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Abstract

Genetic algorithms provide a search technique used in computing to find true or

approximate solution to optimization and search problems. In this work, Genetic

algorithm is tested to find the optimal route for the Vehicle Routing Problem

(VRP). The Vehicle Routing Problem (VRP) is a complex combinatorial opti-

mization problem that belongs to the NP-complete class. Due to the nature of

the problem it is not possible to use exact methods for large instances of the VRP.

Genetic Algorithms are used to model the Vehicle Routing Problem which shows

the superiority of Genetic Algorithm over the company’s normal route. Matlab

simulations was carried out to find the optimal route of Amponsah Efah Pharma-

ceutical limited from its main depot after the production stage in Adum, Kumasi.
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Chapter 1

Introduction

Evolutionary Algorithms (EAs) are computer programs that attempt to solve

complex problems i.e., Combinatorial Optimization Problems (COPs) by mim-

icking the processes of Darwinian evolution. In an EA, a number of artificial

creatures search over the space of the problem. They compete continually with

each other to discover optimal areas of the search space. It is hoped that over time

the most successful of these creatures will evolve to discover the optimal solution.

The artificial creatures in EAs, known as individuals, are typically represented by

fixed length strings or vectors. Each individual encodes a single possible solution

to the problem under consideration. Over recent years the application of EAs to

COPs in computational chemistry has become common place and there is now

a growing collection of published applications. One of the numerous algorithms

proposed for applying to these COPs is Genetic Algorithm.

Genetic algorithms (GAs) are search methods based on principles of natural selec-

tion and genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975). GAs encode

the decision variables of a search problem into finite-length strings of alphabets

of certain cardinality. The strings which are candidate solutions to the search

problem are referred to as chromosomes, the alphabets are referred to as genes

and the values of genes are called alleles. For example, in a problem such as the

traveling salesman problem, a chromosome represents a route, and a gene may

represent a city. GAs work with coding of parameters, rather than the parameters

themselves. Genetic algorithms are often viewed as function optimizer, although

the range of problems to which genetic algorithms have been applied are quite

broad.
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1.1 Background

Many human inventions were inspired by nature. One example is Genetic Al-

gorithm (GA) which is inspired by Charles Darwin’s theory about evolution -

”the survival of the fittest”. In nature, competition among individuals for scanty

resources according to the principle of selection (survival of the fittest) results in

the fittest individuals dominating over the weaker ones to reach certain remark-

able tasks. An implementation of genetic algorithm begins with a population of

(typically random) chromosomes.

John Holland’s pioneering book Adaptation in Natural and Artificial Systems

(1975, 1992) showed how the evolutionary process can be applied to solve a wide

variety of problems using a highly parallel technique that is now called the genetic

algorithm. This particular branch of Evolutionary Algorithms (EAs) was inspired

by the way living things evolved into more successful organisms in nature. Be-

fore applying the genetic algorithm to the problem, the user designs an artificial

chromosome of a certain fixed size and then defines a mapping (encoding) be-

tween the points in the search space of the problem and instances of the artificial

chromosome. GAs search by simulating evolution, starting from an initial set

of solutions or hypotheses, and generating successive ”generations” of solutions.

One then evaluates these structures and allocated reproductive opportunities in

such a way that these chromosomes which represent a better solution to the target

problem are given more chances to ’reproduce’ than those chromosomes which

are poorer solutions. The ’goodness’ of a solution is typically defined with respect

to the current population.

Changes occur during reproduction. The genetic algorithm (GA) transforms a

population (set) of individual objects, each with an associated fitness value, into

a new generation of the population using the Darwinian principle of reproduction

2



and survival of the fittest and analogs of naturally occurring genetic operations

such as crossover (sexual recombination) and mutation. Each individual in the

population represents a possible solution to a given problem. The genetic algo-

rithm attempts to find a very good (or best) solution to the problem by genetically

breeding the population of individuals over a series of generations.

The genetic algorithm differs from other search methods in that it searches among

a population of points, and works with a coding of parameter set, rather than the

parameter values themselves. It also uses objective function information with-

out any gradient information. The transition scheme of the genetic algorithm is

probabilistic, whereas traditional methods use gradient information. Because of

these features of genetic algorithm, they are used as general purpose optimiza-

tion algorithm. They also provide means to search irregular space and hence are

applied to a variety of function optimization, parameter estimation and machine

learning applications.

The VRP is an NP-hard combinatorial optimization problem which is usually

very time consuming or even impossible and only relatively small instances can

be solved to optimality. To this day, it seems that no exact algorithm is capa-

ble of consistently solving instances in excess of 50 customers.Many versions of

the Vehicle Routing Problem have been described. The Vehicle Routing Prob-

lem (VRP) is one of the most popular problems in combinatorial optimization,

and its study has given rise to several exact and heuristic solution techniques of

general applicability. It generalizes the Traveling Salesman Problem (TSP) and

is therefore NP-hard. A recent survey of the VRP can be found in the first six

chapters of the book edited by Toth and Vigo (2002a).

The VRP is often defined under capacity and route length restrictions. When

only capacity constraints are present the problem is denoted as Classical Vehicle

3



Routing Problem (CVRP). The Vehicle Routing Problem is discussed here and

can in a simplified way be described as follows: A fleet of vehicles is to serve a

number of customers from a central depot. Each vehicle has limited capacity and

each customer has a certain demand. A cost is assigned to each route between

every two customers and the objective is to minimize the total cost of travelling

to all the customers. All the itineraries start and end at the depot and they must

be designed in such a way that each customer is served only once and just by one

vehicle. Several other extensions have also been studied; the vehicle fleet may be

heterogeneous, vehicles may perform both collections and deliveries on the same

route, some vehicles may be unable to visit certain sites, some customers may

require several visits over a given time period, there may exist more than one

depot, deliveries may be split among.

Real life Vehicle Routing Problems are usually so large that exact methods can-

not be used to solve them. For the past two decades, the emphasis has been on

metaheuristics, which are methods used to find good solutions quickly.This is due

to the fact that sharp lower bounds on the objective value are hard to derive,

which means that partial enumeration based exact algorithms (using branch-and-

bound or dynamic programming) will have a slow convergence rate. Since exact

approaches are in general inadequate, heuristics are commonly used in practice.

1.2 Statement of Problem

After drug production stage at Amponsah Efah Pharmaceutical Limited, issues

of transportation always crop up due to the cost involve in its drug distribution

to the various wholesale points. This has been a challenge for some time now

since the various wholesale points are randomly located and choice of infeasible

route lead to high transportation cost.
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1.3 Objectives

In order to resolve the above stated problem, it is the objective of this work;

• To minimize the total distribution distance of the vehicle by applying Ge-

netic Algorithm (GA) to generate the optimal route for Amponsah Efah

Pharmaceutical Limited.

1.4 Methodology

To accomplish the above stated objective, Genetic algorithm was applied to the

secondary data acquired from the company.

1.5 Organization of Study

The background of this research, objectives, and brief methodology of the genetic

algorithm is introduced in the first chapter.

The second chapter reviews Evolutionary Algorithm (EA), some heuristics meth-

ods and other earlier research carried out in Genetic Algorithm.

For the chapter three, the methodology of the genetic algorithm is discussed in

details together with a review of the Vehicle Routing Problem (VRP) and in

chapter four, a presentation is done on the application of GA to VRP.

Finally, the conclusion and recommendation based on this research conducted is

talked about in chapter five.
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Chapter 2

Literature Review

2.1 Review of Related Work

Kannan, Sasikumar and Devika (2010) recast a Genetic Algorithm approach for

solving a closed supply chain model. A case of battery recycling. In this paper

the authors developed a closed loop mixed integer linear programming model to

determine the raw material level, production level, distribution and inventory

level, disposal level and recycling level at different facilities with the objective of

minimizing the total supply chain costs. The model is solved by the proposed

heuristics based genetic algorithm and for smaller size problem the computational

results obtained through Genetic Algorithm are compared with the solutions ob-

tained by GAMS optimization software.

The problem of drawing graphs nicely contains several computationally intractable

sub-problems. It is on this note that Eloranta and Makinen (2001) presented a

paper Tim GA: A genetic algorithm for drawing undirected graphs. The authors

indicated that it is natural to apply genetic algorithms to graph drawing. Their

paper introduces a genetic algorithm (Tim GA) which nicely draws undirected

graphs of moderate sizes. The aesthetic criteria used are the number of edge

crossing, even distribution of nodes, and edge length deviation. Eloranta and

Makinen (2001) indicated that although Tim GA usually works well, there are

some unsolved problems related to the genetic crossover operation of graphs and

concluded that Tim GA’s search is mainly guided by the mutation operations.

Various applications of Genetic Algorithms to the problem of image segmentation

6



are explored by Keri Woods (2007) on his paper Genetic Algorithm: Colour im-

age segmentation to discuss the feasibility of using genetic algorithms to segment

general colour images and also discuss the issues involved in designing such algo-

rithms. Keri Woods (2007) indicated that Genetic Algorithms are commonly used

approach to optimizing the parameters of existing image segmentation algorithms

and stated that the major decisions are choosing a method of segmentation to

which genetic algorithms will be applied, finding a fitness function that is a good

measure of the quality of image segmentation and finding a meaningful way to

represent the chromosomes. Keri Woods (2007) used modified GAs and Hybrid

GAs to solve this problem.

A recast of genetic algorithms and the Evolution of Neutral Networks for lan-

guage processing by Jaine T. (2009) presents ways in which he have used GAs

to find which Neutral Network (NN) parameter values produce natural language

task. In addition to this, the system has been modified and studied in order to

evaluate ways in which coding methods in the GA and the NN can affect perfor-

mance. In the case of GA coding, an evolution method based on schema theory

is presented. This methodology can help determine optimal balances between

different evolutionary operators such as crossover and mutation, based on the

effect of different ways of presenting words and sentences at the output layer is

examined with binary and floating point schemes.

A dynamic routing control based on genetic algorithm can provide flexible real

time management of the dynamic traffic changes in broadband networks. It was

demonstrated through computer simulations using genetic algorithms by Shiman-

oto N. (2000). The proposed technique can generate the exact solution of path

arrangement that keeps the traffic loss rate below the target value, even after

changes in traffic.
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Takagi-Sugeno-Kang (TSK) type recurrent fuzzy network is proposed by Juang

(2002), which develops from a series of fuzzy if-then rules with Takagi-Sugeno-

Kang (TSK) type consequent parts. Takagi-Sugeno-Kang (TSK) type recurrent

fuzzy network with supervised learning is suggested for the problems having on-

line training data. To demonstrate the superiority of Takagi-Sugeno-Kang (TSK)

type recurrent network, it is applied to dynamic system. By comparing the re-

sults the efficiency of Takagi-Sugeno-Kang (TSK) type recurrent fuzzy network

is verified.

Design of direct form of a finite word length, finite impulse response (FIR) low

pass filter was proposed by Xu and Daley (1995). The results of the proposed

design techniques are compared with an integer programming technique and it is

inferred from the results that genetic algorithm based technique outperforms the

traditional approach.

Design of optimal disturbance rejection using genetic algorithm was suggested

by Krohling and Rey (2001). The method was proposed to design an optimal

disturbance rejection proportional integral derivative (PID) controller. A con-

dition for disturbance rejection of control system is described which is further

formulated as a constrained optimization problem. A constraint optimization

problem to optimize integral of time and absolute error (ITAE) was tested by

proportional integral derivative (PID) controller as applied to servo motor sys-

tem. A double genetic algorithm was applied for solving constraint optimization

problem. Simulation results demonstrate the performance and validity of the

methods.

Scheduling of hydraulically coupled plants can be approximated by genetic al-

gorithms. An effective approach was suggested by Chen and Chang (1996) to 24

hours ahead generation scheduling of hydraulically coupled plants. Experimental

8



results show that the genetic algorithm approach obtains a more highly optimal

solution than the conventional dynamic programming model.

Hong Y. (2002) applied genetic algorithms on economic dispatch for congregation

units considering multi-plant multi-buyer wheeling, which transmits microwaves

to design load buses via wheeling. Varying the weights coeficient for penalty func-

tions and determination of gene variables using genetic algorithms was discussed.

The IEEE 30 and IEEE 188 bus system were used as test system to illustrate the

applicability of the proposed method.

Genetic algorithms applied to scheduling and optimization of refinery operations

was discussed by Oliveira, Almeida and Hamacher (2008). This paper presents a

Genetic Algorithm-based method to optimize the production schedule of the fuel

oil and asphalt section in a petroleum refinery. Two Genetic Algorithm models

were developed to establish the sequence and size of all production shares.

It shows the development of a methodology that applies GA to solve the schedul-

ing problem of fuel oils and asphalt. In this study, the proposed GA aims at

minimizing the demand that cannot be supplied, minimizing the production that

cannot be allocated to the tanks, and minimizing the number of operational

changes.

Two GA models were proposed to solve the optimization of a lot-sizing and se-

quencing problem in a multi-product plant with two-stage serial machines Direct

and Indirect representation. The first uses a direct representation of the produc-

tion schedule, dividing the scheduling horizon into discrete intervals of one hour

which achieves some interesting results, which are further improved with the use

of the NM operator. The second model uses an indirect representation which must

be decoded into a production scheduling and achieved outstanding performance

levels concerning demand fulfillment and production allocation; a satisfactory

performance level (according to the refinery’s real production scheduling) was
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observed when it comes to operational mode change minimization. They also

showed that the implementation of the modified EM method allowed the GA to

find better solutions due to weight updates during the evolutionary process avoid-

ing meeting some specific objectives while neglecting others. The obtained results

confirm that the proposed Genetic Algorithm models, associated with the multi-

objective energy minimization method, are able to solve the scheduling problem,

optimizing the refinery’s operational objectives.

Within the classical resource-constrained project scheduling problem (RCPSP),

the activities of a project have to be scheduled such that the makespan of the

project is minimized. Considering Resource-constrained project scheduling prob-

lem (RCPSP) with makespan minimization as objective Hartmann (1998) propose

a new genetic algorithm approach to solve this problem and compared it to two

genetic algorithm concepts. While our approach makes use of a permutation

based genetic encoding that contains problem-specific knowledge, the other two

procedures employ a priority value based and a priority rule based representation,

respectively.

The representation is based on a precedence feasible permutation of the set of the

activities. The genotypes are transformed into schedules using a serial scheduling

scheme. Among several alternative genetic operators for the permutation encod-

ing, a ranking selection strategy was chosen, a mutation probability of 0.05, and

a two point crossover operator which preserves precedence feasibility. The initial

population was determined with a randomized priority rule method. In order

to evaluate the approach, two GA concepts which make use of a priority value

and a priority rule representation, respectively was compared with. As further

benchmarks, seven other heuristics known were considered.

The outcome reveals that the procedure is the most promising genetic algorithm

to solve the RCPSP since in-depth computational study revealed that their GA

outperformed the other GAs as well as the other approaches. Finally, computa-
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tional study show that genetic algorithm yields better results than several heuris-

tic procedures presented in the literature.

The accuracy of the localized face center coordinates and orientation has a heavy

influence on the recognition performance so, finding the exact location of face

after localization algorithm is crucial. In view of this Kanan and Moradi (2005)

introduced a new method using genetic algorithms (GA’s) for face localization:

A genetic Algorithm based Method for Face Localization and pose Estimation.

Face images often have a background that can affect on the face localization al-

gorithm. In their algorithm, input image is first enhanced by means of histogram

equalization.

Then connected components are determined by applying a region growing algo-

rithm (coarse segmentation), followed by computing the fit ellipse for face area

and at least exact location of face is found by genetic algorithms method.

Then the best-fit ellipse for face area is computed. We have used genetic al-

gorithms to find the best location (includes the best orientation and the best

position) of face in image. To check the utility of the proposed algorithm, exper-

imental studies were carried out on the ORL database images.

Many automated analytical techniques such as Curie-point pyrolysis mass spec-

trometry (Py-MS) have been used to identify bacterial spores giving use to large

amounts of analytical data. Hence the rapid identification of Bacillus spores and

bacterial identification are paramount because of their implications in food poi-

soning, pathogenesis and their use as potential biowarfare agents. In view of this,

Correa and Goodacre (2011) proposed A genetic algorithm-Bayesian network ap-

proach for the analysis of metabolomics and spectroscopic data: application to

the rapid identification of Bacillus spores and classification of Bacillus species.

They developed a novel genetic algorithm-Bayesian network algorithm that accu-

rately identifies sand selects a small subset of key relevant mass spectra (biomark-
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ers) to be further analysed which once identified, it becomes a subset of relevant

biomarkers used to identify Bacillus spores successfully and to identify Bacillus

species via a Bayesian network model specifically built for this reduced set of

features.

This final compact Bayesian network classification model is parsimonious, compu-

tationally fast to run and its graphical visualization allows easy interpretation of

the probabilistic relationships among selected biomarkers. In addition, they com-

pared the features selected by the Genetic Algorithm-Bayesian Network (GA-BN)

approach with the features selected by partial least squares-discriminant analysis

(PLS-DA). The classification accuracy results show that the set of features se-

lected by the GA-BN is far superior to PLS-DA.

Several heuristic approaches for the flowshop scheduling problem have been devel-

oped. In recent years, meta-heuristic approaches, such as Simulated Annealing,

Tabu Search, and Genetic Algorithms, have become very desirable in solving com-

binatorial optimization problems because of their computational performance.

In a paper, which introduced the fundamental model and described a GA-based

heuristic for solving the flowshop scheduling problems: A Model To Study Genetic

Algorithm For The Flowshop Scheduling Problem proposed by Tyagi and Varsh-

ney (2012). Many scheduling problems are NP-hard problems. For such NP-hard

combinatorial optimization problems, heuristics play a major role in searching

for near-optimal solutions. In this GA-based heuristic, a different parameter set

was generated for the Genetic operators which protect the best schedule which

has the minimum make-span, at each generation and then transfer this schedule

to the next population with no change. This operation enables us to choose the

higher crossover and mutation probability pc = 1 (crossover probability) and pm

= 0.05 (mutation probability). This increase the diversity of the population to get

a better solution and also show the excellent performance of the LOX operator.

Their heuristic was compared with the NEH (Nawaz, Enscore, Ham) Algorithm
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which is the most popular heuristic in the literature. The computational experi-

ence shows that the Genetic Algorithm approach provides competitive results for

flowshop scheduling problems.

Alba and Troya (2009)proposed a paper on A Survey of Parallel Distributed

Genetic Algorithms.

In this work we have presented the fundamental syntax and semantics of se-

quential genetic algorithms (GAs). The paper deals with very popular exten-

sions of these algorithms known as parallel distributed GAs, in which many sub-

algorithms run in parallel with sparse migrations of strings.

A structured and extensive overview on the more important and up-to-date PGA

systems is discussed. In it, much of the existing software and criteria for their

classification is used. In addition, we present in the paper useful technical in-

formation about PGAs relating operators, structured-population paradigms, and

parameters guiding the parallel search. We have included a brief theoretical

foundation of a distributed GA to make the paper relatively self-contained. In

particular, we have offered a location of PGAs in the taxonomy of search tech-

niques, a nomenclature revision, algorithmic descriptions of techniques, future

trends, a classification of a large portion of the existing software, open questions

relating generational versus steady-state evolution modes and heterogeneous ver-

sus homogeneous parallel algorithms, and many other minor details and major

concepts relating parallel GAs in general. Our main interest has been in parallel

distributed GAs, since the impact of the research in this kind of algorithms is a

priori larger than for other kinds of parallel genetic algorithms.

We are especially concerned with offering useful and rigorous material that could

help new and expert practitioners. Although our overview is obviously not com-

plete, it represents a good starting point to conduct future research in this domain

or to make new applications by using parallel distributed GAs.
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Recovery of used products has become increasingly important recently due to

economic reasons and growing environmental or legislative concern. Product re-

covery, which comprises reuse, remanufacturing and materials recycling, requires

an efficient reverse logistic network. In view of this a paper: An Optimization

Model for Reverse Logistics Network under Stochastic Environment Using Ge-

netic Algorithm was proposed by Hosseinzadeh and Roghanian (2012). One of the

main characteristics of reverse logistics network problem is uncertainty that fur-

ther amplifies the complexity of the problem. The degree of uncertainty in terms

of the capacities, demands and quantity of products exists in reverse logistics

parameters. With consideration of the factors noted above, this paper proposes a

probabilistic mixed integer linear programming model for the design of a reverse

logistics network. The demand of manufacturing centers and recycling centers are

regarded as random variables. This probabilistic model is first converted into an

equivalent deterministic model. In this paper multi-product, multi-stage reverse

logistics network problem which consider the minimizing of total shipping cost

was proposed and fixed opening costs of the disassembly centers and the process-

ing centers in reverse logistics. Then, we propose priority based genetic algorithm

to find reverse logistics network to satisfy the demand imposed by manufacturing

centers and recycling centers with minimum total cost under uncertainty condi-

tion. Finally the proposed model was applied to the hypothetical problem. And

then, computing results show that it can obtain solutions for reverse logistics

network design problem with some stochastic parameters. In fact, this type of

network design problem belongs to the class of NP-hard problems.

After suitable modifications, genetic algorithms can be a useful tool in the prob-

lem of wavelength selection in the case of a multivariate calibration performed

by PLS. Unlike what happens with the majority of feature selection methods ap-

plied to spectral data, the variables selected by the algorithm often correspond to

well-defined and characteristic spectral regions instead of being single variables
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scattered throughout the spectrum. This leads to a model having a better predic-

tive ability than the full-spectrum model; Application of genetic algorithm-PLS

for feature selection in spectral data sets by Leardi (2000), furthermore, the anal-

ysis of the selected regions can be a valuable help in understanding which the

relevant parts of the spectra are.

Nowadays, spectral data are perhaps the most common type of data to which

chemometric techniques are applied. Owing to the development of new instru-

mentation, data sets in which each object is described by several hundreds of

variables can be easily obtained. Methods such as partial least squares (PLS) or

principal component regression (PCR), being based on latent variables, allow one

to take into account the whole spectrum without having to perform a previous

feature selection.

The present study shows that the GA can be a good method for feature selection

in spectral data sets. The results obtained on five different data sets demonstrate

that the predictive ability of the models obtained with the wavelengths selected

by the algorithm is very often much better, and anyway never worse, than the

predictive ability of the full spectrum. Another relevant point is that the selected

variables almost always clearly identify spectroscopically relevant regions.

In this paper, the authors discussed the problem of selecting suppliers for an

organisation, where a number of suppliers have made price offers for supply of

items, but have limited capacity. Selecting the cheapest combination of suppliers

is a straight forward matter, but purchasers often have a dual goal of lowering

the number of suppliers they deal with. This second goal makes this issue a

bicriteria problem - minimisation of cost and minimisation of the number of sup-

pliers. Hence a Genetic Algorithm for a Bicriteria Supplier Selection Problem

by Weintraub and Basnet (2005) presented a mixed integer programming (MIP)

model for this scenario in which Quality and delivery performance are modeled

as constraints. Smaller instances of this model may be solved using a MIP solver,

15



but large instances will require a heuristic. To this a multi-population genetic

algorithm for generating pareto-optimal solutions of the problem was presented.

The performance of this algorithm is compared against MIP solutions and Monte

Carlo solutions.

The contributions of this paper are two-fold: the inclusion of number of selected

suppliers as a criterion in supplier selection in a MIP model and the devel-

opment and testing of a multi-population genetic algorithm for the generation

of Pareto-optimal solutions. Three algorithms were presented to generate the

Pareto-optimal solutions.

The exact (MIP) algorithm solved problems with up to 50 suppliers within reason-

able time, but not higher sized problems. The performance of multi-population

genetic algorithm was close to the MIP algorithm results. The genetic algorithm

performed better than Monte Carlo optimization, particularly in regard to the

number of solutions generated. In regard to the purchase cost of the solutions,

the genetic algorithm performed better for all but the largest problems for which

the performances of the two algorithms were almost even.

Computer software marketed by companies such as the Heat Transfer Research

Institute (HTRI), HTFS, and B-JAC International are used extensively in the

thermal design and rating of HEs. A primary objective in HE design is the esti-

mation of the minimum heat transfer area required for a given duty, as it governs

the overall cost of the HE. However, because the possible design configurations

of heat transfer equipment are numerous, an exhaustive search procedure for

the optimal design is computationally intensive. Tayal, Fu, and Diwekar (2009)

presented a paper: Optimal Design of Heat Exchangers: A Genetic Algorithm

Framework for solving the combinatorial problem involved in the optimal design

of HEs. The problem is posed as a large-scale, combinatorial, discrete optimiza-

tion problem involving a blackbox model. This paper demonstrates the first

successful application of genetic algorithms to optimal HE design with a black-
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box model. It also incorporates methodologies to avoid process infeasibilities and

design vibrations. In addition this paper compares the performance of SA and

GAs in solving this problem and presents strategies to improve the performance

of the optimization framework.

From this study, it was concluded that (1) The optimal design obtained using

combinatorial algorithms such as GAs and SA significantly improves base-case

designs; (2) these algorithms also result in considerable computational savings

compared to an exhaustive search; and (3) GAs have an advantage over other

methods in obtaining multiple solutions of the same quality, thus providing more

flexibility to the designer.

A vehicle designer can do little to improve road surface roughness, so design-

ing a good suspension system with good vibration performance under different

road conditions becomes a prevailing philosophy in the automobile industry. The

ride quality of a vehicle is significantly influenced by its suspension system, the

road surface roughness, and the speed of vehicle. A paper, Research on Suspen-

sion System Based on Genetic Algorithm and Neural Network Control by Tang

and Guo (2009) showed a five degree-of-freedom half body of vehicle suspension

system model which can describe both the vertical movement and the pitching

movement of the body, what’s more, it can demonstrate the effect of the passen-

ger, which makes it to be a relatively ideal model for suspension dynamic. In this

work, the specified half body vehicle model with passenger involving five degree

of freedom is presented to achieve the excellent ride comfort and drive stability of

the system description. Genetic algorithm and neural network control are used

to control the suspension system. The desired objective is proposed as the min-

imization of a multi-objective function formed by the combination of not only

sprung mass acceleration, pitching acceleration, suspension travel and dynamic

load, but also the passenger acceleration.

The model is assumed to have five masses attached with linear springs and non-
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linear dampers. It is also assumed that the system does not vibrate in lateral

direction, only oscillates in vertical and longitudinal directions. Furthermore, the

tires are assumed not losing the contact with the road surface. Approaches are

presented for suspension design which uses genetic algorithm and neural network

control algorithm. It is obvious from the response plots that vehicle body ver-

tical acceleration, passenger response and pitching angular response decreased

compared with the passive suspension system, which naturally brings ride com-

fort. And the suspension travel and dynamic load reduced compared with the

passive suspension system, which indicates that the proposed controller proves to

be effective in the stability improvement of the suspension system. A mechanical

dynamic model of the five degree of freedom half body of vehicle suspension sys-

tem is also simulated and analyzed by using software Adams. Simulation results

demonstrate that the proposed active suspension system proves to be effective in

the ride comfort and drive stability enhancement of the suspension system.

People often need to make decisions based on different kinds of information,

but the explosion of information is hard to handle and reading everything may

be very time consuming. Various kinds of summaries (e.g.: titles, abstracts, key-

words, outlines, previews, reviews, biographies and bulletins) help reduce this

problem. Summarizing Jewish Law Articles Using Genetic Algorithms is a paper

by HaCohen-Kerner, Malin, Chasson (2005). This paper describes the first sum-

marization model for texts in Hebrew. The summarization is done by extraction

of the most relevant sentences. The introduction of summaries offers the readers

the option whether or not to read the entire text. In addition, summaries can

serve as brief substitutes of full documents.

Automatic text summaries can be produced with two main approaches: Natu-

ral Language Processing (NLP) and information extraction (IE). Three machine

learning methods have been tried: perceptron learning, Naive Bayesian learn-

ing, and genetic algorithm. The best results have been achieved by the genetic

18



algorithm. To the best of our knowledge, this model is also the first to use suc-

cessfully genetic algorithm for sentence extraction. This model belongs to the

sentence extraction approach. That is, it selects the most important sentences

from the article and proposes them as a summary. In contrast to many summa-

rization models that were designed and checked mostly for English articles taken

from magazines and newspapers, the model deals with articles referring to Jewish

law written in Hebrew.

Using Genetic Algorithm for Distributed Generation Allocation to Reduce Losses

and Improve Voltage Profile by Sedighizadeh, and Rezazadeh (2008) is a paper

that presents a method for the optimal allocation of Distributed generation in

distribution systems. In this paper, the aim would be optimal distributed genera-

tion allocation for voltage profile improvement and loss reduction in distribution

network. Genetic Algorithm (GA) was used as the solving tool, which referring

two determined aim; the problem is defined and objective function is introduced.

Considering to fitness values sensitivity in genetic algorithm process, there is

needed to apply load flow for decision-making. Load flow algorithm is combined

appropriately with GA, till access to acceptable results of this operation. It was

implemented on part of Tehran electricity distributing grid. The resulting opera-

tion of this method on some testing system is illuminated improvement of voltage

profile and loss reduction indexes.

The impact of DG in system operating characteristics, such as electric losses,

voltage profile, stability and reliability needs to be appropriately evaluated. The

installation of DG units at non-optimal places can result in an increase in system

losses, implying in an increase in costs and, therefore, having an effect opposite

to the desired. As a contribution to the methodology for DG economical analy-

sis, in this paper it is presented an algorithm for the allocation of generators in

distribution networks, in order to voltage profile improvement and loss reduction

in distribution network. The Genetic Algorithm is used as the optimization tech-
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nique.

In this paper the results of application of GA algorithm to the optimal allocation

of DGs in distribution network is presented. The Khoda Bande Loo distribution

test feeder in Tehran has been solved with the proposed algorithm and, the simple

genetic algorithm.

Brain Computer Interfaces (BCIs) measure brain signals of brain activity inten-

tionally and unintentionally induced by the user, and thus provide a promising

communication channel that does not depend on the brain’s normal output path-

way consisting of peripheral nerves and muscles. Ghanbari et al, (2012) paper on

Brain Computer Interface with Genetic Algorithm Genetic Algorithm to select

the effective number of electrodes and Redundancy Reduction.

BCI operation depends on the interaction of two adaptive controllers, the user,

who must maintain close correlation between his or her intent and these phenom-

ena, and the BCI, which must translate the phenomena into device commands

that accomplish the user’s intent. They might also control a neuroprosthesis that

provides hand grasp to those with mid-level cervical spinal cord injuries.

With adequate recognition and effective engagement of these issues, BCI systems

could provide an important new communication and control option for those with

disabilities that impair normal communication and control channels. They might

also provide to those without disabilities a supplementary control channel or a

control channel useful in special circumstances.

Their paper is on one hand to reduce the redundancy and on the other hand

to increase the BCI speed and making use of it in real time form. Hence, the

linear filtering method is applied to Artifact removal which is a relatively simple

method with fairly low complexity computations.

Since the EEG is non-stationary in general, it is most appropriate to use time-

frequency domain methods like wavelet transform (WT) as a mean for feature

extraction. The simulation results confirm this fact that the Genetic algorithm
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is applied in order to choose the best features from the feature space as well as

the best channels from the many channels that have been used. In this case,

the increased number of electrodes causes a non-linear increase in computational

complexity (decrease transfer rate). To overcome these problems in this article

evolutionary intelligent method for selecting the effective number of electrodes

and redundancy reduction was used. One of the main privileges of the mixed

methods used in this paper is that, the redundant data are removed by the se-

lection power of the genetic algorithm. This fact reduces the data dimension and

reduced time response of system significantly.

2.2 Evolutionary Algorithms

2.2.1 Introduction

Evolutionary algorithms (EAs) are based on the process of Darwin’s theory of

evolution. Evolutionary algorithms (EAs) use biologically derived techniques such

as inheritance, mutation, natural selection and recombination.

In 1882, Charles Darwin defined natural selection or survival of the fittest as the

preservation of favorable individual differences and variations and the destruc-

tion of those that are injurious. In nature, features that make an individual more

suited to compete are preserved when reproducing and the weakening features

are eliminated. This process is called evolution, where features are controlled

by units called genes which form sets called chromosomes. Over generations,

the fittest individuals survive and their fittest genes are transmitted to their de-

scendants during a sexual recombination process called crossover. To their basic

components one can subsume population (set of solutions), chromosomes (indi-

viduals), fitness of the chromosomes, process of reproduction (selection of parents

and children generation), replacement (death of the individuals) and generation

completion.

21



Typically evolution starts from a population of completely random individuals

(solutions), represented by chromosomes, and happens in generations. Tradition-

ally, solutions occur as binary strings of zeros (0’s) and ones (1’s), but different

encodings are also possible. Each individual is characterized by its fitness. Each

generation is defined by population size, as well as the birth and death processes.

In every generation, multiple individuals are stochastically selected from the cur-

rent population, and next-modified through mutation or recombination to form

a new population, which becomes current in the following iteration of the algo-

rithm. Solutions which form the offspring are selected according to their fitness

- the more suitable they are the more chances they have to reproduce. This is

motivated by a hope, that the new population will be better than the old one.

In such a manner, an approximation algorithm evolves towards better solutions.

The procedure stops when the desired stopping criterion, like number of popula-

tions or improvement of the best solution, is reached. As a result of this simulated

evolution one obtains highly evolved solution to the original problem, that is, the

best chromosome picked out of the final population.

The main purpose of evolutionary algorithms is to imitate this evolutionary pro-

cess in computers.

The general procedure of EAs is as follows:

1. Initialize the population by randomly selecting or generating a set of po-

tential solutions (also called chromosomes or individuals). Such individuals

evolve during several generations (i.e., they constitute off-springs) through

steps 2 to 4 below;

2. Evaluate each individual in the population by calculating its fitness;

3. Reproduce selected individuals to form a new population (best individuals

are kept, while the others are discarded);

4. Perform evolutionary operations, such as crossover and mutation, on the

population according to pre-specified probabilities. Crossover exchanges
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the genetic material of a pair of individuals to create the population of the

next generation, while mutation randomly changes a gene of a chromosome;

5. Loop to step 2 until some condition is met (e.g., reaching a specified number

of generations).

An idea of evolutionary algorithms for combinatorial optimization problems, in-

spired by Darwin’s theory of evolution, was introduced by John Holland in 1975.

Categorically, three of the nearly contemporaneous sources of the evolutionary

algorithms (EA) have been kept alive over three decades and experienced an

amazing increase of interest during the last fifteen years. Two of them are lying

in the United States of America, the source of evolutionary programming (EP) in

San Diego (Fogel, 1962; Fogel et al., 1966), the source of genetic algorithms (GA)

in Ann Arbor (Holland, [1962, 1975]). Evolution strategies (ES), the third main

variant of EA, were founded by students at the Technical University of Berlin

(TUB) (Rechenberg, [1965, 1971]; Schwefel, [1965, 1975]).

Evolutionary algorithms have been generally applied in the recent decade to differ-

ent disciplines, such as DSS research, scheduling, engineering, chemistry, health,

management and finance (Chambers 2001; Carlsson and Turban 2002; Osyczka

2002; Marczyk, 2004; Mora et al. 2006). They are also increasingly applied to

the economics field. Excellent surveys and discussion of relevant issues about the

applications in economics can be found in Dawid (1999); Arifovic (2000); Tsang,

Lsasi and Quintana (2009); Safarzynska and Bergh (2009). Below is a summary

of the economics areas of applications and a number of examples.

The string representation in GAs has been successfully used to code consumer

preferences (Aversi et al. 1997); production functions (Birchenhall, Kastrinos

and Metcalfe 1997); pricing strategies (Curzon Price 1997) and production rules

in cobweb models (Dawid and Kopel 1998; Frenke 1998).

In addition, genetic programming has been used to develop an optimal price-

setting rule (Dosi et al. 1999) and an optimal trading rule (Allen and Karjalainen
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1999).

Furthermore, Hidalgo et al. (2008) used an EA to find correct parameters for

technical indicators applied to interpret stock market trending and investing de-

cisions. Lately, Jina, Tsang and Li (2009) applied a constraint handling EA

to search equilibriums for bargaining problems. Safarzynska and Bergh (2009)

showed that applications of evolution strategies in economics are rare; therefore,

this paper contributes to utilizing evolution strategies in the field of economics.

2.2.2 Evolutionary Strategies

Evolutionary strategies (ES) were developed in Germany by Ingo Rechenberg and

H.P. Schwefel in the 1960’s. It imitates mutation, selection and recombination

by using normally distributed mutations, a deterministic mechanism for selection

(which chooses the best set of offspring individuals for the next generation ) and

a broad repertoire of recombination operators. The primary operator of the ES is

Mutation. There are two variants of selection commonly used in ES. In the elitist

variant, the ′ρ′ parent individual for new generation are selected from the set of

both ′ρ′ parent and ′ϑ′ offspring at old generation. This is called Plus Strategy

ρ+ ϑ.

Additionally, each individual contains a number of strategy parameters, these

being the variances and covariances of the object variables (the covariances are

optional, but when used are normally defined using the rotation angles of the

covariance matrix). The strategy parameters are used to control the behavior of

the mutation operator and are not required when decoding an individual. The

recombination operator produces one child and requires two parents for each ob-

ject variable and strategy parameter in the child.

Historically, the same parents are used to generate all object variables in the

child, then the parents are re-selected for each strategy parameter. The parents
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are selected randomly from the current population (i.e., there is no selection pres-

sure at this point).

Mutation, which is the main operator in the ES acts upon strategy parameters

as well as object variables. The mutation operator first perturbs the strategy pa-

rameters. The object variables are then mutated using the resulting probability

distribution defined by the modified strategy parameters. This special mutation

operator allows the ES to evolve good strategy parameters for the problem and

has been termed self-adaptation.

Historically ESs were designed for parameter optimization problems. The encod-

ing used in an individual is therefore a list of real numbers: these are called the

object variables of the problem. Like the GA, EAs run until some termination

criteria are satisfied. However, in ESs remains an attractive alternative to GAs,

especially in the field of parameter optimization, where in model systems they

appear to outperform GAs.

An ES-algorithm as developed by Rechenberg and Schwefel can be described

briefly as follows

1. A current population of m individuals is randomly initialized.

2. Fitness scores are assigned to each of the m individuals.

3. l new offspring are generated by recombination from the current population.

4. The l new offspring are mutated.

5. Fitness scores are assigned to the l new offspring.

6. A new population of m individuals is selected, using either .m; l/ρ or .mCl/ρ

selection.

7. The new population becomes the current population.

8. If the termination conditions are satisfied exit, otherwise go to step 3.
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2.2.3 Evolutionary Programming

Evolutionary programming is an optimization strategy that is based on the stochas-

tic modification of a set of trial solutions. Evolutionary Programming (EP) was

developed by L. J. Fogel et al. (1966) in the USA. This technique is especially

well suited for combinatorial problems and situations where the fitness landscape

has many local minima. EP (which is a Stochastic Optimization Strategy) is a

useful method of optimization when other techniques such as gradient descent or

direct analytical discovery are not possible.

Illustrates of the form of an EP scheme

1. A current population of m individuals is randomly initialized.

2. Fitness scores are assigned to each of the m individuals.

3. The mutation operator is applied to each of the m individuals in the current

population to produce m offspring.

4. Fitness scores are assigned to the m offspring.

5. A new population of size m is created from the m parents and the m offspring

using tournament selection.

6. If the termination conditions are satisfied exit, otherwise go to step 3.

An important point is that the strings do not have to be of a fixed length, they

could mutate into longer or shorter forms. If you look at the algorithm, you can

see why this is - there is no crossover operation. All in all, this means that system

representation in ES or EP can be direct and simple.

However, not using crossover also has one major disadvantage - that of speed,

mutation is a slow way to search for good solutions.
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2.3 Genetic Algorithm

The term genetic algorithms, almost universally abbreviated nowadays to GAs,

are search methods based on principles of natural selection and genetics (Fraser,

1957; Bremermann, 1958; Holland, 1975). They are powerful and widely applica-

ble stochastic search technique and optimization methods based on the principles

of genetics, natural selection and natural evaluation.

A GA allows a population composed of many individuals to evolve under specified

selection rules to a state that maximizes the ”fitness” (i.e., minimizes the cost

function). The method was developed by John Holland (1975) over the course of

the 1960s and 1970s and finally popularized by one of his students, David Gold-

berg (at the University of Michigan), who was able to solve a difficult problem

involving the control of gas-pipeline transmission for his dissertation (Goldberg,

1989). John Holland, whose book Adaptation in Natural and Aritificial Systems

of 1975 and Goldberg (with his successful applications and excellent book (1989))

was instrumental in creating what is now a flourishing field of research and ap-

plication that goes much wider than the original GA.

GA is a method for moving from one population of ”chromosomes” (e.g., strings

of ones and zeros, or ”bits”) to a new population by using a kind of ”natural

selection” together with the genetics-inspired operators of crossover, mutation,

and inversion. Each chromosome consists of ”genes” (e.g., bits), each gene being

an instance of a particular ”allele” (e.g., 0 or 1). For example, in a problem such

as the traveling salesman problem, a chromosome represents a route, and a gene

may represent a city.

In contrast to traditional optimization techniques, GAs work with coding of pa-

rameters, rather than the parameters themselves. The selection operator chooses

those chromosomes in the population that will be allowed to reproduce, and on

average the fitter chromosomes produce more offspring than the less fit ones.
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Crossover exchanges subparts of two chromosomes, roughly mimicking biological

recombination between two single-chromosome (”haploid”) organisms; mutation

randomly changes the allele values of some locations in the chromosome; and

inversion reverses the order of a contiguous section of the chromosome, thus re-

arranging the order in which genes are arrayed.

Although there are a variety of operators such as crossover, mutation and inver-

sion as defined above, the two main operators used is:-

• Crossover, which creates new individuals by combining parts from two indi-

viduals like the bit-string crossover in which two strings are used as parents

and new individuals are formed by swapping a sub-sequence between the

two strings

• Mutation, which creates new individuals by making changes in a single

individual like the bit-flipping mutation, in which a single bit in the string

is flipped to form a new offspring.

Genetic algorithm maintains a population of individuals, say P (t), for genera-

tion t. Each individual represents a potential solution to the problem at hand.

Each individual is evaluated to give some measure of its fitness. Some individuals

undergo stochastic transformations by means of genetic operations to form new

individuals. The new individuals, called offspring C(t), are then evaluated. A

new population is formed by selecting the more fit individuals from the parent

population and offspring population.

After several generations, genetic algorithm converges to the best individual,

which hopefully represents an optimal or suboptimal solution to the problem.
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The general structure of the Genetic algorithms is as follow:

Begin

{

t = 0;

Initialise P (T );

Evaluate P (t);

While (not termination condition) to

Begin

{

Apply crossover and mutation to P (t) to yield C(t);

Evaluate C(t);

Select P (t+ 1) from P (t) and C(t);

t = t+ 1 ;

}

End

Another important concept of GAs is the notion of population. Unlike traditional

search methods, genetic algorithms rely on a population of candidate solutions.

The population size, which is usually a user-specified parameter, is one of the

important factors affecting the scalability and performance of genetic algorithms.

For example, small population sizes might lead to premature convergence and

yield substandard solutions. On the other hand, large population sizes lead to

unnecessary expenditure of valuable computational time.
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2.4 Genetic Programming (GP)

The Genetic Programming (GP) is an EC technique which was developed in 1992

by Koza John. Genetic programming is a collection of methods for the automatic

generation of computer programs that solve carefully specified problems, via the

core, but highly abstracted principles of natural selection. In a sentence, it is

the compounded breeding of (initially random) computer programs, where only

the relatively more successful individuals pass on genetic material (programs and

program fragments) to the next generation. Genetic Programming represents a

special type of genetic algorithm in which the structures that undergo adaptation

are not data structures, but hierarchical computer programs of different shapes

and sizes. In GP, the individuals do not represent the solution of a given problem.

Now, they represent algorithms/procedures to solve such problem. Thus, the GP

find out the best procedure to solve a problem.

In GP, the individuals are defined by a function set (subprograms, mathemat-

ical functions, etc.) and a terminal set (constants, variables, etc.). The GP

process starts by creating an initial population of randomly-generated programs

and continues by producing new generations of programs based on the Darwinian

principle of ”the survival of the fittest”. The automatically-generated computer

programs are expressed as function composition, and the main breeding opera-

tions are reproduction and cross-over.

By reproduction we mean that a program from generation i is copied unchanged

within generation i+1, while the cross-over takes two parent-programs from gen-

eration i, breaks each of them in two components, and adds to generation i + 1

two children programs that are created by combining components coming from

different parents.

In order to create a GP-based application, the user has to specify a set of building

blocks based on which the population of programs is constructed, and an evalua-

tion function that is used to measure the fitness of each individual program.
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There are two types of primitive elements that are used to build a program: termi-

nals and functions. Both terminals and functions can be seen as LISP-functions,

the only difference between them consisting of the number of arguments that they

are taking: terminals are not allowed to take arguments, while functions take at

least one argument. The individuals generated by the GP system represent com-

puter programs that are built by function composition over the set of terminals

and functions.

Consequently, GP imposes the closure property (Koza 1994): any value returned

by a function or a terminal must represent a valid input for any argument of any

function in the function set.

As we have already mentioned, the GP problem specification must include a

domain-specific fitness evaluation function that is used by the GP system to esti-

mate the ”fitness” of each individual of a generation. More specifically, the fitness

function takes as input a GP-generated program P, and its output represents a

measure of how appropriate P is to solve the problem at hand. Both cross-over

and reproduction are performed on randomly chosen individuals, but they are

biased for highly fit programs. Such an approach has two major advantages: on

one hand, the ”highly fit” bias leads to the potentially fast discovery of a solution,

while on the other hand, GP is capable of avoiding local minima by also using

in the breeding process individuals that are less fit than the ”best” offsprings of

their respective generations.

Normally, the GP uses two operators: crossover and mutation. The crossover

operator exchanges two sub-trees from two tree randomly selected. In this way,

two new trees are created. The mutation operator randomly selects a tree and

creates a new tree by taking a sub-tree and replacing it by other one, which is

randomly generated. These operators preserve the syntactic constraints of the

models.

This model is easy to implement in GP, through the utilization of the ADF (Au-
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tomatic Definition Function) technique. This extension of GP permits to define

functions to evolve in parallel with the main procedure. These functions can be

called by other functions, or by the main procedure, during the evolution.

Rather than blindly searching the fitness space, or searching from randomly ini-

tialized states, genetic programming attempts to extract the useful parts of the

more successful programs and use them to create even better solutions. How does

the system know which parts of a program are useful, and how to combine them

to form more fit solutions? By randomly selecting parts of the more successful

programs, and randomly placing those parts inside other successful programs.

Genetic programming relies upon the fitness function to tell if the new child re-

ceived something useful in the process. Often the child is worse for its random

modification, but often enough the right code is inserted in the right place, and

fitness improves.

Given the programming language such as Lisp and a fitness metric, the steps

executed by a genetic programming algorithm are straightforward:

• Initial Population: With an algorithm that allows random generation of

code, an initial population of potential solutions can be generated. All will

be quite inept at solving the problem, as they are randomly generated pro-

grams. Some will be slightly better than others, however, giving evolution

something to work with.

• Fitness Ranking: Via the fitness metric, the individual programs are

ranked in terms of ability to solve the problem.

• Selection: The closer (better) solutions are selected to reproduce because

they probably contain useful components for building even better programs.

• Mating: At random, chunks of those selected programs are excised, and

placed inside other programs to form new candidate solutions. These ”chil-

32



dren” share code from both parents, and (depending on what code was

selected) may exhibit hybrid behavior that shares characteristics of both.

• Mutation: To simulate genetic drift/stray mutation, many genetic pro-

gramming systems also select some of the more fit programs and directly

duplicate them, but with a few of their statements randomly mutated.

• Repetition until Success: From here, the process starts over again at

Fitness Ranking, until a program is found that successfully solves the prob-

lem.

Not every child will be more fit than its parent(s), and indeed, a very large per-

centage will not be. The expectation, however, is that some children will have

changes that turn out to be beneficial, and those children will become the basis

of future generations.

Note that the random makeup of the initial population has a large effect on

the likelihood that GP will find a successful program. If a single run does not

succeed after a reasonable period of time, often it will succeed if it is restarted

with a new random population.

These steps constitute the core of most genetic programming systems, though

all systems tweak, or completely change, many aspects of these steps to suit the

theoretical interests pursued by their designers. The field is still young and there

is no standard of what a genetic programming system must include, or how it

must proceed from step to step.
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2.5 Other Related Methods

2.5.1 Simulated Annealing

Robust probabilistic optimization method mimicking the solidification of a crys-

tal under slowly decreasing temperature.

In metallurgy and material science, annealing is a heat treatment of material with

the goal of altering its properties such as hardness. Simulated annealing was orig-

inally inspired by formation of crystal of solids during cooling i.e., the physical

cooling phenomenon. It is a method that simulates the thermodynamic process

in which a metal is heated to its melting temperature and then is allowed to cool

slowly so that its structure is frozen at the crystal configuration of lowest energy.

The slower the energy, the more perfect is the crystal formed. By cooling, com-

plex physical systems natural converge towards a state of minimal energy. For

an infinitely slow cooling, this method is certain to find the global optimum. The

only point is that infinitely slow consists in finding the appropriate temperature

decrease rate to obtain a good behavior of its algorithm.

The system moves randomly, but the probability to stay in a particular con-

figuration depends directly on the energy of the system and on its temperature

as in Gibs law.

Gibs law gives this probability as:

p = e
z
k (2.1)

where E stands for the Energy, k is the Boltzmann constant and T is the tem-

perature.
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Research has revealed that Simulated Annealing algorithms with appro-

priate cooling strategies will asymptotically converge to the global optimum. In

describing Simulated Annealing as used to solve a minimizing objective function

of an optimization problem, the algorithm that follows is used.

Algorithm for Simulated Annealing

Algorithm begins pnewg ← initial guess

pcur ← pnew

p∗ ← pnew

t← 0 while termination Criterion is not satisfied do

δE ← f(pnew, x)− f(pcur, x)

if δE ≤ 0 then

pcur ← pnew

if f(pnew, x) < f(p∗, x) ;then p∗ ← pcur

else

T ← get Temperature (t)

if random (generate) < e
δE
Tk then pcur ← pnew

update temperature

t← t+ 1

return p∗x

end

Simulated Annealing is a serious computer to Genetic Algorithm. Both Genetic

Algorithm and Simulated Annealing are derived from analogy with natural sys-

tem evolution and both deal with the same kind of optimization problem.

However, it is less efficient compared to the Genetic Algorithm since it only

deals with one individual at each iteration. In light of this, Simulated Annealing

is faster and simple or easier to implement. The Simulated Annealing can be
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used to determine the optimal layout of printed circuit board or the travelling

salesman problem.

2.5.2 Stochastic Hill Climbing

Hill climbing is a very old and simple search and optimization algorithm for con-

tinuous uni-modal functions. It uses a kind of gradient to guide the direction

of the search. In principle, hill climbing algorithms perform a loop in which the

currently known best solution is used to search for a new one. Stochastic hill

climbing (also called stochastic gradient descent) which is one of search methods

consists of choosing randomly a solution in the neighborhood of current solution

and retains this new solution only if it improves the objective function.

On multi-modal functions, the algorithm is likely to stop on the first peak it

finds even if it is only a local minimum. This is a problem of hill climbing. To

avoid this problem, it is advisable to repeat several hill climbs each time starting

from a different randomly chosen point after the first local optimum. This method

is sometimes known as iterated hill climbing. Once different local optimum points

have been obtained, the global optimum can easily be observed. However, if the

function of interest is very noisy with many small peaks then definitely stochastic

hill climbing is not the best method. Nevertheless the advantage of this method

is that it is very easy to implement to achieve fairly good solution faster.

Stochastic hill climbing usually starts from a randomly selected point. In de-

scribing the algorithm, below is a well stated outline.
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Stochastic Hill Climbing Algorithm

Input: f : the objective function subject to minimization

Data: pnew : the new element created

Data: p∗ : the (currently) best solution

Output: x∗ : the best element found

1. p∗ ← create (Implicitly, p∗x← gpm(p∗ · g) )

2. while terminating criterion is not satisfied do

3. pnewx← gpm(pnew · g)

4. if f(pnew, x) < f(p∗, x) then p∗ ← pnew

5. return p∗, x

6. end
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Chapter 3

Methodology

3.1 Working Principles of Genetic Algorithm

Genetic Algorithms are a family of computational models inspired by evolution

or in other words, they are search algorithms that are based on concepts of nat-

ural selection and natural genetics (Fraser, 1957; Bremermann, 1958; Holland,

1975). Thus GA is a stochastic global search method that mimics the metaphor

of natural biological evolution. These algorithms encode a potential solution to

a specific problem on a simple chromosome-like data structure and apply re-

combination operators to these structures so as to preserve critical information.

Genetic algorithm was developed to simulate some of the processes observed in

natural evolution, a process that operates on chromosomes (organic devices for

encoding the structure of living being). GAs operate on a number of potential

solutions, called a population, consisting of some encoding of the parameter set

simultaneously and applying the principle of survival of the fittest to produce

(hopefully) better and better approximations to a solution. Genetic algorithms

are often viewed as function optimizer, although the range of problems to which

genetic algorithms have been applied are quite broad.

An implementation of genetic algorithm begins with a population of (typically

random) chromosomes. A new population is created by allowing parent solutions

in one generation to produce offspring, which are included in the next generation.

A ’survival of the fittest’ principle is applied to ensure that the overall quality

of solutions increases as the algorithm progresses from one generation to the next.
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The overall structure of genetic algorithm is as follows (Gen and Cheng (200),

Goldberg (1989)):

1. Selection

2. Crossover

3. Mutation

In GA, each individual represents a potential solution to the problem at

hand. Each individual is evaluated to give some measure of its fitness. Some

individuals undergo stochastic transformations by means of genetic operations to

form new individuals. There are two types of transformation:

• Crossover, which creates new individuals by combining parts from two in-

dividuals.

• Mutation, which creates new individuals by making changes in a single

individual.

A general framework and a possible implementation of a genetic algorithm for a

permutation scheduling problem is given below.

• Initialisation: Choose initial population P containing q solutions to be the

current population (randomly generate q permutations also called strings).

• Evaluation: Compute a fitness value for each solution of P (compute the

value F (S) for each solution S).

• Reproduction- Use fitness values to select solutions from P to form a mating

pool (select q/2 best permutations).

• Regeneration: Apply crossover, mutation and any other selected opera-

tions to solutions of the mating pool to form a new population (q/2 new

permutations are obtained and replace q/2 worst permutations in the pop-

ulation).
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• Termination test: Test whether the algorithm should terminate. If it

terminates, output the best solution generated; otherwise, return to the

evaluation step.

In the initialization step, we create a population by generating q random permu-

tations. A non-negative fitness function F (S) is used in the evaluation step.

In the reproduction step, a mating pool of size q/2 is created. To apply the

crossover operation in the regeneration step, solutions in the mating pool are

randomly partitioned into pairs. With probability pcross, each pair undergoes

a crossover; otherwise, the pair is unchanged. Under a crossover operation, the

two solutions, which we refer to as parents, combine to produce two offspring,

each containing some characteristics of each parent. The hope is that one of the

offspring will inherit the desirable features of each parent to produce a good qual-

ity solution. A mutation operation is applied to solutions before placing them

into the new population, each element of each string is selected with probability

pmut to be perturbed. E.g., if a job of a string is selected for mutation, then it

is swapped with another randomly selected job in the same string (which yields

a neighbour in the swap neighbourhood).

As a termination test, a time limit is set and the algorithm terminates when

this limit is exceeded.

Thus the major steps involved are the generation of a population of solutions,

finding the objective function and fitness function and the application of genetic

operators. These aspects are described briefly below.
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Begin GA

g = 0 {generation counter}

Initialization

Evalaution population P (g) { i.e., compute fitness value}

While not done do

g = g + 1

Select P (g) from P (g − 1)

Crossover P (g)

Mutate P (g)

Evaluate P (g)

End

End GA

For the basic GA operations: One generation is broken down into a selection

phase and recombination phase. Strings are assigned into adjacent slots during

selection.

An important characteristic of genetic algorithm is the coding of variables that

describes the problem. The most common coding method is to transform the

variables to a binary string or vector; GAs perform best when solution vectors

are binary. If the problem has more than one variable, a multi-variable coding

is constructed by concatenating as many single variables coding as the number

of variables in the problem. Genetic Algorithm processes a number of solutions

simultaneously.

At each generation, a new set of approximations is created by the process of

selecting individuals according to their level of fitness in the problem domain and

breeding them together using operators borrowed from natural genetics. This

process leads to the evolution of populations of individuals that are better suited
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to their environment than the individuals that they were created from, just as in

natural adaptation.

The genetic algorithm deifiers from other search methods in that it searches

among a population of points, and works with a coding of parameter set, rather

than the parameter values themselves. The transition scheme of the genetic al-

gorithm is probabilistic, whereas traditional methods use gradient information.

Because of these features of genetic algorithm, they are used as general purpose

optimization algorithm. They also provide means to search irregular space and

hence are applied to a variety of function optimization, parameter estimation and

machine learning applications.

Genetic algorithms work on two types of spaces alternatively: Coding space and

solution space, or in other words, genotype space and phenotype space. Genetic

operators (crossover and mutation) work on genotype space, while evolution and

selection work on phenotype space. The selection is the link between chromo-

somes and the performance of decoded solutions. The mapping from genotype

space to phenotype space has a considerable influence on the performance of ge-

netic algorithms.

The genetic algorithms provide a directed random search in complex landscapes.

There are two important issues with respect to search strategies: exploration (in-

vestigate new and unknown areas in search space) and exploitation (make use

of knowledge of solutions previously found in search space to help in find better

solutions). This can be done by making genetic operators perform essentially a

blind search; with a hope that selection operators direct the genetic search toward

the desirable area of solution space.

Unlike simple neighbourhood search methods that terminate when a local op-
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timum is reached, GAs are stochastic search methods that could in principle run

for ever. In practice, a termination criterion is needed; common approaches are

to set a limit on the number of fitness evaluations or the computer clock time,

or to track the population’s diversity and stop when this falls below a pre-set

threshold. The meaning of diversity in the latter case is not always obvious, and

it could relate either to the genotype or the phenotype, or even, conceivably, to

the fitnesses, but the most common way to measure it is by genotype statistics.

For example, we could decide to terminate a run if at every locus the proportion

of one particular allele rose above 90%.

After several generations, genetic algorithm converges to the best individual,

which hopefully represents an optimal or suboptimal solution to the problem.

3.2 Encoding

As for any search and learning method, the way in which candidate solutions are

encoded is a central, if not the central, factor in the success of a genetic algorithm.

Encoding is a process performed using bits, arrays, trees, numbers or list to rep-

resent individual genes. Most GA applications use fixed-length, fixed-order bit

strings to encode candidate solutions. How to encode the solutions of the problem

into chromosomes is a key issue when using genetic algorithms. One outstanding

problem associated with encoding is that some individuals correspond to infea-

sible or illegal solutions to a given problem. This may become very severe for

constrained optimization problems and combinatorial optimization problems. It

must be distinguished between two concepts: Infeasibility and Illegality.

Infeasibility refers to the phenomenon that a solution decoded from chromosome

lies outside the feasible region of given problem. Penalty methods can be used

to handle infeasible chromosomes. One of these methods is by force genetic algo-

rithms to approach optimal form both sides of feasible and infeasible regions.

Illegality refers to the phenomenon that a chromosome does not represent a so-

lution to a given problem. Repair techniques are usually adopted to convert an
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illegal chromosome to legal one.

Figure 3.1: Infeasibility and Illegality of Encoding

Encoding can be adapted and one reason for adapting the encoding is that a

fixed-length representation limits the complexity of the candidate solutions. For

example, in the Prisoner’s Dilemma example, Axel-rod fixed the memory of the

evolving strategies to three games, requiring a chromosome of length 64 plus a

few extra bits to encode initial conditions.

Various encoding methods have been created for particular problems to provide

effective implementation of genetic algorithms. According to what kind of symbol

is used as the alleles of a gene, the encoding methods can be classified as follows:

• Binary encoding

• Value encoding

• Permutation encoding

• Tree encoding

• Octal Encoding
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3.2.1 Binary Encoding

Binary encodings (i.e., bit strings) are the most common encodings for a number

of reasons. One is historical: in their earlier work, Holland and his students

concentrated on such encodings and GA practice has tended to follow this lead.

In Binary-coded strings having 1’s and 0’s are mostly used. Thus the data value

is converted into binary strings. It gives many chromosomes with small number

of alleles. The length of the string is usually determined according to the desired

solution accuracy. Much of the existing GA theory is based on the assumption

of fixed-length, fixed-order binary encodings.

A chromosome represented in a binary encoding is shown in Fig. 3.2

Chromosome 1 1 1 0 1 0 0 1 0 1 1
Chromosome 2 1 0 0 0 1 0 0 1 1 0

Figure 3.2: Binary Encoding

3.2.2 Value Encoding

For many applications, it is most natural to use an alphabet of many characters

or real numbers to form chromosomes. In value encoding, every chromosome is

a sequence of some values such as real numbers, characters or objects. Value

encoding is best used for function optimization problems. It is often required to

develop new GA operators specific for the problem in value encoding. It has been

widely confirmed that value encoding perform better than binary encoding for

function optimization and constrained optimizations problems. Examples include

Kitano’s many-character representation for graph-generation grammars, Meyer

and Packard’s real-valued representation for condition sets, Montana and Davis’s

real-valued representation for neural-network weights, and Schultz-Kremer’s real-

valued representation for torsion angles in proteins.

Holland’s schema-counting argument seems to imply that GAs should exhibit

worse performance on valued encoding than on binary encodings. Several em-
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pirical comparisons between binary encodings and valued encodings have shown

better performance for the latter. Valued encoding can be seen in Fig. 3.3 below.

Chromosome 1 6.5434 1.7543 0.0012 2.9112 5.0654
Chromosome 2 Left right back forward centre

Figure 3.3: Value Encoding

Permutation Encoding

Permutation encoding is best used for combinational optimization problems be-

cause the essence of this kind of problems is to search for the best permutation

or combination of items subject to constrains. In permutation encoding, every

chromosome is a string of numbers which represents number in a sequence as

shown below in Fig. 3.4

Chromosome 1 2 6 4 3 7 5 8 1 9
Chromosome 2 9 6 7 8 3 4 2 5 1

Figure 3.4: Permutation Encoding

3.2.3 Tree Encoding

In tree encoding, every chromosome is a tree of some objects, functions or com-

mands in programming languages. Tree encoding schemes, such as John Koza’s

scheme for representing computer programs, have several advantages, including

the fact that they allow the search space to be open-ended (in principle, any size

tree could be formed via crossover and mutation). This open-endedness also leads

to some potential pitfalls. The trees can grow large in uncontrolled ways, prevent-

ing the formation of more structured, hierarchical candidate solutions. (Koza’s

(1992, 1994) ”automatic definition of functions” is one way in which GP can

be encouraged to design hierarchically structured programs.) Also, the resulting

trees, being large, can be very difficult to understand and to simplify. Systematic
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experiments evaluating the usefulness of tree encodings and comparing them with

other encodings are only just beginning in the genetic programming community.

These are only the most common encodings; a survey of the GA literature will

turn up experiments on several others.

Tree encodings such as those used in genetic programming automatically allow

for adaptation of the encoding, since under crossover and mutation the trees can

grow or shrink. Meyer and Packard’s encoding of condition sets also allowed for

individuals of varying lengths, since crossovers between individuals of different

lengths could cause the number of conditions in a set to increase or decrease.

Figure 3.5: Tree Encoding

3.2.4 Octal Encoding

This encoding uses string made up of octal numbers (0-7)

Chromosome 1 13578327
Chromosome 2 26834425

Figure 3.6: Octal Encoding
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3.3 The Fitness Function

The operation of fitness proportionate reproduction for the genetic programming

paradigm is the basic engine of Darwinian reproduction and survival of the fittest.

Fitness is the driving force of Darwinian natural selection and, likewise, of genetic

algorithms. Having decoded the chromosome representation into the decision

variable domain, it is possible to assess the performance, or fitness, of individual

members of a population. This is done through an objective function that char-

acterizes an individual’s performance in the problem domain. Each individual in

a population is assigned a fitness value derived from its raw performance measure

given by the objective function or as a result of its interaction with the envi-

ronment. This value is used in the selection to bias towards more fit individuals.

Highly fit individuals, relative to the whole population, have a high probability of

being selected for mating whereas less fit individuals have a correspondingly low

probability of being selected. In the natural world, this would be an individual’s

ability to survive in its present environment.

The fitness function is an equation that is a function of including properties

(genes) in each string (chromosome). The general form of this function depends

on the studying problem and mentions the final goal of problem. Thus, the ob-

jective function establishes the basis for selection of pairs of individuals from the

population with a probability according to their relative fitness, and recombine

them together during reproduction to produce the next generation.

Note that the parents remain in the population while this operation is performed

and therefore can potentially participate repeatedly in this operation (and other

operations) during the current generation. Thus, the selection of parents is done

with replacement (i.e. reselection) allowed.

In the case of a minimization problem, the most fit individuals will have the

lowest numerical value of the associated objective function. This raw measure of
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fitness is usually only used as an intermediate stage in determining the relative

performance of individuals in a GA.

3.4 Operators in Genetic Algorithm (GA)

In this section we describe some of the selection, crossover, and mutation opera-

tors commonly used in genetic algorithms.

3.5 Selection Processes in Genetic Algorithm (GA)

Selection is usually the first operator applied on a population after encoding.

This is an operator that makes more copies of better strings in a new population.

Selection is the process of determining the number of times, or trials, a particular

individual is chosen for reproduction and, thus, the number of offspring that an

individual will produce. It is the component which guides the algorithm to the

solution by preferring individuals with high fitness over low-fitted ones. It can

be a deterministic operation, but in most implementations it has random compo-

nents. The purpose of selection is, of course, to emphasize the fitter individuals in

the population in hopes that their offspring will in turn have even higher fitness.

In selection process a chromosome is selected according to it’s objective function

measurement (Biologist called it fitness function). This function can show some

specific measurement such as utility, benefit or any other objectives that should

be maximized or minimized. The useful chromosome to copy is determined ac-

cording to the same functions.

The selection function identifies promising genetic material and determines how

much of it should be present in the next generation. The genetic material that

composes genotypes of higher quality tend to have a higher probability of finding

itself reused in some form or other in the next generation. In most GP systems,

selection is applied at the organism level and the term ”mating pool” is taken
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to mean the storage containing the individuals selected for reproduction. While

GP systems typically select genotypes, there are other possibilities. In particular,

selecting whole sets of genotypes (such as schemata) or combinations of sets and

individual genotypes is also possible. A genotype selection scheme determines the

probability that a genotype will be selected for producing offspring by crossover

or mutation. In order to search for increasingly fitter phenotypes, higher selection

probabilities are assigned to the genotypes of better scoring phenotypes. The se-

lection operator selects genotypes based on the general principle that the fitter the

individual, the higher its probability of being selected for reproduction should be.

Selection might operate with or without replacement. With replacement, the

solution that is added to the new parent population is kept in the combined pop-

ulation and a good solution can be chosen more than once for the new parent

population. The term with replacement is used since the original genotype is

available for further selection as additional genetic material is selected. The sys-

tem maintains no memory of prior selection. Without replacement, the selected

solution is placed in the parent population and removed from the combined pop-

ulation and each solution can only be selected once for the new parent population.

Selection provides the driving force in genetic algorithms. With too much force,

genetic search will terminate prematurely. In this way, the selection directs the

genetic search toward promising regions in the search space and that will improve

the performance of genetic algorithms.

Many selection methods have been proposed, examined and compared. Just

as the case for encodings, these descriptions do not provide rigorous guidelines

for which method should be used for which problem; this is still an open ques-

tion for GAs. (For more technical comparisons of different selection methods, see

Goldberg and Deb 1991, Bäck and Hoffmeister 1991, and Hancock 1994.)

50



Some of the selection methods are as follows;

• Roulette Wheel Selection (Fitness-Proportionate Selection)

• Tournament selection

• Boltzmann selection

• Rank selection

3.5.1 Roulette Wheel Selection (Fitness-Proportionate Se-

lection)

Holland’s original GA used fitness-proportionate selection, in which the ”expected

value” of an individual(i.e., the expected number of times an individual will be

selected to reproduce) is that individual’s fitness divided by the average fitness

of the population. The most common method for implementing this is ”roulette

wheel” sampling. It is the simplest method that selects the best chromosome

according to the ratio of each chromosomes fitness to sum of all fitness values

related to all chromosomes (roulette-wheel selection (Holland, 1975; Goldberg,

1989).

Roulette wheel selection is most common selection method used in genetic al-

gorithms for selecting potentially useful individuals (solutions) for crossover and

mutation. In roulette wheel selection, as in all selection methods, possible so-

lutions are assigned a fitness by the fitness function. This fitness level is used

to associate a probability of selection with each individual. While candidate so-

lutions with a higher fitness will be less likely to be eliminated, there is still a

chance that they may be. We can force the property to be satisfied by applying a

random experiment which is, in some sense, a generalized roulette game. At this

game a roulette wheel is rolled around a central point and then a specific area is

selected when it stops.

To produce a simple roulette wheel, the ratio of each string fitness to the sum
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of all fitness values in the population is calculated. This ratio is determined as

an area of the roulette wheel by assigning each individual a slice of the circu-

lar ”roulette wheel”, the size of the slice being proportional to the individual’s

fitness value. Thus, the bigger the value, the larger the slice (segment) is. The

wheel is spun N times, where N is the number of individuals in the population.

On each spin, the individual under the wheel’s marker is selected to be in the

pool of parents for the next generation. The process is repeated until the desired

number of individuals is selected. Since individuals with higher fitness have more

probability of selection, this may lead to biased selection towards high fitness

individuals. It can also possibly miss the best individuals of a population. There

is no guarantee that good individuals will find their self in the next generation.

This method can be implemented as follows:

1. Sum the total expected value of individuals in the population. Call this

sum T.

2. Choose a random integer r between 0 and T.

3. Loop through the individuals in the population, summing the expected

values, until the sum is greater than or equal to r. The individual whose

expected value puts the sum over this limit is the one selected.

With roulette wheel selection there is a chance some weaker solutions may survive

the selection process; this is an advantage, as though a solution may be weak, it

may include some component which could prove useful following the recombina-

tion process.
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Figure 3.7: Roulette Wheel

The average fitness of the population for ith generation in roulette wheel selection

is calculated as

FRWii =

∑N
j=1 FRWj

N

where i varies from 1 to ngen and j varies from 1 to N .

Therefore, the probability for selecting the jth string is

PRWj =
FRW∑N
j=1 FRW

where

ngen→ total number of generations

N → total population size

FRWi,j → fitness of jth individual in ith generation for roulette wheel selection

FRWj → Average Fitness of the population in generation in Roulette Wheel

Selection
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To illustrate,

For example, consider a population containing four strings shown in the Table

3.1 below. Each string is formed by concatenating four substrings which repre-

sents variables A, B, C and D. Length of each string is taken as four bits. The

first column represents the possible solution in binary form. The second column

gives the fitness values of the decoded strings. The third column gives the per-

centage contribution of each string to the total fitness of the population. Then

by ”Roulette Wheel” method, the probability of candidate A being selected as

a parent of the next generation is 28.09%. Similarly, the probability that the

candidates B, C, D will be chosen for the next generation are 19.59, 12.89 and

39.43 respectively. These probabilities are represented on a pie chart, and then

four numbers are randomly generated between 1 and 100. Then, the likeliness

that the numbers generated would fall in the region of candidate B might be once,

whereas for candidate A it might be twice and candidate D more than once and

for candidate C it may not fall at all. Thus, the strings are chosen to form the

parents of the next generation.

Table 3.1: Table of candidates A, B, C, D

Candidate (A, B, C, D) Fitness value
Percentage of
total fitness

1011 0110 1101 1001 109 28.09

0101 0011 1110 1101 76 19.59

0001 0001 1111 1011 50 12.89

1011 1111 1011 1100 153 39.43

Total 388 100
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Figure 3.8: Roulette Wheel Game of Candidates A, B, C and D

3.5.2 Tournament Selection Method

The other alternative to strict fitness-proportional selection is tournament se-

lection (Goldberg et al., 1989) in which a set of chromosomes is chosen and

compared, the best one being selected for parenthood. In this method a group

of individuals are chosen at random form and the individual with the highest

fitness is selected for inclusion in the next generation. Selection pressure can be

easily adjusted by changing the tournament size. If the tournament size is larger,

weaker individuals are less likely to be selected. This process is repeated until

the appropriate numbers of individuals are selected for the new generation.

In tournament selection a string is only selected when it successes to other com-

petitors or on the other hand it’s fitness is highest than the other competitors.

The number of individual in the set is called the tournament size. In tournament

selection, s chromosomes are chosen at random (either with or without replace-

ment) and entered into a tournament against each other. The fittest individual

in the group of k chromosomes wins the tournament and is selected as the parent.

The most widely used value of s is 2. Using this selection scheme, n tournaments
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are required to choose n individuals. That is a common tournament size is 2, this

is called binary tournament. By adjusting tournament size, the selection pressure

can be made arbitrarily large or small. For example, using large tournament size

has the effect of increasing the selection pressure, since below average individuals

are less likely to win a tournament while above average individuals are more likely

to win it.

During a tournament selection,two individuals are chosen at random from the

population. A random number r is then chosen between 0 and 1. If r < k (where

k is a parameter, for example 0.75), the fitter of the two individuals is selected

to be a parent; otherwise the less fit individual is selected. The two are then

returned to the original population and can be selected again. An analysis of this

method was presented by (Goldberg and Deb (1991)).

One potential advantage of tournament selection over all other forms is that

it only needs a preference ordering between pairs or groups of strings, and it can

thus cope with situations where there is no formal objective function at all - in

other words, it can deal with a purely subjective objective function. However,

we should point out again that tournament selection is also subject to arbitrary

stochastic effects in the same way as roulette-wheel selection - there is no guar-

antee that every string will appear in a given cycle. Indeed, using sampling

with replacement there is a probability of approximately that a given string will

not appear at all. One way of coping with this, at the expense of a little extra

computation, is to use a variance reduction technique from simulation theory.

3.5.3 Boltzmann Selection

Boltzmann selection is a method inspired by the technique of simulated anneal-

ing. In Boltzman selection, selection pressure is slowly increased over time to

gradually focus the search. The inspiration comes from annealing in metallurgy,

a technique involving heating and controlled cooling of a material to increase the
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size of its crystals and reduce their defects. By analogy with this physical process,

each step of this selection algorithm replaces a current individual by a random

”nearby” solution, chosen with a probability that depends on the difference be-

tween the corresponding function values and on a global parameter T called the

temperature. The temperature is gradually decreased during the process, creat-

ing a dependency such that the current solution changes almost randomly when

T is large, but increasingly ”downhill” as (T) goes to zero. The allowance for

”uphill” moves saves the method from becoming stuck at local minima.

A typical implementation is to assign to each individual i an expected value,

where T is temperature and t denotes the average over the population at time

t. Experimenting with this formula will show that, as T decreases, the difference

in ExpV al(i, t) between high and low fitnesses increases. The desire is to have

this happen gradually over the course of the search, so temperature is gradually

decreased according to a predefined schedule.

The selection probability is as follows for this method:

Pi =
exp(Bfi)

Z

where B control the selection intensity and

Z =
n∑

j=1

exp(bfj)

Rogers and Prugel-Bennett proposed the selection intensity is nearly determined

using B.

Fitness-proportionate selection is commonly used in GAs mainly because it was

part of Holland’s original proposal and because it is used in the Schema theo-

rem, but, evidently, for many applications simple fitness-proportionate selection

requires several ”fixes” to make it work well.
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Proposed Annealed Selection

The proposed selection approach is to move the selection criteria from exploration

to exploitation so as to obtain the perfect blend of the two techniques. In this

method, fitness value of each individual is computed. Depending upon the cur-

rent generation number of genetic algorithm, selection pressure is changed and

new fitness contribution, of each individual is computed. Selection probability of

each individual is computed on the basis of . As the generation of population

changes, fitness contribution changes and selection probability of each individual

also changes.

The proposed blended selection operator computes fitness of individual depending

on the current number of generation as under:

FXi =
FRWi

(ngen+ 1)− nogen

The probability for selecting the ith string is

PXi =
FXi∑N
i=1 FXi

where; FXi → Average Fitness of the population in generation in Proposed

Blended Selection

FRWi → Average Fitness of the population in ith generation in Roulette Wheel

Selection

ngen → total number of generations

nogen → current number of generation

3.5.4 Rank Selection

In ranking selection, the individuals in the population are sorted from best to

worst according to their fitness values. Each individual in the population is as-

signed a numerical rank based on fitness, and selection is based on this ranking

rather than differences in fitness. Ranking selection sorts the genotypes of a

58



generation according to the raw fitness score of their associated genotypes. The

probability of a genotype being selected for reproduction depends only on its po-

sition in terms of fitness relative to the other genotypes and not on the actual

fitness score.

The previous selection will have problems when the fitness differs very much. For

example, if the best chromosome fitness is 90% of all the roulette wheel then

the other chromosomes will have very few chances to be selected. Since rank

selection first ranks the population and then every chromosome receives fitness

from this ranking, the worst will have fitness 1, second worst 2 etc. and the best

will have fitness N (number of chromosomes in population). After this, all the

chromosomes have the chance to be selected

Rank selection prevents too quick convergence, thus this method can lead to

slower convergence because the best chromosomes do not differ so much from

other ones and differs from roulette wheel selection in terms of selection pressure.

Rank selection overcomes the scaling problems like stagnation or premature con-

vergence when the selection has caused the search to narrow down too quickly.

Ranking controls selective pressure by uniform method of scaling across the pop-

ulation.

In Rank Selection, sum of ranks is computed and then selection probability of

each individual is computed as under:

rsumi =
n∑

i=1

ri,j

where i varies from 1 to ngen and j varies from 1 to N .

PRANKi =
ri,j

rsumi

where;

rsumi → sum of ranks in generation
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rthi,j → rank of jth individual in ith generation for rank selection

ngen→ total number of generations

The advantage of this method is that it can prevent very fit individuals from

gaining dominance early at the expense of less fit ones, which would reduce the

population’s genetic diversity and might hinder attempts to find an acceptable

solution.

The disadvantage of this method is that it required sorting the entire population

by rank which is a potentially time consuming procedure.

3.6 Parameters for Genetic Algorithms

The operation of GAs begins with a population of a random string represent-

ing design or decision variables. The population is then operated by three main

operators; reproduction, crossover and mutation to create a new population of

points. GAs can be viewed as trying to maximize the fitness function, by eval-

uating several solution vectors. The purpose of these operators is to create new

solution vectors by selection, combination or alteration of the current solution

vectors that have shown to be good temporary solutions. The new population

is further evaluated and tested till termination. If the termination criterion is

not met, the population is iteratively operated by the above three operators and

evaluated.

This procedure is continued until the termination criterion is met. One cycle of

these operations and the subsequent evaluation procedure is known as a genera-

tion in GAs terminology. The operators are described as follows.
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3.7 Crossover

After selection process, the basic operator for producing new chromosomes is the

Crossover operator. In most GAs, individuals are represented by fixed-length

strings and crossover operates on pairs of individuals (parents) to produce new

strings (offspring) by exchanging segments from the parents’ strings. Usually,

chromosomes are randomly split and merged, with the consequence that some

genes of a child come from one parent while others come from the other parents.

One of the unique aspects of the work involving genetic algorithms (GAs) is the

important role that Crossover plays in the design and implementation of robust

evolutionary systems.

Crossover is a very powerful tool for introducing new genetic material and main-

taining genetic diversity, but with the outstanding property that good parents

also produce well-performing children or even better ones. Several investigations

have come to the conclusion that crossover is the reason why sexually reproducing

species have adapted faster than asexually reproducing ones.

It is intuitive from this construction that good sub-strings from parent strings

can be combined to form a better child string, if an appropriate site is chosen.

With a random site, the children strings produced may or may not have a combi-

nation of good sub-strings from parent strings, depending on whether or not the

crossing site falls in the appropriate place. But this is not a matter of serious con-

cern, because if good strings are created by crossover, there will be more copies

of them in the next mating pool generated by crossover. It is clear from this

discussion that the effect of crossover may be detrimental or beneficial. Thus, in

order to preserve some of the good strings that are already present in the mating

pool, all strings in the mating pool are not used in crossover.

Traditionally, the number of crossover points (which determines how many seg-

ments are exchanged) has been fixed at a very low constant value of 1 or 2.

61



Support for this decision came from early work of both a theoretical and empiri-

cal nature by (J. H. Holland, (1992)). In spite of this, other GAs problems were

implemented using other types of crossover.

In this Section, a number of variations on crossover are described (Goldberg,

1989; Spears, 1997) and discussed and the relative merits of each reviewed.

• One-Point Crossover (Single-Point Crossover)

• Two-Point Crossover

• Multi Point Crossover (N Point Crossover)

• Uniform Crossover

• Three Parent Crossover

• Order Crossover

• Cycle Crossover (CX)

• Arithmetic Crossover

• Heuristic Crossover

• Partially Matched Crossover (PMX)

• Precedence Preservative Crossover (PPX)

• Crossover Probability
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3.7.1 One-Point Crossover (Single Point Crossover)

A commonly used method for crossover is called one-point crossover. In this

method, a single point crossover position (called cut point) is chosen at random

and the parts of two parents after the crossover position (shown as vertical lines)

are exchanged or swapped to form two offspring. Thus, the portion right of the

selected site of these two strings is exchanged to form a new pair of strings. The

new strings are thus a combination of the old strings. One-point crossover is more

suitable when string length is small.

Then according to one-point crossover, if a random crossover point is chosen from

left and segments are cut, we can see it as shown below:

Figure 3.9: One-point crossover operation

3.7.2 Two-Point Crossover

To reduce bias and endpoint effect, many GA practitioners use two-point crossover,

in which two positions are chosen at random and the segments between them are

exchanged. Two-point crossover is less to disrupt schemas with large likely defin-

ing lengths and can combine more schemas than one-point crossover. In addition,

the segments that are exchanged do not necessarily contain the endpoints of the

strings. Again, there are schemas that two-point crossover cannot combine. As

mentioned, the two-point crossover operator randomly selects points within chro-

mosome then interchanges the two parent chromosomes between these two points

to produce two new offspring for mating in the next generation as shown below:
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Figure 3.10: Two-point crossover

In figure 3.10, the arrows indicate the crossover points. Thus, the contents be-

tween these points are exchanged between the parents to produce new children

for mating in the next generation.

3.7.3 Multi-Point Crossover (N Point Crossover)

Multi-point crossover is a generalization of single point crossover, introducing a

higher number of cut-points. In this case multi positions are chosen at random

and the segments between them are exchanged. Instead of only one, N breaking

points are chosen randomly. The section between the first allele position and the

first crossover point is not exchanged between individuals. Every second section

is swapped. Then, the bits between successive crossover points are exchanged be-

tween the two parents to produce two new offspring. The idea behind multi-point,

and indeed many of the variations on the crossover operator, is that the parts

of the chromosome representation that contribute to most of the performance of

a particular individual may not necessarily be contained in adjacent substrings.

Furthermore, the disruptive nature of multi-point crossover appears to encour-

age the exploration of the search space, rather than favoring the convergence to

highly fit individuals early in the search, thus making the search more robust.

Among this class, two-point crossover is particularly important.
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3.7.4 Uniform Crossover

Another common recombination operator is uniform crossover (Syswerda, 1989;

Spears and De Jong, 1994). The uniform crossover is a more general method. In

uniform crossover, every allele is exchanged between the pair of randomly selected

chromosomes with a certain probability, pe, known as the swapping probability.

Usually the swapping probability value is taken to be 0.5. Uniform crossover does

not use cut-points, but simply uses a global parameter to indicate the likelihood

that each variable should be exchanged between two parents.

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias

associated with the length of the binary representation used and the particular

coding for a given parameter set. This helps to overcome the bias in single-point

crossover towards short substrings without requiring precise understanding of the

significance of individual bits in the chromosome representation. Spears and De

Jong, 1994 have demonstrated how uniform crossover may be parameterized by

applying a probability to the swapping of bits. This extra parameter can be used

to control the amount of disruption during recombination without introducing a

bias towards the length of the representation used. When uniform crossover is

used with real-valued alleles, it is usually referred to as discrete recombination.

In this method some independent genes (bits) is selected from each string stochas-

tically and then are exchanged. However, for a uniform crossover, the following

steps should be proceeded (Gen and Cheng, 2000):

1. Two chromosomes is selected by selection operator.

2. A part of parent chromosome is stochastically used to form a part of childes.

3. The second step is repeated until the total part of child is completed from.
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Consider the following two parents, crossover mask and resulting offspring:

Parent 1 1 0 1 1 0 0 0 1 1 1
Parent 2 0 0 0 1 1 1 1 0 0 0
Mask 0 0 1 1 0 0 1 1 0 0
Offspring 1 0 0 1 1 1 1 0 1 0 0
Offspring 2 1 0 0 1 0 0 1 0 1 1

Figure 3.11: Uniform Crossover

Here, the first offspring, 1, is produced by taking the bit from 1 if the correspond-

ing mask bit is 1 or the bit from 2 if the corresponding mask bit is 0.

Offspring 2 is created using the inverse of the mask or, equivalently, swapping P1

and P2.

3.7.5 Three Parent Crossover

In this crossover technique, three parents are randomly chosen. Each bit of the

first parent is compared with the bit of the second parent. If both are the same,

the bit is taken for the offspring otherwise; the bit from the third parent is taken

for the offspring.

Parent 1 1 1 0 1 0 0 0 1
Parent 2 0 1 1 0 1 0 0 1
Parent 3 0 1 1 0 1 1 0 0
Offspring 0 1 1 0 1 0 0 1

Figure 3.12: Three Parent Crossover

3.7.6 Order Crossover (OX)

The original order crossover operator (which we refer to as order crossover) was

developed by Davis, 1985. The offspring inherits the elements between the two

crossover points, inclusive, from the selected parent in the same order and position

as they appeared in that parent. The remaining elements are inherited from the

alternate parent in the order in which they appear in that parent, beginning
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with the first position following the second crossover point and skipping overall

elements already present in the offspring. Order Crossover is a fairly simple

permutation crossover.

Figure 3.13: Order Crossover (OX)

3.7.7 Cycle Crossover (CX)

The Cycle Crossover (CX) proposed by (Oliver, 1987) builds offspring in such a

way that each allele (and its position) comes from one of the parents. The Cycle

Crossover operator identifies a number of so-called cycles between two parent

chromosomes. Then, to form offspring 1, cycle one is copied from parent 1, cycle

2 from parent 2, cycle 3 from parent 1, and so on.

Figure 3.14: Cycle Crossover (OX)
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3.7.8 Arithmetic Crossover

Arithmetic crossover operator linearly combines two parent chromosomes vectors

to produce two new offspring according to the equation:

Offspring 1 = a ∗ Parent 1 + (1− a) ∗ Parent 2

Offspring 2 = (1− a) ∗ Parent 1 + a ∗ Parent 2

where a is a random weighing factor chosen before each crossover operation.

Consider two parents (each of 4 float genes) selected for crossover:

Parent 1 0.3 1.4 0.2 7.4
Parent 2 0.5 4.5 0.1 5.6

Figure 3.15: Arithmetic Crossover (Before)

Now applying the two equations and assuming that the weighing factor a=0.7,

we get two resulting offspring.

The possible set of offspring after arithmetic crossover would be:

Offspring 1 0.36 2.33 0.17 6.87
Offspring 2 0.402 2.981 0.149 5.842

Figure 3.16: Arithmetic Crossover (After)

3.7.9 Heuristic Crossover

Heuristic crossover operator uses the fitness value of two parent chromosomes to

determine the direction of the search.

The offspring are created according to the equations:

Offspring 1 = Best Parent + r ∗ (Best Parent − Worst Parent )

Offspring 2 = Best Parent
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where r is a random number between 0 and 1.

It is possible that offspring 1 will not be feasible. This can happen if r is cho-

sen such that one or more of its genes fall outside the allowable upper or lower

bounds. For this reason heuristic crossover has a user defined parameter n for

the number of times to try and find an r that results in a feasible chromosome. If

a feasible chromosome is not produced after n tries , the worst parent is returned

as offspring 1.

3.7.10 Partially Matched Crossover (PMX)

Apart from always generating valid offspring, the PMX operator (Goldberg and

Lingle, 1985) also preserves orderings within the chromosome. In PMX, two par-

ents are randomly selected and two random crossover sites are generated. Alleles

within the two crossover sites of a parent are exchanged with the alleles corre-

sponding to those mapped by the other parent. It can be said that it is a crossover

of permutations that guarantees that all positions are found exactly once in each

offspring, ie both offspring receive a full complement of genes, followed by the

corresponding filling in of alleles from their parents.

PMX proceeds as follows:

1. The two chromosomes are aligned.

2. Two crossing sites are selected uniformly at random along the strings, defin-

ing a matching section.

3. The matching section is used to effect a cross through position-by-position

exchange operation.

4. Alleles are moved to their new positions in the offspring.

69



The following illustrate how PMX works.

• Consider the two strings shown below.

• Where the dots marl the selected cross points.

• The matching section defines the position-wise exchanges that must take

place in both parents to produce the offspring.

• The exchanges are read from the matching section of one chromosome to

that of the other.

• In the example, the numbers that exchange places are 5 and 2, 6 and 3, and

7 and 10.

• The resulting offspring are as shown below:

Strings given
Name 9 8 4 . 5 6 7 . 1 3 2 1 0 Allele 1 0 1 . 0 0 1 . 1 1 0 0
Name 8 7 1 . 2 3 1 0 . 9 5 4 6 Allele 1 1 1 . 0 1 1 . 1 1 0 1

Partially matched crossover
Name 9 8 4 . 2 3 1 0 . 1 6 5 7 Allele 1 0 1 . 0 1 1 . 1 1 0 1
Name 8 1 0 1 . 5 6 7 . 9 2 4 3 Allele 1 1 1 . 1 1 1 . 1 0 0 1

Figure 3.17: Partially Matched Crossover (PMX)

3.7.11 Precedence Preservative Crossover (PPX)

PPX was independently developed for vehicle routing problems by Blanton and

Wainwright (1993) and for scheduling problems by Beirwirth et al. (1996). The

operators passes on precedence relations of operations given in two parental per-

mutations to one offspring at the same rate, while no precedence relations are

introduced. PPX is illustrated in below, for a problem consisting of six operators

A-F.
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Figure 3.18: A PMX example

The operator works as follows:

• A vector of length Sigma (σ), sub i = 1tomi, representing the number of

operations involved in the problem, is randomly filled with elements of the

set {1, 2}

• This vector defines the order in which the operations are successively drawn

from parent 1 and parent 2.

• We can also consider the parent and offspring permutations as lists, for

which the operations ’append’ and ’delete’ are defined.

• First we start by initializing an empty offspring.

• The leftmost operation in one of the two parents is selected in accordance

with the order of parents given in the vector.

• After an operation is selected it is deleted in both parents.

• Finally the selected operation is appended to the offspring.
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• This step is repeated until both parents are empty and the offspring contains

all operations involved.

• Note that PPX does not work in a uniform-crossover manner due to the

’deletion-append’ scheme used.

Example is shown in Fig. 3.19 below

Parent Permutation 1 A B C D E F
Parent Permutation 2 C A B F D E
Select Parent no. (1/2) 1 2 1 1 2 2
Offspring Permutation A C B D F E

Figure 3.19: Precedence Preservative Crossover (PPX)

3.7.12 Crossover Probability

The basic parameter in crossover technique is the crossover probability (Pc).

Crossover probability is a parameter to describe how often crossover will be per-

formed. If there is no crossover, offspring are exact copies of parents. If there is

crossover, offspring are made from parts of both parent’s chromosome. If crossover

probability is 100%, then all offspring are made by crossover. If it is 0%, whole

new generation is made from exact copies of chromosomes from old population

(but this does not mean that the new generation is the same!). Crossover is made

in hope that new chromosomes will contain good parts of old chromosomes and

therefore the new chromosomes will be better. However, it is good to leave some

part of old population survives to next generation.
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3.8 Mutation

If we use a crossover operator, such as one-point crossover, we may get better

and better chromosomes but the problem is, if the two parents (or worse, the

entire population) has the same allele at a given gene then one-point crossover

will not change that. In other words, that gene will have the same allele forever.

Mutation is designed to overcome this problem in order to add diversity to the

population and ensure that it is possible to explore the entire search space. Hence

mutation is employed to give new information to the population (uncover new

chromosomes) and also prevents the population from becoming saturated with

similar chromosomes, simply said to avoid premature convergence.

In natural evolution, mutation is a random process where one allele of a gene is

replaced by another to produce a new genetic structure. Usually considered as a

background operator, the role of mutation is often seen as providing a guarantee

that the probability of searching any given string will never be zero and acting as

a safety net to recover good genetic material that may be lost through the action

of selection and crossover. This has the effect of tending to inhibit the possibility

of converging to a local optimum, rather than the global optimum.

Given that mutation is generally applied uniformly to an entire population of

strings, it is possible that a given binary string may be mutated at more than one

point. With non-binary representations, mutation is achieved by either perturb-

ing the gene values or random selection of new values within the allowed range.

Mutation adds new information in a random way to the genetic search process

and ultimately helps to avoid getting trapped at local optima. It is an operator

that introduces diversity in the population whenever the population tends to be-

come homogeneous due to repeated use of reproduction and crossover operators.

It may cause the chromosomes of individuals to be different from those of their

parent individuals. The need for mutation is to create a point in the neighbor-

hood of the current point, thereby achieving a local search around the current
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solution.

For example, the following population having four eight bit strings may be con-

sidered:

01101011

00111101

00010110

01111100.

It can be noticed that all four strings have a 0 in the left most bit position. If

the true optimum solution requires 1 in that position, then crossover operators

described above will not be able to create 1 in that position. The inclusion of

mutation introduces probability pm of turning 0 into 1.

Where as the crossover operator recombines good sub-strings from good strings

together, hopefully, to create a better sub-string, the mutation operator alters a

string locally expecting a better string.

In evolutionary strategies, mutation is the primary variation/search operator.

Unlike evolutionary strategies, mutation is often the secondary operator in GAs,

performed with a low probability. In GA applications, mutation is randomly

applied with low probability value called as mutation probability Pm, typically

in the range 0.001 and 0.01, while for automated circuit design problems; it is

usually between 0.3 and 0.8 and modifies elements in the chromosomes. The

best mutation probability is ’application dependent’. Large mutation probability

increases the probability that good schemata will be destroyed, but increase pop-

ulation diversity. A coin toss mechanism is employed; if random number between

zero and one is less than the mutation probability, then the bit is inverted, so

that zero becomes one and one becomes zero. This helps in introducing a bit

of diversity to the population by scattering the occasional points. This random

scattering would result in better optima, or even modify a part of genetic code

that will be beneficial in later operations. On the other hand, it might produce

74



a weak individual that will never be selected for further operations.

The commonest ones out of the many mutation operators are:

• Single Point Mutation

• Multi Point Mutation

• Bit Flip Mutation

• Interchanging Mutation

• Reversing Mutation

• Reorder Mutation

• Uniform Mutation

• Mutation Probability

3.8.1 Single Point Mutation

A commonly used method for mutation is called single point mutation. Single

gene (chromosome or even individual) is randomly selected to be mutated and

its value is changed depending on the encoding type used.

Consider two parents selected for mutation

Parent 1 0 1 1 1 1 0 1 0 1 1
Parent 2 1 1 1 0 0 1 0 0 1 0

Figure 3.20: Single Point Mutation (Before)

The mutated offspring produced after changing or inverting the value of the cho-

sen gene as 0 to 1 and 1 to 0 are
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Offspring 1 0 1 0 1 1 0 1 0 1 1
Offspring 2 1 1 1 0 0 1 1 0 1 0

Figure 3.21: Single Point Mutation (After)

3.8.2 Multi Point Mutation

Multi genes (chromosomes or even individuals) are randomly selected to be mu-

tated and the values are changed depending on the encoding type used, as shown

in Fig. 3.22 and Fig. 3.23.

Here are two parents selected for mutation.

Parent 1 1 0 1 1 1 0 0 1 0 1
Parent 2 1 0 1 1 0 0 1 0 0 1

Figure 3.22: Multi Point Mutation

The mutated offspring produced are

Offspring 1 1 0 1 0 1 0 0 0 0 1
Offspring 2 1 1 1 1 0 0 0 0 0 1

Figure 3.23: Multi Point Mutation

3.8.3 Bit-Flip Mutation (Flipping)

In bit-flip mutation, each chosen bit in a parent binary string (chromosome) is

changed (a 0 is converted to 1, and a 1 is converted to 0) to produce offspring. A

parent mutation chromosome is randomly generated. For a 1 in mutation chro-

mosome, the corresponding bit in parent chromosome is flipped ( 0 to 1 and 1 to

0) offspring chromosome is produced. This is illustrated in the Fig. 3.24.
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Parent 1 1 1 0 1 1 0 0 0 1
Mutation chromosome 0 1 0 1 1 0 0 1 0 0
Offspring 0 1 1 1 1 1 0 1 0 1

Figure 3.24: Bit-Flip Mutation

3.8.4 Interchanging Mutation

Two random positions of the string are chosen and the bits corresponding to

those positions are interchanged. This is shown in Fig. 3.25.

Parent 1 0 1 1 0 1 0 1
Offspring 1 1 1 1 0 0 0 1

Figure 3.25: Interchanging Mutation

3.8.5 Reversing Mutation

A random position is chosen and the bits next to that position are reversed and

child chromosome is produced. This is shown in Fig. 3.26.

Parent 0 1 1 0 1 1 0 1 0 1
Offspring 0 1 1 0 1 1 0 0 1 0

Figure 3.26: Reversing Mutation

3.8.6 Reorder Mutation

This swaps the positions of pair of bits or genes which are selected randomly to

increase diversity in the decision variable space.
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3.8.7 Uniform Mutation

The mutation operator replaces the value of the chosen gene with a uniform

random value selected between the user-specific upper and lower bounds for that

gene.

3.8.8 Mutation Probability

The important parameter in the mutation technique is the mutation probability

(Pm). The mutation probability decides how often parts of chromosome will

be mutated. If there is no mutation, offspring are generated immediately after

crossover (or directly copied) without any change. If permutation is performed,

one or more parts of a chromosome are changed. If mutation probability is 100%,

whole chromosome is changed, if is 0%, nothing is changed. Mutation generally

prevents the GA from falling into local extreme.

3.9 Replacement

Replacement, which is the last stage of any breeding cycle tends to be the most

important stage. Replacement determines the current members of the population,

ie old parents or offspring been produced should be replaced by new offspring if

any. Two parents are drawn from a fixed size population, they breed two children,

but not all four can return to the population, so two must be replaced. Basically,

there are two kinds of methods for maintaining the population: generational up-

dates and steady state updates.

The basic generational update scheme consists in producing N children from

a population of size N to form the population at the next time step (generation),

and this new population of children completely replaces the parent selection.

Clearly this kind of update implies that an individual can only reproduce with

individuals from the same generation. Derived from forms of generational update
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are also used like (λ + µ)-update and (λ, µ)-update. This time from a parent

population of size µ, a little of children is produced of size λ ≥ µ. Then the µ

best individuals from either the offspring population or the combined offspring

and parent populations (for (λ, µ)- and (λ + µ)-update respectively), from the

next generation.

In a steady state update, new individuals are inserted in the population as soon

as they are created, as opposed to the generational update where an entire new

generation is produced at each time step. The insertion of a new individual usu-

ally necessitates the replacement of another population member. The individual

to be deleted can be chosen as the worst member of population, (it leads to a

very strong selection pressure), or as the oldest member of the population, but

those method are quite radical: Generally steady state updates use an ordinal

based method for both the selection and the replacement, usually a tournament

method. Tournament replacement is exactly analogous to tournament selection

except the less good solutions are picked more often than the good ones. A subtile

alternative is to replace the most similar member in the existing population.

When selecting which members of the old population should be replaced the most

apparent strategy is to replace the least fit members deterministically. Thus, for

an individual to survive successive generations, it must be sufficiently fit to ensure

propagation into future generations.

Some of the most common replacement techniques are outlined below.

• Random Replacement

• Weak Parent Replacement

• Both Parent Replacement
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3.9.1 Random Replacement

The children replace two random chosen individuals in the population. The

parents are also candidates for selection. This can be useful for continuing the

search in small populations, since weak individuals can be introduced into the

population.

3.9.2 Weak Parent Replacement

In weak parent replacement, a weaker parent is replaced by a strong child. With

the four individuals, only the fittest two, parent or child return to the population.

This process improves the overall fitness of the population when paired with a

selection technique that selects both fit and weak parent for crossing, but if weak

individuals and discriminated against in selection, the opportunity will never raise

to replace them.

3.9.3 Both Parents Replacement

Both parents replacement is when the child replaces the parent. In this case,

each individual only gets to b reed once. As a result, the population and genetic

material moves around but leads to a problem when combined with a selection

technique that strongly favours fit parents: the fit breed and then are disposed

off.

3.10 Search Termination (Convergence Criteria)

Because the GA is a stochastic search method, it is difficult to formally specify

convergence criteria. As the fitness of a population may remain static for a

number of generations before a superior individual is found, the application of

conventional termination criteria becomes problematic. A common practice is to

terminate the GA after a pre-specified number of generations and then test the
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quality of the best members of the population against the problem definition. If

no acceptable solutions are found, the GA may be restarted or a fresh search

initiated.

The various stopping conditions are listed as follows:

• Maximum generations- the genetic algorithm stops when the specific

number of generations have evolved.

• Elapsed time- The genetic process will end when a specific time has

elapsed.

Note: If the maximum number of generation has been reached before the

specific time has elapsed, the process will end.

• No change in fitness- The genetic process will end if there is no change

to the population’s best fitness for a specific number of generations.

Note: If the maximum number of generation has been reached before the

specific number of generations with no changes has been reached, the pro-

cess will end.

• Stall generations- The algorithm stops if there is no improvement in the

subjective function for a sequence of consecutive generations.

• Stall time limit- The algorithm stops if there is no improvement in the

objective function during an interval of time in seconds.

• Best individual- A best individual convergence criterion stops the search

once the minimum fitness in the population drops below the convergence

value. This brings the search to a faster conclusion guaranteeing at least

one good solution.

• Worst individual- Worst individual terminates the search when the least

fit individuals in the population have fitness less than the convergence cri-

teria. This guarantees the entire population to be of minimum standard,

although the best individual may not be significantly better than the worst.
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In this case, a stringent convergence value may never be met, in which case

the search will terminate after the maximum has been exceeded.

• Sum of fitness- In this termination scheme, the search is considered to have

satisfaction converged when the sum of the fitness in the entire population is

less than or equal to the convergence value in the population record. This

guarantees that virtually all individuals in the population will be within

a particular fitness range, although it is better to pair this convergence

criteria with weakest gene replacement, otherwise a few unfit individuals in

the population will blow out the fitness sum. The population size has to be

considered while setting the convergence value.

• Median fitness- Here at least half of the individuals will be better than or

equal to the convergence value, which should give a good range of solutions

to choose from.

A simple example of genetic algorithm for one generational cycle done

by hand (Goldberg ’89)

For a better idea of what this section is about, let us have a look at a simple genetic

algorithm and use it in an everyday application: searching for a maximum of the

function f(x) = x2, where x can take values between 0 and 31. It is clear right

away that the solution is the value x = 31, but this problem is simple enough that

it shows nicely the genetic algorithm operation basics. General genetic algorithm

starts with a randomly chosen population which is made up of binary series. The

criterion function helps us determine their quality and based on this information,

the number of copies which each individual subject will have at the construction of

the next generation is set. Then, the acquired copies cross-over randomly between

themselves and a random selection is made of the genetic string (chromosome)

length which will cross-over or be switched (See Figure 3.27 below).

It can easily be seen that a good subject, which has many copies, has an advantage
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Figure 3.27: Genetic code of the parents and the offspring before and after the
cross-over

in comparison with the weak one, because his genetic material can cross-over with

more subjects than the genetic material of the weak ones. What follows is also

the mutation for which we set the probability of 0.001 in this experiment. This

means that there is a possibility of one in a thousand for each bit in the series

to change from 0 to 1, or reverse. In our experiment, not even one bit mutated

in the first generation. That is fine. If we take a look at the generation quality

value, we can see that it has increased in the first generation already. We could

continue with the process until we reached a subject with the quality 312 = 961,

which would meet our criterion to stop searching for a maximum, or until the

number of iterations would reach the value, prescribed in advance. That would

mean that the algorithm did not find the solution; at least not a solution that

would be as good as we determined it to be in our criterion in the beginning.

This execution of the genetic algorithm was simple, but it still shows the essential

element of its operation, which is that the result of the optimisation is improving

from generation to generation.

Table 3.2 shows an example of the characteristics (quality) computation of a

randomly chosen starting population (first generation or the starting parents).
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Table 3.2: The computation of a starting randomly chosen population character-
istics

On the basis of the computed characteristics of the individual subjects, a selection

is made and only the best subjects are allowed to continue with the cross-over

(multiplication). Table 3.3 shows the cross-over of this first generation and the

”birth” of the offspring and their characteristics (quality) computation with the

criterion function f(x) = x2. When we cross-over the parents (first column in

Table 3.3), we get a new population with better characteristics (See Table 3.3 -

columns 4-6). We assumed the value 0.001 for the mutation. Since there are four

subjects in each generation, each of the subjects being five bits (binary places)

long, the probability that one of them would mutate is 4*5*0.001=0.02. In the

first step, none of the bits has mutated. We can keep computing in the same way

until we reach the value x = 31 in just a few iterations.

Mutation for f(x) = maxx2

It takes many more modifications and improvements for successful operation at

solving a very complex problem, however, they are beyond this section.
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Table 3.3: The presentation of the cross-over and the first generation offspring
characteristics computation

Table 3.4: The presentation of the mutation and the first generation offspring
characteristics computation

String
No.

Offspring
after xover

Offspring after
mutation x value

Fitness
f(x) = x2

1 0 1 1 0 0 1 1 1 0 0 26 676
2 1 1 0 0 1 1 1 0 0 1 25 625
3 1 1 0 1 1 1 1 0 1 1 27 729
4 1 0 0 0 0 1 0 1 0 0 18 324

Sum 2354
Average 588.5

Max 729

3.11 When to use a Genetic Algorithm

The GA literature describes a large number of successful applications, but there

are also many cases in which GA performs poorly. Given a particular potential

application, how do you know if GA is a good method to use? There is no

rigorous answer; though many researchers share the intuition that if the space to

be searched is known not to be perfectly smooth and uni-modal (consist of a single

smooth hill), or is not well understood, or if the fitness function is noisy, and if

the task does not require a global optimum to be found, that is, if quickly finding

a sufficiently good solution is enough, a GA will have a good chance of being
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competitive with or surpassing other weak methods. If a space is not large, then

it can be search exhaustively, whereas a GA might converge on a local optimum

rather than on the global best solution. If the space is smooth or uni-modal, a

gradient-ascent algorithm such as steepest-ascent hill climbing will be much more

efficient than the GA in exploiting the space’s smoothness. If the space is well

understood, search methods using domain specific heuristics can often be design

to outperform any general-purpose method such as a GA. If the fitness function is

noisy (e.g., if it involves error-prone measurements from a real-world process such

as vision system of a robot), a one-candidate-solution-at-a-time search method

such as simple hill climbing might be irrecoverably led astray by the noise, but

GAs, since they work by accumulating fitness statistics over many generations,

are thought to perform robustly in the presence of a small amounts of noise. These

institutions, of course, do not rigorously predict when a GA will be an effective

search procedure competitive with other procedures. A GA’s performance will

depend very much on details such as the method for encoding candidate solution,

the operators, the parameter settings, and the particular criterion for success.

3.12 Some uses of Genetic Algorithm

Genetic algorithms (GAs) are adaptive methods which may be used to solve

search and optimization problems. The power of GAs comes from the fact that

the technique is robust and can deal successfully with a wide range of problem

areas, including those which are difficult for other methods to solve. Therefore,

the main ground for GAs is in difficult areas where no such solving techniques

exist. Even where existing techniques work well, improvements can be made by

mixing them with GAs.

GAs in various forms are implemented to wide range of problems including the

following:

• Optimization: GAs have been used in a wide variety of optimization tasks,
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including numerical optimization and combinatorial optimization problems

such as circuit design and job shop scheduling.

• Automatic Programming: GAs have been used to evolve computer pro-

grams for special tasks and to design other computational structures cellular

automata and sorting networks.

• Machine and robot learning: GAs have been used for many machine learn-

ing applications, including classification and prediction tasks such as the

prediction of dynamical systems, weather prediction , and prediction of

protein structure. GAs have also been used to design neural networks, and

to evolve rules for learning classifier systems or symbolic production systems

and to design and control robots

• Economic models: GAs have been used to model processes of innovation, the

development of bidding strategies, and the emergence of economic markets.

• Immune system models: GAs have been used to model various aspects of the

natural immune system including somatic mutation during an individual’s

lifetime and the discovery of multi-gene families during evolutionary time

• Ecological models: GAs have been used to model ecological phenomena

such as biological arms races, host-parasite co-evolution, symbiosis, and

resource flow in ecologies.

• Population genetics models: GAs have been used to study questions in

population genetics, such as ”under what conditions will a gene for recom-

bination be evolutionarily viable (or practicable) ?”

• Interactions between evolution and learning: GAs have been used to study

how individual learning and species evolution affect one another.

• Models of social systems: GAs have been used to study evolutionary aspects

of social systems, such as the evolution of cooperation, the evolution of

communication, and trail-following behaviour in ants.
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This list is by no means exhaustive, but it gives a flavour of the kinds of things

for which GAs have been used, both for problem-solving and for modelling.

3.13 Advantages and Disadvantages of Genetic

Algorithms

Perhaps it is not obvious why such an algorithm should lead to accurate solutions

for optimization problems.

Advantages:

• It can solve every optimisation problem which can be described with the

chromosome encoding.

• It solves problems with multiple solutions.

• Since the genetic algorithm execution technique is not dependent on the er-

ror surface, we can solve multi-dimensional, non-differential, non-continuous,

and even non-parametrical problems.

• Structural genetic algorithm gives us the possibility to solve the solution

structure and solution parameter problems at the same time by means of

genetic algorithm.

• Genetic algorithm is a method which is very easy to understand and it

practically does not demand the knowledge of mathematics.

• Genetic algorithms are easily transferred to existing simulations and models.

Disadvantages:

• Certain optimisation problems (they are called variant problems) cannot be

solved by means of genetic algorithms. This occurs due to poorly known

fitness functions which generate bad chromosome blocks in spite of the fact

that only good chromosome blocks cross-over.
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• There is no absolute assurance that a genetic algorithm will find a global

optimum. It happens very often when the populations have a lot of subjects.

• Like other artificial intelligence techniques, the genetic algorithm cannot

assure constant optimisation response times. Even more, the difference

between the shortest and the longest optimisation response time is much

larger than with conventional gradient methods. This unfortunate genetic

algorithm property limits the genetic algorithms’ use in real time applica-

tions.

• Genetic algorithm applications in controls which are performed in real time

are limited because of random solutions and convergence, in other words

this means that the entire population is improving, but this could not be

said for an individual within this population. Therefore, it is unreasonable

to use genetic algorithms for on-line controls in real systems without testing

them first on a simulation model.
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3.14 Flow Charts Showing Genetic Application

to VRP

Figure 3.28: The Flow Chart
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3.15 The Vehicle Routing Problem

Vehicle Routing Problem (VRP) lies at the heart of distribution management. It

is faced each day by thousands of companies and organizations engaged in the

delivery and collection of goods or people. Because conditions vary from one

setting to the next, the objectives and constraints encountered in practice are

highly variable. Most algorithmic research and software development in this area

focus on a limited number of prototype problems. By building enough flexibility

in optimization systems one can adapt these to various practical contexts. Much

progress has been made since the publication of the first article on the ”truck

dispatching” problem by Dantzig and Ramser (1959). Several variants of the

basic problem have been put forward.

The VRP can be described as follows: given a fleet of vehicles with uniform

capacity, a common depot, and several customer demands, finds the set of routes

with overall minimum route cost which service all the demands. All the itineraries

start and end at the depot and they must be designed in such a way that each

customer is served only once and just by one vehicle.

3.15.1 VRP in Real Life

The VRP is of great practical significance in real life. It appears in a large number

of practical situations, such as transportation of people and products, delivery

service and garbage collection. For instance, such a matter of course as being

able to buy milk in a store arises the use of vehicle routing twice. First the milk

is collected from the farms and transported to the dairy and when it has been

put into cartons it is delivered to the stores. That is the way with most of the

groceries we buy. And the transport is not only made by vehicles but also by

plains, trains and ships. VRP is everywhere around.
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Figure 3.29: An illustration of a VRP

One can therefore easily imagine that all the problems, which can be considered

as VRP, are of great economic importance, particularly to the developed nations.

The economic importance has been a great motivation for both companies and

researches to try to find better methods to solve VRP and improve the efficiency

of transportation.
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3.16 Solution Methods and Literature Review

of VRP

In real life, VRP can have many more complications, such as asymmetric travel

costs, multiple depots, heterogeneous vehicles and time windows, associated with

each customer. These possible complications make the problem more difficult to

solve. A little is considered in this project because the emphasis is rather on

Genetic Algorithms.

The VRP is an NP-hard combinatorial optimization problem which is usually

very time consuming or even impossible and only relatively small instances can

be solved to optimality. Since exact approaches are in general inadequate for

solving large instances, heuristics are commonly used in most approaches.

3.17 Heuristics For VRP

Heuristics are approximation algorithms that aim at finding good feasible solu-

tions quickly. An impressive number of heuristics have been proposed for the

VRP. In the following we separately review these two families of algorithms. Al-

most all of these methods were developed, described and tested for the symmetric

VRP. In addition, since finding a feasible solution with exactly m vehicles is itself

an NP-complete problem, almost all methods assume an unlimited number of

available vehicles. However, it should be observed that many of the proposed

methods may be quite easily adapted to take into account additional practical

constraints, although these may affect their overall performance. They can be

roughly divided into two main categories;

1. Classical Heuristics

2. Metaheuristics
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3.17.1 Classical Heuristics

Several heuristics have been devised for the VRP, only some of which are suffi-

ciently well known to be truly viewed as ’classical’. In the early classical heuris-

tics, much of the emphasis was put on quickly obtaining a feasible solution and

possibly applying to it a post optimization procedure. Using the classification

proposed by Laporte and Semet (2002), we describe Classical Heuristics for VRP

under these headings: The Classical Heuristics can be divided into three groups;

• Route Construction methods,

• Two phase methods

• Route Improvement methods

Route Construction Methods

Route construction methods were among the first heuristics for the CVRP and

still form the core of many software implementations for various routing appli-

cations. These algorithms typically start from an empty solution and iteratively

build routes by inserting one or more customers at each iteration, until all cus-

tomers are routed. Construction algorithms are further subdivided into sequen-

tial and parallel, depending on the number of eligible routes for the insertion of a

customer. Sequential methods expand only one route at a time, whereas parallel

methods consider more than one route simultaneously. Route construction algo-

rithms are fully specified by their three main ingredients, namely an initialization

criterion, a selection criterion specifying which customers are chosen for insertion

at the current iteration, and an insertion criterion to decide where to locate the

chosen customers into the current routes. Route Construction methods gradually

build a feasible solution by selecting arcs based on minimizing cost like

• Nearest Neighbour method

• Clarke and Wright based heuristic
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Nearest Neighbour Method

In this algorithm the rule is always to go next to the nearest unvisited customer

subject to the following restrictions:

• We start from the depot

• From each cluster is visited exactly one vertex (customer) and

• The sum of all the demands of the current tour (route) does not exceed the

capacity of the vehicle Q.

If the sum of all the demands of a current tour (route) exceeds the capacity of the

vehicle then we start again from the depot and visit next the nearest customer

from an unvisited yet cluster. If all the clusters are visited, then the algorithm

terminates.

Clarke and Wright based heuristic

The first and most famous heuristic of this group was proposed by Clarke and

Wright (1964) and is based on the concept of saving, an estimate of the cost re-

duction obtained by serving two customers sequentially in the same route, rather

than in two separate ones. If i is the last customer of a route and j is the first

customer of another route, the associated saving is defined as s=ci0 + c0j − cij.

If sijis positive, then serving i and j consecutively in a route is profitable. The

Clarke and Wright algorithm considers all customer pairs and sorts the savings

in non increasing order. Starting with a solution in which each customer ap-

pears separately in a route, the customer pair list is examined and two routes

are merged whenever this is feasible. Generally, a route merge is accepted only

if the associated saving is nonnegative but, if the number of vehicles is to be

minimized, then negative saving merges may also be considered. The Clarke and

Wright algorithm is inherently parallel since more than one route is active at any

time. However, it may easily be implemented in a sequential fashion.
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Given:

1. n customers with known locations and demands

2. identical delivery vehicles of known capacity

3. a distance or time limit for every vehicle route

Design vehicle routes so that the total length is minimized and

1. the requirements of all customers are satisfied,

2. the vehicle capacities are not exceeded, and

3. the distance or time limit is not violated.

Clarke and Wright Savings

Label the customers as cities 1, 2, . . . , n and let the warehouse be city 0. De-

termine the costs cij to travel between all pairs of cities and the warehouse

i = 0, 1, . . . , n; j = 0, . . . , n.

1. Select the warehouse as the central city.

2. Calculate the savings sij = ci0 + c0jcij for all pairs of cities (customers)

i, j (i = 1, 2, . . . , n; j = 1, 2, . . . , n; i 6= j).

3. Order the savings, sij, from largest to smallest.

4. Starting with the largest savings, do the following:

(a) If linking cities i and j results in a feasible route, then add this link to

the route; if not, reject the link.

(b) Try the next savings in the list and repeat (a). Do not break any links

formed earlier. Start new routes when necessary. Stop when all cities

are on a route.
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Two Phase Methods

Two-phase methods are based on the decomposition of the VRP solution process

into the two separate subproblems:

1. Clustering: determine a partition of the customers into subsets, each cor-

responding to a route, and

2. Routing: determine the sequence of customers on each route.

In a cluster-first-route-second method, customers are first grouped into clusters

and the routes are then determined by suitably sequencing the customers within

each cluster. Different techniques have been proposed for the clustering phase,

while the routing phase amounts to solving a TSP. Examples of the Two phase

method are

• The Sweep Algorith

• The Fisher and Jaikumar Algorithm

These were selected partly because of their popularity, and also because they

operate on vastly different principles.

The Sweep Algorithm

The sweep algorithm, due to Wren (1971), Wren and Holliday (1972), and Gillett

and Miller (1974), is often referred to as the first example of cluster first-route-

second approach. The algorithm applies to planar VRP instances.

The algorithm starts with an arbitrary customer and then sequentially assigns

the remaining customers to the current vehicle by considering them in order of

increasing polar angle with respect to the depot and the initial customer. As

soon as the current customer cannot be feasibly assigned to the current vehicle, a

new route is initialized with it. Once all customers are assigned to vehicles, each

route is separately defined by solving a TSP.

This heuristic is of the type ”clustering first, route later”. Assume the customers
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are points in a plane with euclidean distances as costs. The distance between

(xi, yi) and (xj, yj) is

cij =
√

(xi − xj)2 + (yi − yj)2

i. Compute the polar coordinates of each customer with respect to the depot.

Sort the customers by increasing polar angle.

ii. Add loads to the first vehicle from the top of the list as long as the capacity

allows. Continue with the next vehicle until all customers are included.

Now the customers have been clustered by vehicles.

iii. For each vehicle, optimize its route by a suitable TSP method. Graphically,

in step I we rotate a ray centered at the depot. The starting angle can be

chosen arbitrarily.

The Fisher and Jaikumar Algorithm

The Fisher and Jaikumar (1981) algorithm solves the clustering step by means

of an appropriately defined Generalized Assignment Problem (GAP) which calls

for the determination of a minimum cost assignment of items to a given set of

bins of capacity Q, and where the items are characterized by a weight and an

assignment cost for each bin. Each vehicle is assigned a representative customer,

called a seed, and the assignment cost of a customer to a vehicle is equal to its

distance to the seed. The GAP is then solved, either optimally or heuristically,

and the final routes are determined by solving a TSP on each cluster.

Fisher-Jaikumar Generalized Assignment based algorithm

• Step 1 (seed selection): select a seed jk in V for each cluster k = 1, . . . , K

• Step 2 (allocation of customers to seed): compute cik the cost of allocating
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customer i to k as the cost of inserting i in the route 0− jk − 0

cik = min {c0i + cijk + cjk0, c0jk + cjki + ci0} − (c0jk + cjk0)

• Step 3 (generalized assignment): Solve a GA problem with costs cij, weights

for the customers di, and vehicle capacity Q

• Step 4 (TSP solution): solve a TSP for each cluster found

A different family of two-phase methods is the class of so-called petal algorithms.

These generate a large set of feasible routes, called petals, and select the final

subset by solving a set partitioning model. Foster and Ryan (1976) and Ryan

et al. (1993) have proposed heuristic rules for determining the set of routes to

be selected, while Renaud et al. (1996b) have described an extension that con-

siders more involved configurations, called 2-petals, consisting of two embedded

or intersecting routes. The overall performance of these algorithms is generally

superior to that of the sweep algorithm.

Route Improvement methods

Local search algorithms are often used to improve initial solutions generated by

other heuristics. Starting from a given solution, a local search method applies

simple modifications, such as arc exchanges or customer movements, to obtain

neighbor solutions of possibly better cost.

If an improving solution is found, it then becomes the current solution and the

process iterates; otherwise a local minimum has been identified.

A large variety of neighborhoods are available. These may be subdivided into

intra-route neighborhoods, if they operate on a single route at a time or inter-

route neighborhoods if they consider more than one route simultaneously.

The most common neighborhood type is the λ-opt heuristic of Lin (1965) for the

TSP, where λ edges are removed from the current solution and replaced by λ

others. The computing time required to examine all neighbors of a solution is
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proportional to nλ. Thus, only λ = 2 or 3 are used in practice. As an alternative,

one can use restricted neighborhoods characterized by subsets of moves associ-

ated with larger λ values, such as Or-exchanges (Or, 1976).

The advantage of the classical heuristics is that they have a polynomial run-

ning time, thus using them one is better able to provide good solutions within a

reasonable amount of time. On the other hand, they only do a limited search in

the solution space and do therefore run the risk of resulting in a local optimum.

3.17.2 Metaheuristics

Metaheuristics are more effective and specialized than the classical heuristics.

They combine more exclusive neighbourhood search, memory structures and re-

combination of solutions and tend to provide better results, e.g. by allowing

deterioration and even infeasible solutions. However, their running time is un-

known and they are usually more time consuming than the classical heuristics.

Furthermore, they involve many parameters that need to be tuned for each prob-

lem before they can be applied. Several metaheuristics have been applied to the

VRP. With respect to classical heuristics, they perform a more thorough search

of the solution space and are less likely to end with a local optimum. These can

be broadly divided into three classes:

1. Local Search, including

• Simulated Annealing (SA)

• Deterministic Annealing (DA)

• Tabu Search (TS)

2. Learning Mechanisms, including

• Neural Networks (NN)

• Ant Colony Optimization (ACO)
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3. Population Search, including

• Adaptive Memory Procedures (AMP)

• Genetic Algorithm (GA)

The best heuristics often combine ideas borrowed from different metaheuristic

principles. Recent surveys of VRP metaheuristics can be found in Gendreau et

al. (2002), Cordeau and Laporte (2004), and Cordeau et al. (2005).

The algorithms SA, DA and TS move from one solution to another one in the

neighbourhood until a stopping criterion is satisfied. The fourth method, AS, is

a constructive mechanism creating several solutions in each iteration based on

information from previous generations. NN is a learning method, where a set

of weights is gradually adjusted until a satisfactory solution is reached. Finally,

GA maintain a population of good solutions that are recombined to produce new

solutions. Compared to best-known methods, SA, DA and AS have not shown

competitive results and NN are clearly outperformed. TS has got a lot of at-

tention by researches and so far it has proved to be the most effective approach

for solving VRP. Many different TS heuristics have been proposed with unequal

success.

Local Search

Local search algorithms explore the solution space by iteratively moving from

a solution xt at iteration t to a solution xt+1 in the neighborhood N(xt) of xt

until a stopping criterion is satisfied. If f(x) denotes the cost of solution x, then

f(xt+1) is not necessarily smaller than f(xt). As a result, mechanisms must be

implemented to avoid cycling.

A limited number of simulated annealing heuristics for the CVRP were proposed

in the early 1990s. Osman’s implementation (Osman, 1993) is the most involved
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and also the most successful. It defines neighborhoods by means of a 2-interchange

scheme and applies a different rule of temperature changes. Instead of using a

non increasing function, as do most authors in the field, Osman decreases θt con-

tinuously as long as the solution improves, but whenever xt+1 = xtt, θt is either

halved or replaced by the temperature at which the incumbent was identified.

This algorithm succeeded in producing good solutions but was not competitive

with the best tabu search implementations available at the same period.

In Simulated Annealing, a solution x is drawn randomly from N(xt).

If f(x) ≤ f(xt), then xt+1 := x. Otherwise,

xt+1 =


x with probability pt

xt with probability 1− pt

where pt is a decreasing function of t and of f(x) − f(xt). This probability is

often equal to

pt = exp

(
1− f(x)− f(xt)

θt

)
where θy is the temperature at iteration t, usually defined as a non increasing

function of t.

Deterministic Annealing (Dueck, 1990, 1993) is similar. There are two main ver-

sions of this algorithm: in a threshold-accepting algorithm, xt+1 := x if f(x) <

f(xt) + θ1, where θ1 is a user controlled parameter; in record-to-record travel, a

record is the best known solution x∗, and xt+1 := xiff(xt+1) < θ2f(x∗), where

θ2 is also user controlled.

Deterministic annealing was first applied to the VRP by Golden et al. (1998)

and more recently by Li et al. (2005). The latter algorithm combines the record-

to-record principle of Dueck (1993) with GTS. It works on a sparsified graph

containing only a proportion α of the 40 shortest edges incident to each vertex,
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where α varies throughout the algorithm. The algorithm is applied several times

from three initial solutions generated by the Clarke and Wright (1964) algorithm,

with savings sij defined as ci0 + c0j − λcij, and λ = 0.6, 1.4, and 1.6.

Neighbors are defined by means of intra- and inter-route 2-opt moves, and Non

improving solutions are accepted as long as their cost does not exceed that of

the incumbent by more than 1%. Whenever the solution has not improved for

a number of iterations, a perturbation is applied to the best known solution to

restart the search. This is achieved by temporarily moving some vertices to dif-

ferent positions.

In Tabu Search, in order to avoid cycling, any solution possessing some given

attribute of xt+1 is declared tabu for a number of iterations. At iteration t, the

search moves to the best non-tabu solution x in N(xt). These local search algo-

rithms are rarely implemented in their basic version, and their success depends on

the careful implementation of several mechanisms. The rule employed to define

neighborhoods is critical to most local search heuristics. In simulated annealing

several rules have been proposed to define Î̧ t (see Osman, 1993). Tabu search

relies on various strategies to implement tabu tenures (also known as short term

memory), search diversification (also known as long term memory), and search

intensification which accentuates the search in a promising region.

As written above, to date Tabu Search has been the best metaheuristic for VRP.

The heuristic starts with an initial solution x1 and in step t it moves from so-

lution xt to the best solution xt+1 in its neighbourhood N(xt), until a stopping

criterion is satisfied. If f(xt) denotes the cost of solution xt, f(xt+1) does not

necessarily have to be less than f(xt). Therefore, a cycling must be prevented,

which is done by declaring some recently examined solutions tabu or forbidden

and storing them in a tabulist. Usually, the TS methods preserve an attribute

of a solution in the tabulist instead of the solution itself to save time and memory.
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Learning mechanisms

A limited number of heuristics based on learning mechanisms have been proposed

for the VRP. None of the known neural networks based methods is satisfactory,

and the early ant colony based heuristics could not compete with the best avail-

able approaches.

Neural Networks are models composed of richly interconnected units through

weighted links, like neurons in the brain. They gradually construct a solution

through a feedback mechanism that modifies the link weights to better match

an observed output to a described output. In the field of vehicle routing neural

network models called the elastic net and the self-organizing map are deformable

templates that adjust themselves to the contour of the vertices to generate a fea-

sible VRP solution. An example is provided by Ghaziri (1993).

Ant Colony algorithms (see Dorigo et al., 1999) also use a learning mecha-

nism. They are derived from an analogy with ants which lay some pheromone on

their trail when foraging for food. With time more pheromone is deposited on

the more frequented trails. When constructing a VRP solution a move can be

assigned a higher probability of being selected if it has previously led to a better

solution in previous iterations.

Population Search

Population search algorithms operate on several generations of solution popula-

tions. Population search consists of maintaining a pool of good parent solutions

and recombining them to produce offspring.

The Adaptive Memory Procedure (AMP) put forward by Rochat and Tail-

lard (1995) constitutes a major contribution to the field of metaheuristics. An

adaptive memory is a pool of good solutions which is updated by replacing its
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worst elements with better ones. In order to generate a new solution, several

solutions are selected from the pool and recombined. In the context of the VRP,

vehicle routes are extracted from these solutions and used as the basis of a new so-

lution. The extraction process is applied as long as it is possible to identify routes

that do not overlap with previously selected routes. When this is no longer pos-

sible, a search process (e.g., tabu search) is initiated from a partially constructed

solution made up of the selected routes and some unrouted customers. Any so-

lution constructed in this fashion replaces the worst solution of the pool if it has

a better cost.

In Genetic Algorithm (GA), it is common to repeat the following operation k

times: extract two parent solutions from the populations to create two offspring

using a crossover operation, and apply a mutation operation to each offspring;

then remove the 2k worst elements from the population and replace them with

the 2k offspring.

3.17.3 Attributes of Good VRP Heuristics

Four attributes of good VRP heuristics Vehicle routing heuristics, as are most

heuristics, are usually measured against these criteria: accuracy, speed, flexibility

and simplicity.

Accuracy

Accuracy measures the degree of departure of a heuristic solution value from the

optimal value. Since optima and sharp lower bounds are usually unavailable in

the case of the VRP, most comparisons have to be made with best known values.

Speed

Just how important is computation speed in vehicle routing? It all depends on

the planning level at which the problem is solved and on the degree of accu-
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racy required. At one extreme, real-time applications such as express courier

pickup and delivery or ambulance redeployment require fast, sometimes almost

instantaneous, action.

Flexible

A good VRP heuristic should be flexible enough to accommodate the various

side constraints encountered in a majority of real-life applications. Experiences

suggest that an efficient way of handling side constraints in a local search process

is through the use of two objectives. The first, F (x), computes the routing cost

of solution x. The second, F ′(x), is the sum of F (x) and weighted penalty terms

associated with violations of each side constraint.

Simplicity

Simplicity Several VRP heuristics are rarely implemented because they are just

too complicated to understand and to code.
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Chapter 4

A Genetic Algorithm Method for Vehicle

Routing Problem (VRP)

4.1 The Model

The most general version of VRP is the Capacitated Vehicle Routing Problem,

which will be referred to as just VRP from now on. The VRP consists of designing

a set of at most m delivery or collection routes with the following assumptions:

1. Each route starts and ends at the depot

2. Each customer is visited exactly once by exactly one vehicle

3. The total demand of each route does not exceed the capacity of the vehicle

4. The total routing cost is minimized.

The model for VRP has the following parameters:

• n is the number of customers

• K denotes the capacity of each vehicle

• di denotes the demand of customer i

• cij is the cost of travelling from customer i to customer j

All parameters are considered non-negative integers. A homogeneous fleet of vehi-

cles with a limited capacity K and a central depot, with index 0, makes deliveries

to customers, with indices 1 to n. The problem is to determine the exact tour of

each vehicle starting and ending at the depot. Each customer must be assigned

to exactly one tour, because each customer can only be served by one vehicle.
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The sum over the demands of the customers in every tour has to be within the

limits of the vehicle capacity. The objective is to minimize the total travel cost.

That could also be the distance between the nodes or other quantities on which

the quality of the solution depends, based on the problem to be solved. Hereafter

it will be referred to as a cost.

The mathematical model is defined on a graph (N,A), Let G(N,A) be a graph

where N = {n0, nl, . . . , nn} is a node set. Node n0 represents a depot, while

the remaining nodes correspond to customers, thus node set N corresponds to

the set of customers C from 1 to n in addition to the depot number 0. With

A = {(ni, nj) : ni, nj ∈ N, i 6= j} as an arc set. The arc set A consists of pos-

sible connections between the nodes. A connection between every two nodes in

the graph will be included in A here. With each arc (i, j) ∈ A are associated a

cost matrix (cij) and a travel time matrix (tij). It is assumed that the cost is

symmetric, i.e. cij = cji, and also that cii = 0. If these matrices are symmetrical,

as is commonly the case, then it is standard to define the VRP on an undirected

graph G = (N,E), where E = {(ni, nj) : ni, nj ∈ N, i < j} is an edge set. The

number of vehicles is either known in advance or treated as a decision variable.

Each customer has a non-negative demand di and a service time ti. A fleet of V

identical vehicles of capacity K is based at the depot.

The decision variables are Xv
ij and dvi

Xv
ij =


1, if vehicle v drives from node i to node j

0, Otherwise

(4.1)

dvi = fraction of customer’s demand i delivered by vehicle v (4.2)
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The objective function of the mathematical model is

min
∑
v∈V

∑
(i,j)∈A

cijX
v
ij (4.3)

Subject to
∑
v∈V

∑
j∈N

Xv
ij = 1 ∀i ∈ C (4.4)

∑
i∈Vl

di = 1 for l = 1, . . . , k (4.5)

∑
i∈C

di
∑
j∈N

Xv
ij ≤ K ∀v ∈ V (4.6)

∑
j∈C

Xv
0j = 1 ∀v ∈ V (4.7)

∑
i∈N

Xv
ik −

∑
j∈N

Xv
kj = 0 ∀k ∈ C and ∀v ∈ V (4.8)

∑
v∈V

∑
j∈N

Xv
ij ≥ 1 ∀j ∈ N (4.9)

dvi ≥ 0, ∀i ∈ A and ∀v ∈ V (4.10)

Xv
ij ∈ {0, 1}, ∀(i, j) ∈ A and ∀v ∈ V (4.11)

Constraint Explanations are as follows:

• Constraint 4.4 is to make sure that each customer is assigned to exactly one

vehicle.

• Constraint 4.5 guarantees that the total demand of each customer will be

fulfilled.

• In equation 4.6 the capacity constraints is stated. The sum over the de-

mands of the customers within each vehicle v has to be less than or equal

to the capacity of the vehicle. This guarantees that the vehicle capacity

will not be exceed by the sum of the demands.
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• Equations 4.7 and 4.8 are about entrance and exit flows. Firstly, each vehi-

cle can only leave the depot once. Secondly, the number of vehicles leaving

every customer k and entering the depot must be equal to the number of

vehicles leaving.

• Constraint 4.9 guarantees that each node will be visited at least once by at

least one vehicle.

• Equation 4.10 guarantees the decision variable to be positive.

• Equation 4.11 guarantees the decision variables to be binary.

However, there is a lower bound on the number of vehicles, which is the smallest

number of vehicles that can carry the total demand of the customers,

∑
i∈C di

∑
j∈N X

v
ij

K

4.2 Computation and Results

Upon studying the operations of Amponsah Effah Pharmaceutical Limited (Ku-

masi) carefully, the operations of this company is to distribute their medicine

after production to their nineteen (19) wholesale points starting from their depot

in Adum to different cities with their delivery vehicle.

Since the wholesale points of the company are sited in random cities and the

delivery vehicle have to distribute the medicines without passing through a spe-

cific route, their operations can be modeled by Vehicle Routing Problem.

A data was collected from Amponsah Effah Pharmaceutical Limited which has

been used to create a set of routes on which the company uses to minimize the

total distribution distance of the vehicle.
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Testing every probability for N wholesale tour would be . This implies that

testing 19 wholesale points including their main depot in Adum making it 20

tours, we would have to measure different tours. To calculate the fittest of tours

for its minimum distance would take years.

However, genetic algorithm can be used to find a solution in the shortest possi-

ble time, although it might not find the best solution, it can find a near perfect

solution for a 100 wholesale tour in less than a minute.

There are couples of basic steps to solving the vehicle routing problem using

GA which has been discussed below.

4.3 Model

Amponsah Efah Pharmaceuticals Limited has their main depot in Adum where

it has all its vehicle located. A delivery van is used for the distributions in the

northern sector to the depot. The nineteen (19) specific wholesale points for the

northern sector including their depot Amponsah Efah located in different cities

are:

Action Pharmacy Fredemens Pharmacy

Amponsah Efah Nyankwa Pharmacy

Asempa Pharmacy Kojach Pharmacy

Benita Pharmacy Kojach Pharmacy Annex

Big Maron Pharmacy Lansa Chemist

Concept Medical Mensaf Chemist

Costa Pharmacy Noble Chemist

Danni Herbal Numens Chemist

Evergreen Pharmacy Oson’s Chemist

Panacea Pharmacy Porter Pharmacy
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Figure 4.1: Geographical positions of Wholesale points

.

Figure 4.2: Geographical positions of Wholesale points with Distance
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Figure 4.3: Joint representation of Fig. 4.1 and 4.2

The delivery van has to set off from the central depot point.

The schedule of the delivery van and its assigned route as partitioned is as follows:

Amponsah Effah→ Action Pharmacy→ Panacea Pharmacy→ Nyankwah Phar-

macy→ Asempa Pharmacy→ Kojach Pharmacy Annex→ Evergreen Pharmacy

→ Costa Pharmacy → Lansah Chemist → Noble Chemist → Fredemens Phar-

macy → Numens Pharmacy → Danna Herbal → Big Maron Pharmacy → Ko-

jach Pharmacy → Benita Pharmacy → Oson’s Pharmacy → Concept Medicals

→ Porter Pharmacy → Mensaf Pharmacy

The total distance travelled by the delivery van from the depot to all the nine-

teen (19) wholesale points and back to the depot was found to be 11336 meters

(11.336km).
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4.4 Data

In using their local grid points (coordinates) shown in Table 4.1, all the 19 whole-

sale points and their depot are plotted in a graph below using Matlab.

Table 4.1: Coordinates of Wholesale points

Wholesale Point Name Xm Ym
ASEMPA PHARMACY 652315 740442
BENITA PHARMACY 652597 740991

BIG MARON PHARMACY 652292 741221
CONCEPT MEDICAL 652589 740905
COSTA PHARMACY 651964 740712

DANNI HERBAL 652110 741159
EVERGREEN PHARMACY 652289 740483
FREDIMENS PHARMACY 652402 740774

KOJACH PHARMACY 652589 741092
LANSAH CHEMIST 652413 740702
MENSAF CHEMIST 652936 740676
NOBLE CHEMIST 652403 740725

NUMENS PHARMACY 652505 740787
NYANKWA PHARMACY 652235 740171

OSONS CHEMIST 652514 740976
PORTER PHARMACY 652766 740795
AMPONSAH EFFAH 652639 739588

ACTION PHARM 653042 739361
PANACEA PHARMACY 653161 739632

KOJACH PHARMACY ANNEX 652468 740367

Figure 4.4: Graph Showing The Coordinates of Wholesale points
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4.5 Encoding

Value encoding is used. Numbers are assigned to all the 20 points as shown be-

low.

Let WP represent wholesale point

WP 1 ⇒ Amponsah Efah

WP 2 ⇒ Nyankwa Pharmacy

WP 3 ⇒ Asempa Pharmacy

WP 4 ⇒ Evergreen Pharmacy

WP 5 ⇒ Kojach Pharmacy Annex

WP 6 ⇒ Costa Pharmacy

WP 7 ⇒ Lansah Chemist

WP 8 ⇒ Noble Chemist

WP 9 ⇒ Fredemens Pharmacy

WP 10 ⇒ Numens Pharmacy

WP 11 ⇒ Benita Pharmacy

WP 12 ⇒ Porter Pharmacy

WP 13 ⇒ Mensaf Pharmacy

WP 14 ⇒ Concept Medicals

WP 15 ⇒ Action Pharmacy

WP 16 ⇒ Oson’s Pharmacy

WP 17 ⇒ Kojach Pharmacy

WP 18 ⇒ Panacea Pharmacy

WP 19 ⇒ Big Maron Pharmacy

WP 20 ⇒ Danni Herbal

The distance matrix is shown below and the corresponding distance square ma-

trix graph is plotted using Matlab as shown in Fig. 4.5
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WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP9 WP10 WP11 WP12 WP13 WP14 WP15 WP16 WP17 WP18 WP19 WP20

WP1 0 759 894 967 1160 1400 2253 2278 2333 2521 2478 2753 2961 2823 2941 2923 3083 3211 2431 2321

WP2 759 0 309 382 575 888 1741 1766 1821 2009 1966 2241 2449 2311 2429 2411 2571 2650 1859 1809

WP3 894 309 0 73 266 579 1432 1457 1512 1700 1657 1932 2140 2002 2120 2102 2262 2341 1559 1500

WP4 967 382 73 0 339 592 1359 1384 1439 1627 1584 1859 2067 1929 2047 2029 2189 2268 1555 1427

WP5 1160 575 266 339 0 845 1612 1637 1692 1880 1837 2112 2320 2182 2300 2282 2442 2521 1816 1766

WP6 1400 888 579 592 845 0 767 792 847 1035 992 1267 1475 1337 1455 1437 1597 1676 885 835

WP7 2253 1741 1432 1359 1612 767 0 25 80 199 242 500 708 570 688 670 830 909 664 714

WP8 2278 1766 1457 1384 1637 792 25 0 55 174 217 492 700 562 680 662 822 901 630 689

WP9 2333 1821 1512 1439 1692 847 80 55 0 119 162 437 645 507 625 607 767 846 584 634

WP10 2521 2009 1700 1627 1880 1035 199 174 119 0 43 318 526 388 506 488 160 239 465 515

WP11 2478 1966 1657 1584 1837 992 242 217 162 43 0 275 483 345 463 445 605 684 508 558

WP12 2753 2241 1932 1859 2112 1267 500 492 437 318 275 0 208 208 326 308 468 547 640 896

WP13 2961 2449 2140 2067 2320 1475 708 700 645 526 483 208 0 416 534 516 676 755 848 1154

WP14 2823 2311 2002 1929 2182 1337 570 562 507 388 345 208 416 0 118 100 260 339 432 738

WP15 2941 2429 2120 2047 2300 1455 688 680 625 506 463 326 534 118 0 156 202 316 556 862

WP16 2923 2411 2102 2029 2282 1437 670 662 607 488 445 308 516 100 156 0 160 239 332 638

WP17 3083 2571 2262 2189 2442 1597 830 822 767 160 605 468 676 260 202 160 0 142 382 688

WP18 3211 2650 2341 2268 2521 1676 909 901 846 239 684 547 755 339 316 239 142 0 270 576

WP19 2431 1859 1559 1555 1816 885 664 630 584 465 508 640 848 432 556 332 382 270 0 306

WP20 2321 1809 1500 1427 1766 835 714 689 634 515 558 896 1154 738 862 638 688 576 306 0



Figure 4.5: Plot of Distance square matrix
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4.6 Initial Population

A group of many random tours called an initial population is created where a

population is a combination of chromosomes. We represent the population as

array of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

chromosomes which represent all the different wholesale locations and the main

depot as 20.

For each chromosome we calculate the length that is coded into it, actually this

is the fitness of the tour. Fitness function is nothing but the minimum cost. Ini-

tially the fitness function is set to the maximum value and for each tour the cost

is calculated and compared with the fitness function. The new fitness value is

assigned to the minimum cost. Initial population is randomly chosen and taken

as the parent.

4.7 Crossover and Mutation

There are two main problems associated with the use of GA to solve VRP. These

problems are the choosing of proper methods of crossover and mutation that is

used to combine the two parent tours to make the child tours. The two-point

crossover is used.

Given a random population of

12 16 6 9 2 15 11 5 18 10 13 14 4 1 3 8 19 17 7 20

This means that we start from the depot 1, the van goes to wholesale point 3 to

point 8 to point 19 to point 17 to point 7 to point 20 or from the depot 1, the

van goes to in the opposite direction, thus from 1 it goes to wholesale point 4 to

point 14 to point 13 to point 10 to point 18 to point 5 to point 11 to point 15 to

point 2 to point 9 to point 6 to point 16 and then to point 12.
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To reduce bias and the endpoint effect, two-point crossover is used in which

two positions in the parents are chosen at random and the segments between

them are exchanged.

If our parents with the two random points chosen are

Parent 1 ⇒ 18 16 3 12 20 7 6 1 17
... 15 4 2 14 11

... 9 13 10 8 19 5

Parent 2 ⇒ 12 13 3 19 7 10 1 11 18
... 16 2 15 6 4

... 8 20 9 11 14 5

Then after the crossover, the offspring produced will be

Offspring 1 ⇒ 18 16 3 12 20 7 6 1 17
... 16 2 15 6 4

... 9 13 10 8 19 5

Offspring 2 ⇒ 12 13 3 19 7 10 1 11 18
... 15 4 2 14 11

... 8 20 9 11 14 5

The problem of not being trapped in a local optimum could be solved by mutation

after crossover. Due to the randomness of the process we will occasionally have

chromosomes near a local optimum but not the global optimum. Therefore the

better the fitness the less chance of hiding the global optimum. So mutation is

a completely random way of getting to a possible solution that would otherwise

not be found.

Mutation is performed after crossover. The mutation index must decide whether

to perform mutation on this offspring or not. We then choose a point to mutate

and switch that point. Like we had

118



Offspring 1 ⇒ 18 16 3 12 20 7 6 1 17
... 16 2 15 6 4

... 9 13 10 8 19 5

Offspring 2 ⇒ 12 13 3 19 7 10 1 11 18
... 15 4 2 14 11

... 8 20 9 11 14 5

If we decide to choose the mutation point in offspring 1 to be 3 and 10, and

that of offspring 2 to be 7 and 9, then the two offspring would become

Offspring 1 ⇒ 18 16 10 12 20 7 6 1 17
... 16 2 15 6 4

... 9 13 3 8 19 5

Offspring 2 ⇒ 12 13 3 19 9 10 1 11 18
... 15 4 2 14 11

... 8 20 7 11 14 5

The process makes a strict verification of the chromosome after the mutation

process to ignore non legal chromosome.

The product finds a solution to the Vehicle Routing Problem. For this pur-

pose of VRP of finding the minimum total tour, we use cities, chromosomes and

populations, where our cities are the wholesale points, chromosomes are the in-

dividual tours and the population is the combination of all the individual tours,

ie., 20!

Each wholesale point is situated on coordinates (x, y) on the map. In the work-

ing process a defined number of wholesale points are being created. Then the

program solves the vehicle routing problem foe these wholesale points in different

cities.
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4.8 Fitness Function

To decide if a chromosome (tour) is good and how good it is, is the purpose of the

fitness function. The criteria for good chromosome (tour) in VRP is the length

of the chromosome. Thus, the longer the chromosome that is coded, the better

the chromosome. Calculation takes place during the creation of the chromosome.

Each chromosome is created and then its’ fitness function is calculated. The

length of the tour is measured in pixels by the scheme of the tour.

Fitness tour =
n∑

i=1

di

where n is the number of wholesale points and is the distance between a wholesale

point and the depot.

Matlab code is used to find the optimal route (tour) which is given as

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 6

and its corresponding graph is shown below in Fig. ??

Figure 4.6: Optimal Route Tour
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Bearing it in mind that Amponsah Efah Pharmaceuticals Limited uses one deliv-

ery van, the optimal route is rearranged for the one vehicle as represented below.

1 2 3 5 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 6

Rearranged

1 2 3 5 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 6 1

4.9 Optimal Route With Delivery Points

The optimal routes after they have been rearranged is as follows. This is done

together with the main depot point as:

Amponsah Effah → Nyankwa Pharmacy → Asempa Pharmacy → Kojach Phar-

macy → Evergreen Pharmacy → Kojach Pharmacy Annex → Evergreen Phar-

macy → Lansa Pharmacy → Noble Chemist → Fredemens Pharmacy → Nu-

mens Pharmacy ⇒ Benita Pharmacy → Porter Pharmacy → Mensaf Pharmacy

→ Concept Medicals→ Action Pharmacy→ Oson’s Pharmacy→ Kojach Phar-

macy → Panacea Pharmacy → Big Maron Pharmacy → Danni Herbal → Costa

Pharmacy

Total distance for the delivery van (for the northern sector) is calculated to be

7560 metre (7.560km).

The fitness tour was calculated based on the following assumptions being used

by Amponsah Efah Pharmaceutical Limited, Kumasi.

• One delivery van is used to make the distributions in the northern sector.

• The van picks up all the wholesale points demand from only one source

which is the depot, Amponsah Efah Pharmaceutical Limited, Adum.

• The van is big enough to contain the requested demands of all the wholesale

points in a single distribution without shortage for more.
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• There are no traffic and other constraints after a tour has been established.

Then the optimal tour from the population depends on

• The shortest distance from the starting point which is the depot, to any of

the wholesale points.

• All the distances from the depot to the wholesale point locations gives the

minimum fitness value.
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Chapter 5

Conclusion and Recommendation

5.1 Conclusion

In this work, Genetic algorithm is tested to find the optimal route for the VRP

which shows the superiority of Genetic Algorithm over the company’s normal

route.

It is also proven that if Amponsah Effah Pharmaceutical Limited in retrospective

uses this work, they would be able to reduce their operational distance by 3776m

(3.7760km) thereby reducing their cost of fuelling their delivery vans which intend

reduces the cost of operations of the company. We are of the view that this work

if adopted would increase the profit margin of the company and as well help the

company to improve remuneration of all staff members of the company.

5.2 Recommendation

As an efficient tool for combinatorial optimization problems, Genetic Algorithm

is very useful for solving problems which can be modeled as the VRP, thereby

finding the optimal distance. In light of this capacity of Genetic Algorithm, it is

recommended that GA should be used to solve Vehicle Routing Problem (VRP)

instead of other traditional heuristic methods.

With regards to our conclusion, we also recommend GA as a tool in seek for

an optimal route for their vehicle since it will profit the company in the following

areas:

• Increase in profit margin due to reduced cost as a result of reduced distance
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covered.

• Increase in incentives to achieve staffs satisfactions which will also aid in

another increase in profit margin of the company.
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