the functions 

associated to the binding inequality constraints are concave. In general, the Q-quadratic rate is 

achieved provided the step in the primal variables does not become asymptotically orthogonal to 

any of the gradients of the binding inequality constraints. Some preliminary numerical 

experience showed that the feasible method can be implemented in a relatively efficient way, 

requiring a reduced number of function and derivative evaluations. Moreover, the feasible 

method is competitive with the classical infeasible primal-dual interior-point method in terms of 

number of iterations and robustness. 

 

El-Bakry et al. (1995), studied the formulation of the primal-dual interior- point method for 

linear programming. They showed that, it cannot be viewed as the damped Newton method 

applied to the Karush-Kuhn-Tucker conditions for the logarithmic barrier function problem. Next 

they extend the formulation to general nonlinear programming, and then validate this extension 

by demonstrating that this algorithm can be implemented so that it is locally and Q-quadratically 

convergent under only the standard Newton's method assumptions. They also establish a global 

convergence theory for this algorithm and include promising numerical experimentation. 

https://estudogeral.sib.uc.pt/jspui/browse?type=author&value=Silva%2C+R.


 

 

 

Portugal et al. (2000), introduced the truncated primal-infeasible dual-feasible interior point 

algorithm for linear programming and described an implementation of this algorithm for solving 

the minimum-cost network flow problem. In each iteration, the linear system that determines the 

search direction is computed inexactly, and the norm of the resulting residual vector is used in 

the stopping criteria of the iterative solver employed for the solution of the system. In the 

implementation, a preconditioned conjugate gradient method was used as the iterative solver. 

The details of the implementation are described and the code PDNET is tested on a large set of 

standard minimum-cost network flow test problems. Computational results indicate that the 

implementation is competitive with state-of-the-art network flow codes 

 

Zhi-jun et al. (2008), explained how a victorial implementation of dynamic optimal power flow 

(DOPF) was established, by arranging the control variables and state variables according to the 

variable types and time intervals. A step-controlled primal-dual interior point framework with 

upper and lower inequality constrains was used to solve this DOPF model. The gradient and 

Hessian matrices of each time interval had relative non-zeros position with the admittance 

matrix, which was constant during iterations. Hence a sparse data structure and memory 

allocation strategy was utilized to accelerate the construction of Karush-Kuhn-Tucker (KKT) 

system. The effect of ramping rates and generation contract constrains on solving KKT system 



was analyzed. Through computation statistics, it is confirmed that approximate minimum degree 

(AMD) reordering algorithm is most efficient with only ramping rate constrains, and column 

approximate minimum degree (COLAMD) reordering algorithm is most efficient with both 

ramping rate and generation contract constrains. Numerical simulations on test systems ranging 

in size from 14 to 1 040 buses over 12~96 time intervals validate the correctness and efficiency 

of the proposed method. Vectorization technique with step-controlled primal-dual interior point 

method improves the calculation speed and convergence performance of DOPF. 

 

 Wright (2005), explained how interior methods are a pervasive feature of the optimization 

landscape today. Although interior-point techniques, primarily in the form of barrier methods, 

were widely used during the 1960s for problems with nonlinear constraints, their use for the 

fundamental problem of linear programming was unthinkable because of the total dominance of 

the Simplex Method. During the 1970s, barrier methods were superseded, nearly to the point of 

oblivion, by newly emerging and seemingly more efficient alternatives such as augmented 

Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods 

were almost universally regarded as a closed chapter in the history of optimization. This picture 

changed dramatically in 1984, when Narendra Karmarkar announced a fast polynomial-time 

interior method for linear programming; in 1985, a formal connection was established between 

his method and classical barrier methods. Since then, interior methods have continued to 

transform both the theory and practice of constrained optimization. We present a condensed, 

unavoidably incomplete look at classical material and recent research about interior methods.  

 



Dekrajangpetch and Sheble (2000), stated that interior-point programming (IPP) has been 

applied to many power system problems because of its efficiency for big problems. This project 

illustrates application of interior-point linear programming (IPLP) to auction methods. This 

extended IPLP algorithm can find the exact optimal solution (i.e., exact optimal vertex) and can 

recover the optimal basis. Sensitivity analysis can be performed after the optimal basis is found. 

The sensitivity analysis performed in this paper is increase in the bid price and increase in the 

flow limit of the transmission line. This extended algorithm is expanded from the affine-scaling 

primal algorithm. The concept used in this extended algorithm to find the optimal vertex and 

optimal basis is simple 

 

Rothberg and Hendrickson (1998), state that main cost of solving a linear programming 

problem using
 
an interior point method is usually the cost of solving a series

 
of sparse, symmetric 

linear systems of equations, A A
T
x = b.

 
These systems are typically solved using a sparse direct 

method.
 
The first step in such a method is a reordering of the rows

 
and columns of the matrix to 

reduce fill in the factor and/or
 
reduce the required work. This project evaluates several methods

 

for performing fill-reducing ordering on a variety of large-scale
 
linear programming problems. 

They found out that a new method, based
 

on the nested dissection heuristic, provides 

significantly better
 
orderings than the most commonly used ordering method, minimum

 
degree. 

 

Bayer and Lagarias (1989), described a geometric structure underlying Karmarkar's projective 

scaling algorithm for solving linear programming problems. A basic feature of the projective 



scaling algorithm is a vector field depending on the objective function which is defined on the 

interior of the polytope of feasible solutions of the linear program. The geometric structure 

studied is the set of trajectories obtained by integrating this vector field, which we call P-

trajectories. They also study a related vector field, the affine scaling vector field, and its 

associated trajectories, called A-trajectories. The affine scaling vector field is associated to 

another linear programming algorithm, the affine scaling algorithm. Affine and projective 

scaling vector fields are each defined for linear programs of a special form, called strict standard 

form and canonical form, respectively. This derives basic properties of P-trajectories and A-

trajectories. It reviews the projective and affine scaling algorithms, defines the projective and 

affine scaling vector fields, and gives differential equations for P-trajectories and A-trajectories. 

It shows that projective transformations map P-trajectories into P-trajectories. It presents 

Karmarkar's interpretation of A-trajectories as steepest descent paths of the objective function 

with respect to the Riemannian geometry restricted to the relative 

interior of the polytope of feasible solutions. P-trajectories of a canonical form linear program 

are radial projections of A-trajectories of an associated standard form linear program. As a 

consequence there is a polynomial time linear programming algorithm using the affine scaling 

vector field of this associated linear program: This algorithm is essentially Karmarkar's 

algorithm. These trajectories are studied in subsequent papers by two nonlinear changes of 

variables called Legendre transform coordinates and projective Legendre transform coordinates, 

respectively. It will be shown that P-trajectories have an algebraic and a geometric interpretation. 

They are algebraic curves, and they are geodesics (actually distinguished chords) of a geometry 

isometric to Hubert geometry on a polytope combinatorially dual to the polytope of feasible 



solutions. The A-trajectories of strict standard form linear programs have similar interpretations: 

They are algebraic curves, and are geodesics of a geometry isometric to Euclidean geometry. 

 

 

 

Oliveira and Lyra (2004), narrated how interior point methods specialized to the L∞ fitting 

problem were surveyed, improved, and compared with the traditional simplex approach. A 

primal affine-scaling interior point method was presented, completing the affine-scaling interior 

point family approach to the L∞ fitting problem. Computational complexity and data storage are 

reduced for interior point approaches when dealing with polynomial fitting problems. Numerical 

experiments indicate that interior point approaches rarely perform better than the Simplex 

Method for the tested problems.  

 

Joo-Siong and Chuan (2005), described the importance of numerical stability for interior-point 

methods applied to Linear Programming LP and Semidefinite Programming SDP. They analyzed 

the difficulties inherent in current methods and presented robust algorithms. They started with 

the error bound analysis of the search directions for the normal equation approach for LP. Their 

error analysis explains the surprising fact that the ill-conditioning was not a significant problem 

for the normal equation system. They also explained why most of the popular LP solvers have a 

default stop tolerance of only 10-8 when the machine precision on a 32-bit computer was 



approximately 10-16. They then proposed a simple alternative approach for the normal equation 

based interior-point method. This approach has better numerical stability than the normal 

equation based method. Although, their approach was not competitive in terms of CPU time for 

the NETLIB problem set, they do obtain higher accuracy. In addition, they obtain significantly 

smaller CPU times compared to the normal equation based direct solver, when we solve well-

conditioned, huge, and sparse problems by using our iterative based linear solver. Additional 

techniques discussed are: crossover; purification step; and no backtracking. Finally, they 

presented an algorithm to construct SDP problem instances with prescribed strict 

complementarity gaps and then introduce two measures of strict complementarity gaps. We 

empirically show that:  

i. these measures can be evaluated accurately. 

ii. the size of the strict complementarity gaps correlate well with the number of iteration for 

the SDPT3 solver, as well as with the local asymptotic convergence rate. 

iii. large strict complementarity gaps, coupled with the failure of Slater's condition, correlate 

well with loss of accuracy in the solutions. In addition, the numerical tests show that 

there is no correlation between the strict complementarity gaps and the geometrical 

measure used in, or with Renegar's condition number. 

 

Lesaja (2009), explained how in recent years the introduction and development of Interior-Point 

Methods has had a profound impact on optimization theory as well as practice, influencing the 

field of Operations Research and related areas. Development of these methods has quickly led to 

the design of new and efficient optimization codes particularly for Linear Programming. 



Consequently, there has been an increasing need to introduce theory and methods of this new 

area in optimization into the appropriate undergraduate and first year graduate courses such as 

introductory Operations Research and/or Linear Programming courses, Industrial Engineering 

courses and Math Modeling courses. The objective of this paper is to discuss the ways of 

simplifying the introduction of Interior-Point Methods for students who have various 

backgrounds or who are not necessarily mathematics majors. 

 

 

Friedlander et al. (2004), proposed an interior-point method for solving mathematical programs 

with equilibrium constraints (MPECs). At each iteration of the algorithm, a single primal-dual 

step is computed from each subproblem of a sequence. Each subproblem is defined as a 

relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous 

approaches, the proposed relaxation scheme preserves the nonempty strict feasibility of each 

subproblem even in the limit. Local and superlinear convergence of the algorithm is proved even 

with a less restrictive strict complementarity condition than the standard one. Moreover, 

mechanisms for inducing global convergence in practice are proposed. Numerical results on the 

MacMPEC test problem set demonstrate the fast-local convergence properties of the algorithm. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER 3 

 

METHODOLOGY  

 

3.0 INTRODUCTION 

The problem of solving a system of linear inequalities dates back at least as far as Fourier, after 

whom the method of Fourier-Motzkin elimination is named. Linear programming arose as a 

mathematical model developed during World War II to plan expenditures and returns in order to 

reduce costs to the army and increase losses to the enemy. It was kept secret until 1947. After the 

war, many industries found its use in their daily planning. (Wikimedia Foundation, Inc, 2010) 

The founders of the linear programming are Leonid Kantorovich, a Russian mathematician who 

developed linear programming problems in 1939, George B. Dantzig, who published the simplex 

method in 1947, and John von Neumann, who developed the theory of the duality in the same 

year. The linear programming problem was first shown to be solvable in polynomial time by 
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Leonid Khachiyan in 1979, but a larger theoretical and practical breakthrough in the field came 

in 1984 when Narendra Karmarkar introduced a new interior point method for solving linear 

programming problems. (Wikimedia Foundation, Inc, 2010) 

Linear programming (LP) is a mathematical method for determining a way to achieve the best 

outcome (such as maximum profit or minimum cost) in a given mathematical model for some list 

of requirements represented as linear relationships. Linear programming is a specific case of 

mathematical programming. 

More formally, linear programming is a technique for the optimization of a linear objective 

function, subject to linear equality or linear inequality constraints. Linear programs are problems 

that can be expressed in canonical form: 

                                                               Maximize     

Subject to       

 
 

Where  represents the vector of variables (to be determined),  and  are vectors of (known) 

coefficients and A is a (known) matrix of coefficients. The expression to be maximized or 

minimized is called the objective function (  in this case). The equations  are the 

constraints which specify a convex polytope over which the objective function is to be 

optimized. (In this context, two vectors are comparable when every entry in one is less-than or 

equal-to the corresponding entry in the other. Otherwise, they are incomparable.) 
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 3.1 USES OF LINEAR PROGRAMMING 

Linear programming is a considerable field of optimization for several reasons. Many practical 

problems in operations research can be expressed as linear programming problems. Linear 

programming can be applied to various fields of study. It is used most extensively in business 

and economics, but can also be utilized for some engineering problems. Industries that use linear 

programming models include transportation, energy, telecommunications, and manufacturing. It 

has proved useful in modeling diverse types of problems in planning, routing, scheduling, 

assignment, and design. 

3.2 INTERIOR POINT METHOD (IPM) 

An interior point method is a linear or nonlinear programming method that achieves optimization 

by going through the interior of the solid defined by the problem rather than around its surface 

(Forsgren, et al. 2002). A polynomial time linear programming (LP) algorithm using an interior 

point method was found by Narendra Karmarkar (Forsgren et al, 2002).  Interior point methods 

were known as early as the 1960s in the form of the barrier function methods. Narendra 

Karmarkar proposed a new polynomial algorithm for LP that held great promise and performed 

well in practice. The main idea of this algorithm is quite different from Simplex Method. Unlike 

Simplex Method, iterates are calculated not on the boundary, but in the interior of the feasible 

region. This algorithm is an iterative algorithm that makes use of projective transformations and 

a potential function (Karmarkar’s potential function) (Forsgren et al, 2002). The current iterate is 

mapped to the center of the special set in the interior feasible region using a projective 

transformation. This set is an intersection of the standard simplex and a hyperplane obtained 

from the constraints. Then, the potential function is minimized over the ball inscribed in the set. 

The minimiser is mapped back to the original space and becomes a new iterate. 
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3.2.1 COMPARATIVE DISCUSSION BETWEEN SIMPLEX ALGORITHMS AND 

INTERIOR POINT ALGORITHMS 

The simplex algorithm solve a linear programming problem by moving along the edges of the 

polytope defined by the constraints, from vertices to vertices with successively smaller values of 

the objective function, until the minimum is reached but, does not find the solution exactly, as 

showed in figure 3.1. In contrast to the simplex algorithm, interior point algorithms for linear 

programming iterate from the interior of the polytope defined by the constraints. They find the 

solution and get closer to it very quickly.   

All forms of the Simplex method reach the optimum by traversing a series of basic solutions.  

Since each basic solution represents an extreme point of the feasible region, the path followed by 

the algorithm moves around the boundary of  the feasible region.  This can be inefficient since 

the number of extreme points can become very large. In contrast to the simplex algorithm, 

interior point method approaches the optimum from the interior of the feasible solution space. 

Only in the limit does the solution approach an optimum solution at the boundary of the feasible 



region. The development of the interior point methods is a very important step in the theory and 

practice of optimization. 

Interior point algorithm is a polynomial time algorithms. This means that the time required to 

solve an LP problem of size  would take at most  where  and  are two positive numbers. 

On the other hand, the Simplex algorithm is an exponential time algorithm in solving LP 

problems (Kumar et al, accessed April, 2011). This implies that, in solving an LP problem of 

size  there exists a positive number such that for any of the Simplex algorithm would find its 

solution in a time of at most . For large enough  (with positive ,  and ), . This 

means that, in theory, the polynomial time algorithms are superior to exponential algorithms for 

large LP problems. 
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Figure 3.1; difference in optimum search path between simplex algorithm and interior point 

algorithm 

 

 

 

 

 

 

 

 

 

 

 

3.3   INTERIOR-POINT METHODS FOR LINEAR PROGRAMMING (LP) PROBLEMS  

3.3.1 KARUSH-KUHN-TUCKER (KKT) CONDITION FOR LINEAR PROGRAMMING 

PROBLEMS  

Consider an LP problem in the standard form:  

Given the data, vector ,   and matrix , find a vector  that solves 

the problem; 

                                               Minimize        

                     P:                       Subject to                                                                    (3.1) 

                                                                        

The vector  is called a vector of primal variables and the set } is 

called primer feasible region. 

The corresponding dual problem is then given by: 

                                               Maximize        



                    D:                      Subject to                                                             (3.2) 

             

The vector   is called a vector of dual variables and the vector  is called a vector of 

dual slack variables. The set   is called a dual feasible 

region. 

Consider now a logarithmic barrier reformulation for the primal problem (3.1). 

                                               Minimize     

                    P:                   Subject to                                                                     (3.3)                                                                                                                                           

 

Problem (3.1) and (3.2) are equivalent in the sense that they have the same solution sets. The 

Lagrange function for the problem (3.3) is 

                                   ,                                   (3.4) 

from which the Karush-Kuhn-Tucker (KKT) conditions can be derived 

                                                       

                                                                                                       (3.5) 

, 

Where  represents a diagonal matrix with the components of the vector on its 

diagonal,  is a vector of ones, and  is a parameter. Using the transformation 

, system (3.5) becomes 

                                                                 

                                                                                                                  (3.6) 

     

The logarithmic barrier model for the dual LP problem (3.2) is 



                          Maximize      

                    D:                        Subject to                                                          (3.7) 

          

The KKT conditions for the above problem are 

                                   0 

                                                                                                 (3.8) 

                                    

                                                    

Or equivalently  

 

                                                                                                               (3.9) 

        

 

Combining the KKT conditions for the primal (3.6) and dual (3.9) barrier models we obtain 

primal-dual KKT conditions 

 

                                                                                                                  (3.10) 

          

The above conditions are very similar to the original KKT conditions for LP. 

                                         Dual feasibility 

                                                Primal feasibility                                 (3.11)                                                                                                                                                                                                                                                      

                        Complementarity 



The only difference between (3.10) and (3.11) are strict positivity of the variables and 

perturbation of the complementarity equation. The complementarity equation in (3.11) can be 

written as , also  and therefore  can be viewed as a primal-dual 

gap between objective functions. Hence, the complementarity condition in (3.11) can be 

interpreted as the condition of primal-dual gap being zero. 

 

 

 

 

 

3.3.2 CENTRAL PATH 

Let  be a solution of problem (3.11), then  is a solution of the primal LP problem 

(3.1) and  is a solution of the dual LP problem (3.2). The system (3.10) was parameterized 

in  if rank . Therefore, the solution is denoted as  such that  

 solves for (3.1) and  solves for (3.2). The set of center gives a homotopy 

path, which is called the central path of (3.1) and (3.2) respectively. The solution  is 

being obtained when limit of the central path exist as . Tracing the central path while 

reducing  at each iteration for (3.1) and (3.2), Barrier Method was introduced to solve (3.11),  

(Meggido, 1989). 

 

3.3.3 BARRIER METHOD (BM) 

The generic Barrier Method can be stated as follows; 



Step 1:  Given , ,   solve system (3.10) by appropriate Modified Newton’s Method 

(MNM). 

Step 3:  Decrease the value of   

Step 4:  Set  and go to step 1 

However, tracing the central path exactly, thus, solving the system (3.10) with very high 

accuracy using BM would be too costly and inefficient. The preferred method of choice for 

finding an approximate solution of the system (3.10) is Modified (damped) Newton’s Method  

 

 

 

 

 

3.3.4 BARRIER METHOD WITH MODIFIED (DAMPED) NEWTON’S METHOD  

 The MNM is formalized below. 

Step 1:  Given , ,   solve system (3.10) by appropriate Modified Newton’s Method. 

Step 2a: find the search direction  by solving the linear system  . 

Step 2b: Find step size . 

Step 2c: Update  to .  

Step 3:  Decrease the value of   

Step 4:  Set  and go to step 1 

where    

                                                                                                       (3.12) 



and 

                                                                                  (3.13) 

implies 

                                              (3.14) 

 

 ,  and  are called primal and dual residuals respectively and   is a scaling 

factor. The statement that approximate solutions of (3.10), should not be ―too far‖ from the 

central path is formalized by introducing the horn neighbourhood of the central path. The horn 

neighbourhoods of the central path can be defined using different norms. 

                          ,                                                         (3.15) 

                         ,                                                       (3.16) 

or even a pseudo norm 

         ,                             (3.17) 

  and . These neighbourhoods have the following inclusion 

relations among them  

                           .                                                                (3.18) 

The step size  is chosen in such a way that iterates stay in one of the above horn 

neighbourhoods. 

      ,                      (3.19) 

where 

                                                      



                                                                                                                 (3.20) 

                                                      

 Now, the first step of the barrier algorithm BM can be completed by calculating the new iterates 

                                                     

                                                                                                                 (3.21) 

                                                     

The second step of BM is the calculation of  using the last equation in (3.20). It can be 

shown that the sequence  is decreasing at least at a constant rate.  An iterate  is 

an approximate optimal solution if  

                                                    (3.22) 

For a given  

 

3.4 INTERIOR POINT ALGORITHMS 

Step 1: choose  and  

           Choose  and such that  and  

           where  

Step 2: set  

Step 3: Set , ,  

Step 4: Check the termination. If   

Step 5: Compute the direction by soling the system 

           



Step 6:  Compute the step size 

             , 

Where   ,   ,   

Step 7:   ,  ,   

Step 8:   and go to step 3. 

 

 

 

Figure 3.2; Graphical representation of the IPM algorithm: where  

 

There are many modifications and variations of this algorithm and it represents a broad class of 

algorithms. For example, we can consider different neighbourhoods of the central path. Because 



of the relation in (3.18), if  is used, IMP is called a short-step algorithm, and if 

 is selected, IMP is called a long-step algorithm.  

The IPMs are iterative algorithms which produce only an  approximate optimal solution of 

the problem. However, as in the case of the Ellipsoid and Karmarkar’s algorithms, it  can be 

shown that if the input  data are rational numbers, the IPM finds the exact solution of LP in 

O( ) iterations proving that this is the algorithm with the best known polynomial iteration 

complexity. Nevertheless, this can still correspond to very large number of iterations. However, 

it is possible to perform far less iteration and still be able to recover the exact optimal solution of 

the problem. (Lesaja, 2009) 

 The main idea of the method is to perform orthogonal projection of an iteration to the optimal 

set when the iteration is ―near‖ the optimal set (there are several different criteria as to how to 

determine when the iterate is ―near‖ the optimal set.). Another interesting fact is that in the case 

when LP problem has infinitely many optimal solutions, IPMs tend to find an exact optimal 

solution that is in the ―center‖ of the optimal set as opposed to the Simplex method (SM) that 

finds the ―corner‖ (vertex) of the optimal set. However, it is possible to recover a vertex optimal 

solution as well.  

 

The IPM is also a path-following algorithm since iterates are required to stay in the horn 

neighbourhood of the central path. These algorithms are designed to reduce the primal-dual gap 

( ) directly in each iteration. There is another group of interior-point algorithms that are 

designed to reduce the primal-dual gap ( ) indirectly in each iteration. This algorithm directly 

reduces the objective function to a constant number in each iteration and known as potential-



reduction algorithm or Karmarkar’s algorithm. Iterates of these algorithms do not necessarily 

stay in the horn neighbourhood of the central path, (Lesaja, 2009). 

The interior-Point Algorithm can now be summarized in the following types of IPMs. 

There are at least three major types of IPMs:  

(1) the Karmarkar algorithm.  

(2) the affine scaling algorithm.  

(3) the primal-dual path following algorithm. 

 

 

 

 

3.5 KARMARKAR’S METHOD 

Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving 

linear programming problems. It was the first reasonably efficient algorithm that solves these 

problems in polynomial time, (Wikimedia Foundation Inc., 2011). Karmarkar's algorithm falls 

within the class of interior point methods: the current guess for the solution does not follow the 

boundary of the feasible set as in the Simplex method, but it moves through the interior of the 

feasible region and reaches the optimal solution only asymptotically. We consider first the linear 

programming problem, which is undoubtedly the optimization problem solved most frequently in 

practice. 

 

3.5.1 DESCRIPTION OF KARMARKAR’S ALOGORITHM 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Narendra_Karmarkar
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Polynomial_time
http://wikimediafoundation.org/wiki/About_Wikimedia
http://en.wikipedia.org/wiki/Interior_point_method
http://en.wikipedia.org/wiki/Simplex_method


Unlike the Simplex method, the sequence of iterates in Karmarkar’s algorithm is easy to 

visualize. Instead of moving sedately from one corner to an adjacent one in the feasible region 

where the value of the objective function is reduced, it starts from the centre of a polygonal 

feasible region and moves linearly in the ―direction of steepest descent‖ toward the boundary, 

and arrives at the solution fairly quickly. This ―direction of steepest descent‖ is given by the 

negative gradient of the objective function. Implementation problems are: 

i. The determination of the ―centre‖ of a polygonal region.  

ii. Movement of the current interior point to the center of this region 

Instead of treating the implementation problem, Karmarkar solves a geometric problem and 

generalized the result (Lemire, 1989). The simplified problem involves an (n-1)-dimensional unit 

simplex which is defined by 

                               (3.23) 

Where . 

Figure 3.2 comprises of a triangle (j), an internal circle (c) and external circle (h) all lie on the 

xyz-plane. (a, g, d) show the intersections between the edges of (j) and (c). Also (i, b, f)   show 

the intersections between vertices of ( j) and (h). The feasible region is represented by (e). 

 Z 

                                                       j                     i                  h 

                                          a                                                             g   Y 



                                         b                                                     f  f  

    X                                       e 

                                                                c                 d           

Figure 3.3 graphical representation of feasible region 

 

 

  where   

                    )  

                    

                                            j=  

 

Therefore,  consists of +1 on the ℝ line. The , is the straight line segment between  

and . The triangular region in the first octant with corners ,  and  

comprises the . From a diagram of any of these low-dimensional simplexes (n >1), it is clear 

that  is the centre of the unit, . This result also holds in general. Karmarkar’s idea is 

to transform the original problem such that it’s feasible region in  is contained in . In 

order to do this, he uses projective transformations. Projective transformations are non-linear 



transformations under which lines and subspaces are preserved but distances and angles are 

distorted. In Karmarkar’s method, two types of projective transformations are used: 

 The first , takes the  polytope in positive orthant: 

                                                                                                       (3.24) 

and ―scrunches‖ it into . This is type of projective transformation, it transforms the original 

(n-1) polytope ((n-1) -dimensional polygon) to lie within . It maps a given initial strictly 

positive feasible point to the centre of . The second,  maps from  to itself and map 

the current interior point to the centre of  . Each time one of these transformations is used, the 

objective function is adjusted accordingly so that the ―direction of steepest descent‖ changes in 

each iteration. To  prevent the iterates of the algorithm from moving outside the boundary of the 

feasible region. Karmarkar use the geometry of   to solve this problem. Within an (n-1) -

dimensional simplex, it is possible to inscribe an (n-1)-dimensional sphere defined by; 

                                                                     (3.25) 

with centre   and radius, . From fig 3.3 of the two-dimensional  , it makes sense that 

this sphere  should touch  at the points: ,  and .  In general,  

touches  at the  points: , . . . , . By the 

Euclidean distance formula: 

                                                                                                                           (3.26) 

This sphere will be subsequently denoted by B( ). There also exists a smaller circumscribing 

(n-1)- dimensional sphere for . In a similar, it may be observed that this sphere has centre, 

  and points , , . . . , . This implies that its radius must 



be  

                                                                                                                          (3.27) 

it shall be noted as . Karmarkar uses the sphere,  , to ensure 

that all iterates are interior points thus, they are strictly positive feasible points. This is necessary 

in order to apply his projective transformations. It is clear that , 

for all . Thus, if we minimize the objective function over the inner sphere, , we will 

produce iterate that are interior points. It turns out that minimizing an objective function over an 

(n-1)-dimensional sphere is a much simpler task than minimizing it over . 

3.5.2 CONVERSION OF LPP STANDARD FORM INTO KARMARKAR’S STANDAND 

FORM 

Let the LPP be given in standard form: 

                                               Minimize       

                     P:                       Subject to                                                                 (3.28)     

                                                                      

 The following are assumptions for Karmarkar’s algorithm: 

i. The minimal value of the objective function is 0 

ii.  is  a feasible point for this LP 

iii.  has rank  

Converting an LP problem into the standard form of Karmarkar, the assumptions (i, ii and iii) 

must be satisfied. The key feature of the karmarkar’s standard form is the simplex structure, 



which of course results in a bounded feasible region. Regularizing problem (3.28) we add a 

bounding constraint 

                                                                                                (3.29) 

For is a positive integer, derived from the feasibility and optimality considerations. We can 

choose , where is the problem size (number of variables). By introducing a slack 

variable , we have a new linear program: 

 

 

                                             Minimize        

                       P:                  Subject to                                                                     (3.30) 

                                                  

                                                         

 Keeping the matrix structure of  undisturbed for sparsity manipulation, we introduce a new 

variable  and rewrite the constraints of (3.30) as 

                                                                                                                     (3.31) 

                                                                                                     (3.32) 

                                                                                                 (3.33) 

                                                 



Note that the constraint  is direct consequence of (3.32) and (3.33). Normalizing (3.33) 

for the required simplex structure, apply the transformation: 

                                                                                       (3.34) 

Now, we have an equivalent linear program 

                                  Minimize                      

                                 Subject to                       

                                                                                                     (3.35) 

                                                            

                                                                      

The problem (3.35) is now in the standard form required by the Karmarkar agolrithm. In order to 

satisfy the assumption (ii), we may introduce an artificial variable  with a large cost 

coefficient  in Big-M method. Big M is a positive finite and large but not too large to produce 

accumulation of round off errors during iterations. Example:  

                                               Minimize:         +  

                      P:                      Subject to:                                                     (3.36) 

                                                                            

                                                                                   



With M=10, computer gives the optimal solution  and  while with M=999999 the 

optimal solution is  and . Note that first solution is correct. 

Generic karmarkar’s standard form 

    Minimize                                          

    Subject to                       

                                                                       (3.37) 

                                              

 

This form (3.37) satisfies assumption (ii) as  is the interior point solution and 

its minimum value is zero (assumption (i)).  

 

3.5.3 FORMULATION OF KARMARKAR`S ALGORITHM 

Given the generic LP problem in Karmarkar form;  

                                                 Minimize:         

                       P:                      Subject to:                                                                   (3.38) 

                                                                       

                                                                          

where 

 



 

First of all, due to the last two constraints, the feasible region is contained in the simplex,  

In addition, the centre of this simplex is already an interior point due to assumption (ii). Thirdly, 

since the minimum value of the objective function is zero, we may terminate the algorithm when 

 or when  is within the binary precision (i.e.  ,  (Lemire, 1989). 

where  is  

  

                                     (3.39) 

Consider the projective transformation defined by; 

                                                                                                           (3.40) 

Where  is an interior point and  

This transformation, :  is a one to one correspondence and the point  is 

mapped to the centre of the simplex,   

Its inverse is given by; 

                                                                                                            (3.41) 

This means that  has the desired properties of our second projective transformation. In order to 

use it to solve the original problem, we must also transform the objective function and the 

feasibility conditions. If , the feasibility constraints are transformed as: 

                                     

                                                                                                               (3.42) 

                                                        



The last two remain the same for , the objective function   becomes  . Thus the 

problem becomes: 

                                                     Minimize:           

                                                    Subject to:                                                            (3.43) 

                       

                          

 

 

 

 

However, the function, , may be approximated by a constant around the centre of the 

simplex, . Therefore our new problem becomes: 

                                                       Minimize:         

                                                    Subject to:                                                         (3.44) 

                

                    

To solve this problem we must bear in mind Karmarkar’s trick of minimizing over the inscribed 

sphere to keep the iterates of his algorithm feasible. That implies that we are actually going to 

solve the problem: 

                                 Minimize:                              

                                                        Subject to:                                                        (3.45) 

                                                                                                                                            



                                                                        

where        ,  ,   

 

The only difference here is the additional constraint, . The optimal solution becomes 

 where  is the projection of  having unit length, onto the nullspace of  and 

                                                                                                                             (3.46) 

The formulae that define  are: 

                                                                                                   (3.47) 

and 

                                                                                                                               (3.48) 

We do not project  onto the affine space: 

                                                                                                               (3.49) 

This is because we want the optimal solution: 

                                                                                                                         (3.50) 

To retain the property, , in order to remain inside  . Since  already, we 

only require that   . The projection matrix is  and it is not the standard 

projection matrix. This is due to the fact that the null space is orthogonal to the row space, not 

the column space.  is a full rank, , due to assumption (iii) which ensures  is of rank .  

 

3.5.4 KARMARKAR’S ALGORITHM 

Step 1  

Preliminary  



 

 

 

 

Step 2 

Iteration   

(a) Define the following: 

 

 

 

 

(b) Compute the following: 

 

If , any feasible solution becomes an optimal solution. Stop 

otherwise 

              

              

               

              

Repeat iteration  until the objective function ( ) value is less than or equal to zero  

 



EXAMPLE 

Carry out the first three iterations of Karmarkar’s algorithm for the following problem; 

Minimize: Z=  

Subject to   

                   

                             

               ≥ 0,  ≥ 0, ≥ 0,  ≥ 0,  ≥ 0; 

 

 

 

SOLUTION 

Preliminary Step: 

 

 

 

 

 

 

Iteration 0; 

=  



 

 

 

 

=  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k=0+1=1 

Since , continue 

 

Iteration 1; 

 



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

k=1+1=2 

Since , continue 

 

Iteration 2: 

 

 

 

  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

k=2+1=3 

 Since , continue 

 

 

3.6 AFFINE SCALING METHOD rediscovered by Barnes [4],  

The affine-scaling algorithm was originally proposed for LP problem by Dikin and 

independently rediscovered by Barnes, Vanderbei, Meketon and Freedman, after Karmarkar 

proposed the first polynomial-time interior-point method. This algorithm is often called the 

primal (or dual) affine-scaling algorithm because the algorithm is based on the primal (or dual) 

problem. There is also a primal-dual affine-scaling algorithm. It is sometimes called the Dikin-

type primal-dual affine scaling algorithm. (Muramatsu, 1998) 

 

3.6.1 PRIMAL AFFINE SCALING ALGORITHM 



We present a generic feasible interior point algorithm for the LP problem. Consider an LP 

problem in the standard form: given the data, vector ,   and matrix ; 

                                                Minimize           

                     P:                   Subject to                                                                  (3.51) 

        

 

The following algorithm is used to solve LP problems 

Step 1 

Set , ,  

Find  and  

Step 2  Compute 

 

 

If  , and  

Then STOP!  

Otherwise, 

Step 3 Compute  

 

If , then STOP! Unbounded 

If , then STOP!  

Otherwise, 

Step 4 find 

 



 

d rediscovered by Barnes [4], a 

Go to step 2 

 

1.6.2 DUAL AFFINE SCALING ALGORITHM 

We present a generic infeasible interior point algorithm for the LP problem. Consider an LP 

problem in the standard form: given the data, vectors , ,     and 

matrix  ; 

                                         Minimum:     

                    P:                      Subject to:                                                                    (3.52) 

                                                                        

The corresponding dual problem is then given by: 

                                                 Maximum:      

                     D:                        Subject to:                                                         (3.53) 

                        

 

The following algorithm is used to solve LP problems 

Step 1: 

Set  and find   

 

Step 2: 

Set  

Compute  



                        

Step 3: 

If , STOP!  

 If , STOP!    (D) is unbounded 

Step 4: Compute 

 

If  and  

STOP!   

Step 5: compute 

 

 

 

d rediscovered by Barnes [4], a 

Go to step 2 

3.6.3 PRIMAL-DUAL AFFINE SCALING ALGORITHM 

We present a generic feasible interior point algorithm for the LP problem. Consider an LP 

problem in the standard form: given the data, vectors  , ,   and 

matrix ; 

                                      Minimize:                                                                                                           

                       P:                   Subject to:                                                                      (3.54) 

                                                                        

The corresponding dual problem is then given by: 



                                    Maximum       

            D:                    Subject to                                                              (3.55) 

                                                                   

The following algorithm is used to solve LP problems 

Step 1 

Initialize with  feasible in (P) and ) feasible in (D) with . Let .  

Step 2 

Let . (Other scaling is possible.)  

Step 3 Calculate  

  

 

Step 4 Calculate 

  

 

 

Step 5 Calculate primal and dual step lengths  and ,  

ensuring  and .  

Step 6 Update  

 

 



 

Let . Calculate .  If small enough, STOP. Else return to Step 2. 

 

3.5 PRIMAL – DUAL PATH-FOLLOWING ALGORITHM 

We present a generic infeasible interior point algorithm for the LP problem. Consider an LP 

problem in the standard form: given the data, , ,   and matrix 

 ; 

                                     Minimize:        

                     P:                    Subject to:                                                                    (3.56)        

                                                                       

The corresponding dual problem is then given by: 

                                   Maximum       

                     D:                  Subject to                                                              (3.57)       

                                                                          

The following algorithm is used to solve LP problems 

Step 1 

Initialize with  feasible in (P) and ) feasible in (D) with . Let .  

Step 2 

Let . (Other scaling is possible.)  

Step 3 Calculate  



  

 

Step 4 Calculate 

  

 

 

Step 5 Calculate primal and dual step lengths  and ,  

ensuring  and .  

Step 6 Update  

 

 

 

Let . Calculate .  If small enough, STOP. Else return to Step 2. 

 

 

 

 

CHAPTER 4 

DATA COLLECTION AND MODELING  

 



4.0 DATA 

Unibank is in the process of formulating a loan policy involving a 60% of its internal and 

external generated income which total up to GH¢400,000,000.00. Being a full-service facility, 

the bank gives loans to different clientele. The following Table 4.1 provides the types of loans, 

the interest rate charged by the bank, and the probability of bad debt as estimated from previous 

years. Budget for loans = 0.6* GH¢400,000,000.00 = GH¢240,000,000.00 

 

TABLE 4.1; LOANS AVAILABLE TO UNIBANK  

TYPES OF LOANS 

INTEREST 

RATE 

PROBABILITY OF 

BAD BEDT 

PERSONAL 0.24 0.02 

SMALL AND MEDIUM ENTERPRISES (SME) 0.03 0.01 

AGRICULTURE 0.12 0.10 

CONSTRUCTION 0.24 0.04 

CAR 0.20 0.07 

INDUSTRY 0.24 0.06 

Source: Unibank (loan officer, 2011) 

Bad debts are assumed irretrievable and hence produce no principal or interest revenue. 

Competition with other banking institutions in the area requires that the bank apply the following 

conditions: 



Condition (i), the sum of personal loan, SME loan, agricultural loan, construction loan, car loan 

and industrial loan must be equal to the total funds available. 

Condition (ii), the sum of personal loan and SME loan must be equal to agricultural loan, car loan, 

industrial loan and construction loan 45%. 

Condition (iii), allocate 55% of the total funds to personal loan and SME loan. 

Condition (iv), allocate 10% of the total funds to agricultural loan. 

Condition (v), to assist the construction firms and industry in the region, construction loan and 

industrial loan must be equal 50% of car loan and SME loan.  

Condition (vi),assign 65% of the total fund to SME loans. 

Condition (vii), the bank also has a stated policy specifying that the overall ration for bad debts 

on all loans may be equal to 5%. 

The objective of Unibank is to optimize its net return which comprises of the difference between 

the revenue from interest and lost funds due to bad debts. 

Source: Unibank (loan officer) 

          

 

4.1 FORMULATIOM OF LPP MODEL INSTANCE 

The variables of the model can be defined as follows; 



 = personal loan (in millions of Ghana cedis) 

 = small and medium enterprise loans 

 = agricultural loans 

 = construction loans 

 = car loans 

 = industrial loans 

Thus the objective function is; 

 = 0.24(0.98  ) + .03(0.99  ) + 0.12(0.90  ) + 0.24(0.93  ) + 0.20(0.93  ) + 0.24(0.94  ) 

- (0.02  +0.01  +0.10  +0.04  +0.07  +0.06 ) 

  

Subject to the constraints: 

1. From condition (i), limit on total funds available :  +  +  +  +   +   = 240 

2. From  condition (ii), limit on personal loan and SME loan compare to agricultural loan, 

car loan, industrial loan and construction loan: 

 +  = 0.45(  +  +  +   ) 

  +  - 0.45  - 0.45  - 0.45  - 0.45  = 0 

3. From condition (iii), limit on personal loan and SME loan: 

 +  = 0.55 * 240 



 +  = 132 

4. From condition (iv), limit on agricultural loan : 

 = 0.10 *240 

 = 24 

5.  From condition (v), limit on construction loan and industrial loan :  

 +  = 0.5 (  +  +  +   ) 

-0.5  + 0.5  -0.5  + 0.5  = 0 

6. From condition (vi), limit on SME loan:  

= 0.65*240 

 =156 

7. From condition (vii), limit on bad debts:  

   

-0.03  - 0.04  - 0.5  - 0.01  - 0.02  - 0.01  = 0 

8. Non- negativity:  ≥ 0,  ≥ 0, ≥ 0,  ≥ 0,  ≥ 0 and  ≥ 0; 

 

4.2 SUMMARY OF LP PROBLEM 

Minimize 



  

Subject to the constraints: 

                                                               

                                       

                                                                  

                                                         

                                            

                                                          

                      

                                                                                         

 

 

 

 

 

4.3 CONVERTING LPP STANDARD FORM INTO KARMARKAR STANDARD FORM    



  

                

                                       

 

 Minimize    

 

Minimize    Z= (64+1)*  

                                     *   

 

 Minimize      

 

 

 

 

 

 

 

Subject to the constraints: 



 

 

 

 

 

                         +  +  +  +   +  -240 + 234  = 0 

   +  - 0.45  - 0.45  - 0.45  - 0.45  + 0 - 0.2  = 0 

              +  + 0  + 0  + 0  + 0  -132 + 130  = 0 

                                              0  + 0  +  + 0  + 0  + 0 -24 + 23  = 0 

           0  - 0.5 +0  + 0.5  -0.5  + 0.5  - 0 + 0  = 0 

              0  +  +0  + 0  + 0  + 0  - 156 + 155  = 0 

               -0.03  - 0.04  - 0.5  - 0.01  - 0.02  - 0.01  + 0 + 0.61  = 0 

 

 



 

 

 

 

  

 

 

 

 

 

 

 

 



4.4 KARMARKAR’S STANDARD FORM 

Minimize       

         

Subject to the constraints 

                                                    

                            

                                            

                                              0   

                                       

                                           

             

                                                            

                                                                    

                                                                                              

 

 

 

  



 

4.5 SUMMARY OF MODEL INSTANCE 

 

 

 

 

 

 

 

 

4.6 COMPUTATION PROCEDURE  

 

The computer brand used in running the programming code was LG with 150GB capacity hard 

disk drive, processing speed of 1.8GHz and random access memory (RAM) of 1GB. The 

programming code was written in matlab to run data:  and  . The programming code can 

be found in the appendix. It was run up to maximum of 1000 iterations but converges at iteration 

939 to produce the final results. Ten runs produced the same results as shown below; 

 



 

4.7 RESULTS 

, , , , ,    

,  ,  and   

Where, Z = objective function,  and

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 5 

 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 SUMMARY  

 

The computational results presented in this thesis illustrate the use of Karmarkar interior point 

methods for linear programming. There are several things to observe about the output data. The 

iteration converges at when tel= 939 and the outcomes are  for the objective 

function and   X =[ 0.1138, 0.1459, 0.0999, 0.0000, 0.1424, 0.2882] for the basic variables.  

 

The optimal solution converts  to GH¢113,800.00 for personal loan,  to GH¢145,900.00 

for small and medium enterprise loans,  to GH¢99,900.00 for agricultural loans, no amount 

allocated to  for construction loans,  to GH¢142,400.00 for car loans and  to 

GH¢288,200.00 for industrial loans show that the bank should allocate funds to all the types of 

loans accept construction loan and this would yield a minimum profit of GH¢17,286,000.00.  

 

The solution meets the policy of loan preference of Unibank since the result shows industrial 

loan takes the lead followed by small and medium enterprise loans then car loans then personal 

loan finally agricultural loan then. 

 

 



 

 

5.2 CONCLUSIONS  

 

The data taken from Unibank was formulated into a linear programming problem. Karmarkar 

interior point method which approaches the optimum a polynomial time algorithms was used in 

the computation.  

Furthermore, optimizing the disbursement of the funds available for loans from Unibank would 

result in the appropriate allocation of funds to their customers.  The computation shows that 

Unibank would be able to make a minimum profit of GH¢17,286,000.00 on loans alone. 

Concluding, the solution meets the policy of loan preference of Unibank since the result shows 

industrial loan takes the lead followed by small and medium enterprise loans then car loans then 

personal loan finally agricultural loan then. 

 

 

 

 

 

 

 

 

 



 

 

5.3 RECOMMENDATIONS  

Recalling from summary, the model proposed that funds should be allocated in the following 

other: industrial loan, small and medium enterprises (SME) loan, personal loan, agricultural loan 

and car loan. It is therefore recommended that Unibank may adopt this proposed model as one of 

its research methods, since the output conforms to the loan policy of the bank.  

Lastly, it is also recommended that interior point method should further be researched by 

students, since it is a polynomial time algorithm of solving linear programming problems.  
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APPENDIX 

%  Assign the data ( A,C,E and N) to MATLAB variable 

% N and E is the number basic variables represented in ones 

% ―tel‖ is the number of iterations  

mn =size(A) 

m=mn(1) 

n=mn(2) 

X1= ([N]/n)' 

I=eye (n) 

r=1/sqrt(n*(n-1)) 

v= (n-1)/(3*n) 

X= ([N]/n)' 

tel=0 

while(C'*X>0)&(tel<500) 

T=diag(X) 

AT=A*T 

P= [AT; E] 

CT=C'*T 

CP= (I-P'/(P*P' )*P)*CT' 

CPN=norm (CP) 



Y=X1-(r*v)*(CP/CPN) 

X= (T*Y)/(E*T*Y) 

Z=C'*X 

tel=tel+1 

end 

 


