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ABSTRACT  



 

iv  

Bioremediation is a promising technique presently being practiced to extract heavy metals 

from mined tailings on commercial scale in many developed countries. This technology 

of remediating heavy metals contaminated soils has overriding advantage on 

conventional technologies. The hyperaccumulation potential of four plant species, 

Chromolaena ordorata (CO), Paspalum vaginantum (PV), Chrysopogon zizanioides 

(CZ) and Cynodon dactylon (CD) were evaluated using soil polluted by mining activities 

from Bontesso in the Amansie West District of Ashanti Region of Ghana. Nine treatments 

were used in the study: Control, CO, CZ, PV, CD, CO+PV, CO+CD, CZ+PV and CZ+CD 

samples. The experiment was laid out in a randomized complete block design with six 

replicates. The soils’ physico-chemical properties and the concentration of some selected 

heavy metals (As, Cd, Cu, Ni and Pb) were determined. Plant growth and dynamics of 

pH, electrical conductivity and heavy metals concentrations in the soil were monitored 

for a nine-week study period. Accumulation, bioaccumulation and translocation 

potentials were determined. Okro and tomato were cultivated on treated soils and 

concentrations of metals in the crops were determined. The results of the study show that, 

soil in the study area are acidic with average pH range of 5.71-6.24 and of loamy-sand 

texture. Soil organic carbon, total nitrogen and Phosphorous contents are 0.21 %, 0.09 % 

and 4.79 mg/kg soil, respectively. Concentrations of Pb, Cu, Ni, As and Cd 40.22, 30.54, 

23.58, 6.18 and 0.27 mg/kg, respectively) in the area are generally below the permissible 

limits set by WHO. Combined use of CO and PV (CO+PV) plant species resulted in 

higher reductions in the concentrations of all measured metals from the soil. The species 

accumulation and bioaccumulation factors also show their specific metal affinity and time 

limitation for their application. The implication of this research is to help reduce threats 

on national food security and to increase the food buscket as far as agriculture is 

concerned.  
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CHAPTER ONE  

 1.0  INTRODUCTION  

1.1  Background  

Exploitation of natural resources have played diverse roles in enhancing the economies 

of both developing and developed countries. These exploitations result in environmental 

contamination from industrial activities. Metal mining, a dominant industrial activity has 

become widespread due to the persistent attempt to exploit natural resources to meet the 

demands of today’s world (Khan, 2005).  

  

Prevalent contaminants associated with gold mining include heavy metals, hydrocarbons 

and toxic gases. Once the valuable metals are obtained out of the ore, certain levels of 

unwanted inorganic substances like arsenic, copper, lead, zinc, iron, sulphate, cyanide, 

nitrate, calcium, as well as magnesium are frequently delivered into shadowings 

(Cunninghan et al., 1995). These inorganic substances will remain indefinitely once they 

are introduced into the environment, since they are not degradable when compared to 

carbon-based (organic) molecules. Exposure to these substances for a prolonged time is 

typically long lasting because of food-chain-transfer which could result in diverse 

medical influences (Khan, 2005).  

  

According to Agrawal and Sharma (2006), elevated concentrations of heavy metals in 

soils show possible toxicification results on the general development.  In addition, 

metabolic rate of plant life, and biological buildup of these lethal alloys in plants present 

danger to anthropoid and animal well-being (Wang et al., 2003). Fundamentally, heavy 

metals are present in the environment, however, their presence become exacerbated due 

to anthropogenic activities (Kavitha et al., 2013).  
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The increasing awareness of the risks caused by environmental pollution has led to the 

search in many countries for methods, of not only cultivating land, but also preventing 

the contamination of the environment and food (Gruca-Królikowska et al., 2006). Over 

the years, numerous physico-chemical and biological remediation approaches, like 

thermal handling, stabilization, precipitation and biological remediation have been 

developed as well as employed in eliminating pollutants out of soils. Physico-chemical 

approaches for decontamination are suitable for comparatively smaller fields since they 

are too luxurious to employ over large areas such as the ones contaminated by industrial 

substances, oil products and mining sites (Chekol et al., 2004; Escalante-Espinosa et al.,  

2005).  

  

Nevertheless, an emerging technology that uses various plants to degrade, extract, 

contain, or immobilize contaminants (Abdullah and Sarem, 2010; Nazire et al., 2011) out 

of soil as well as water is phytoremediation. This approach currently is gaining 

consideration as a groundbreaking as well as lucrative substitute to most instituted 

handling approaches employed at contaminated sites. This comprise rhizofiltration, 

phytostabilization, phytoextraction, phytovolatilization and phytodegradation (Khan et 

al., 2000). Phytoremediation of hydrocarbons possess the ability to be a bearable waste 

handling approach if it could be efficient in practice (Gurska et al., 2000). The 

amalgamation of microorganism reclamation as well as phytoremediation has recently 

become a common activity in field handling of hydrocarbons and heavy metals 

contaminated soils. This technique can be defined as rhizoremediation, which is a specific 

type of phytoremediation that involves both plants and their associated rhizosphere 

microbes. This process according to Gerhardta et al. (2009) could happen normally or 

activated via purposely adding precise microorganisms.   

  



 

3  

1.2  Problem Statement  

There is a significant weight on mining Ghana's mineral capitals (Hilson, 2002; Kuma et 

al., 2002). In spite of the known environmental problems associated with mining 

activities in the world, the industry continues to grow since it contributes immensely to 

the country’s gross domestic product (GDP). The benefits of mining in many Ghanaian 

communities cannot be overlooked due to lack of enforcement of minerals and mining 

laws in the country. Mining has become an activity of "removing oneself from surviving", 

due to the huge derelict sites that are preventing portable water, air, as well as food for 

our existence (Ocansey, 2013; Agbesi, 2017).  

  

According to Tordo et al. (2000), there are many large, exposed, untreated tailings and 

abandoned mining sites worldwide due to lack of technological expertise for sustainable 

remediation. These abandoned sites are commonly contaminated with varying levels of 

heavy metals and hydrocarbons. As a matter of urgency, these sites desperately needs to 

be remediated and re-vegetated to avoid substantial danger to the surroundings owing to 

the poisonous feature of heavy metals remains embedded in them.  

  

Leached heavy metals contaminated could be tracked inside the soil, water or plant. Plants 

bio-accumulate dense metals out of polluted soils via its roots and distributes it uniformly 

through the foliage (CCME, 2001). Cocoa and other farm crops in the Bontesso 

community risk potential of accumulating these heavy metal. These heavy metals have 

been reported to cause diseases in humans that include diarrhoea, cancer, stomach 

cramps, nausea, anaemia, kidney damage and brain damage (WHO, 2006) hence the need 

to establish indigenous hyperaccummulators in remediating contaminated mined soils.  
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1.3  Aim and Objectives  

The research pursues to assess the hyper-accumulation ability of Chromolaena ordorata, 

Chrysopogon zizanioides, Paspalum viginantum and Cynodon dactylon using heavy 

metals contaminated soil from Bontesso in the Amansie West District, Ashanti Region,  

Ghana.  

  

The specific objectives were:  

 To determine the physicochemical attributes of contaminated mine soil by 

measuring selected heavy metals such as (Pb, As, Cd, Cu and Ni).  

 To determine the combined effect of contaminated soil amended with compost and 

selected phytoextraction candidate plants (Chromolaena ordorata, Chrysopogon 

zizanioides, Paspalum viginantum and Cynodon dactylon) on remediation of heavy 

metals.  

 To assess the potential of the remediated mine soil to be used for agricultural 

purposes through potted experiments using okra and tomatoes.  

  

1.4  Justification   

Treatment of soil contaminated with heavy metals must be affordable, sustainable and 

environmentally friendly just like many phytoremediation strategies (Abdullah and 

Sarem 2010; Rajakaruna et al., 2006). Phytoremediation is a promising technique 

presently being deployed to extract metals from mine tailings (Chehregani et al., 2009) 

in many developed countries. This technology of remediating heavy metal contaminated 

soil has many advantages over conventional technologies, which are unusually expensive, 

and in some cases present secondary contamination (Raskin et al., 1997; Pulford and  
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Watson, 2003; Rajeswari, 2014).  Establishing indigenous hyperaccumulators will provide 

important information for the selective exploitation of species that can survive and establish 

ecologically on metal contaminated soils.  

  

1.5  Hypotheses  

This study was conducted based on the following hypotheses:  

1. Soils disturbed through mining activities contain levels of heavy metals, 

hydrocarbons, nutrients and microbial population as expected by FAO soil 

guideline.  

2. Indigenous hyperaccumulators such as Chromolaena ordorata, Chrysopogon 

zizanioides, Paspalum viginantum and Cynodon dactylon grown on amended 

mined soils have no significant influence on the removal of heavy metals 

degradation.  

3. Soils restored from heavy metals and hydrocarbon contaminations will continue 

to be toxic to food crops, hence cannot support their growth.  

1.6  Scope of Study  

This thesis is categorized into five chapters. The preceeding chapter presented the 

background information to this reseach justifying the need to ascertain phytoremediation 

of some heavy metals from disturbed mined soils. Chapter two present the relevant 

literature that was reviewed to support the discussion of soils contaminated with heavy 

metals and aspects related to the objective of the study. It also discusses the potential of 

food crops grown in remediated soil. Chapter three described the methods employed in 

data collection, treatment studied, laboratory analysis and data management. Chapter four 

presents results and discussions and finally chapter five presents the conclusions of the 

study, recommendations and suggestion for future studies.  
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CHAPTER TWO  

 2.0  LITERATURE REVIEW  

2.1  Overview of the Mining Sector  

Materials that cannot be created artificially in a laboratory or factory, or grown through 

agricultural processes are usually mined. Mining could simply be described as the 

removal of valuable ore or certain physical resources out of the earth, typically out of 

rocks, lode, vein, seam, reef or placer deposits (Tawiah and Baah, 2011).  

  

Minerals are naturally obtained to be industrialized, traded as well as utilized to improve 

the lives of individuals in a country (Eggert, 2002). Developed nations such as Australia, 

Canada, Sweden as well as United States have hinge on the exploration as well as 

extraction of ore for their financial growth. Mineral industries produces revenue as well 

as foreign exchange via exportations, as well as could arouse indigenous frugalities via 

the native acquisition of materials (Weber-Fahr, 2002). Revenues received by 

governments from the mining sector can be used to support academia, medical upkeep, 

infrastructure, power provision as well as certain kinds of substructure enlargement  

(Tawiah and Baah, 2011).  

  

The mining industry is a priority area for Foreign Direct Investment (FDI) in most 

developing countries with mineral resources (Weber-Fahr, 2002). Through the creation 

of employment and financial development, quarrying industries assist and enhance some 

personal owned venture at the indigenous, provincial and nationwide stages. The 

informed consensus by most researchers (Ascher, 1999; Davis, 1998; Deaton 1999) 

therefore is that minerals possess the ability to add substancially to the financial growth 

of a nation.  
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2.1.1  Mining in Ghana  

Mining in Ghana could be tracked to the expatriate as well as pre-expatriate eras. The 

historic significance of mining in the financial growth of Ghana is substantial as well as 

considerably acknowledged (Traore, 1997; Amankwah and Anim-Sackey, 2003; GFR,  

2005; Yankson, 2010). During colonial British rule, the country was named the Gold 

Coast, reproducing the significance of the mining division, mainly, the gold transaction 

in the nation (Agbesinyale 2003; Akabzaa 2000) and gold production was booming. The 

first gold rush took place between 1892 and 1901, and the second followed after the First  

World War.    

  

Mining outputs decreased significantly in the late 1950’s due to serious decrease in gold.  

As stated by Aryee (2001) “Since the 1980’s there has not been any fresh place of mining 

in Ghana because of a countless challenges encountered by mining division and their 

stockholders. This is due to monetary, organizational and lawful structures where the 

mining division function”. To arouse venture inside the minerals frugality in Ghana, the 

administration executed chain of rules as well as strategy procedures to develop an 

operative monitoring outline for the mining companies from 1985 onwards (Akabzaa, 

2000; Iddrisu and Tsikata, 1998). This resulted in the freedom of the mining division 

having the administration-trading mainstream of stocks. In the last 20 years, Ghana has 

been experiencing its third gold rush.   

  

The mining division served as a main financial stimulant in incomes production, foreign 

exchange earnings (FEE) and GDP of the nation (Aryee, 2001) as well as a source of 

direct and indirect employment to inhabitants of areas where mining activities are being 

carried out. The division add to the countries GFEE increase from 15.60% in 1986 to 

46% in 1998 (Ghana Minerals Commission, 2000). Between the years 2001-2004, 
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mining’s addition to GDP increased from 1.3% in 1991 to 5.2% (Ghana Minerals 

Commission, 2006). Currently, Ghana is the second leading gold manufacturer in Africa 

as well as the ninth globally, adding around 40 % of the nation’s GFEE, an equal of 5.7% 

of the nation’s GDP (Coakley, 1999; Mensah et al., 2015).  

  

2.1.2 Types of Mining in Ghana  

Talk of mining companies producing gold, diamond, bauxite, coal and manganese, Ghana 

has 23 mining companies (Mensah et al., 2015). These companies either operate on small 

or large scale. Hence, mining operations in Ghana could be categorized into small and 

large- scale mining.  

  

2.1.2.1  Small-Scale Mining  

Small-scale gold mining existed in Ghana as far back as the eighth (8th) century as a 

household economic activity (Kessey and Arko, 2013). It was defined as the removal of 

gold by any operative and competent technique which does not include considerable 

spending by a person or category of individuals not exceeding 9 in number. ” World Bank 

Group, defines it as a poverty-motivated operation, characteristically experienced in the 

deprived and greatly far-off rustic zones of a nation by a mainly travelling, illiterates with 

scarce occupation options” (Aryee, 2003). In fact, the Economic Commission for Africa 

has conceded that, there is no universal definition for small-scale mining. Plate 2.1 

illustrates illegal small scale mining activities at Prestea.  
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Plate 2.1. Illegal small-scale mining activities at Prestea (Mensah et al., 2015).  

  

2.1.2.2 Large-Scale Mining  

Large-scale mining usually uses the subversive approach of mining, as it needs enormous 

principal asset, substantial amount of personals as well as complicated mechanism 

(Tawiah and Baah, 2011). Furthermore, it frequently requires administration 

endorsement as certification is necessary. The important performers within the large-

scope segment comprise AngloGold Ashanti Ltd, Goldfields Ghana Ltd., Golden Star 

Resources Ltd., Newmont Mining Corporation etc (Aryee, 2001; Tawiah and Baah, 

2011). The Obuasi sector of Ashanti Goldfields Corporation (AGC), which started in 

1890, is the biggest and oldest large-scale company in the nation. It is responsible for 

above 50% of Ghana’s entire yearly gold yield (Mensah et al., 2015).  

  

2.1.3  Impacts of Mining  

Undoubtedly, the greatest casualty of mining activities (especially illegal small-scale 

mining) is the environment. The principal elements of the environment, vegetation, land, 

water and air have been severely impacted by mining operations and are well recorded.  
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Pollutants out of mining operations, either biotic or abiotic, affect the wellbeing of 

anthriopoids seriously (Petrisor et al., 2004), output of agrarian lands like the reduction 

of cultivable farm areas as well as the constancy of bionetworks (Bridge, 2004).  

  

2.1.3.1 Impacts on Vegetation  

In Ghana and many other tropical areas of mining, it is noted that mining is a major cause 

of deforestation and forest degradation (WRM, 2004), generating a large number of 

environmental problems. The removal of the forest cover is swiftly resulting in the 

extinction of plant species associated with tropical rainforest. Even, many communities 

complain that snails, mushrooms, medicinal plants, etc. are no longer available in the 

areas of mining due partly to mining activities (WRM, 2004). Plate 2.2 illustrates land 

without vegetation with huge erosion happening in a forgone mined location at Prestea.  

  

Plate 2.2. Degraded land devoid of vegetation cover resulting from gold mining 

activities in Prestea (Mensah et al., 2015).  
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2.1.3.2  Impacts on Lands/Soil Fertility  

Activities of small-scope artisans usually lead to the mining of huge amounts of upper 

part of the soil, making the area open and vulnerable to erosion. This makes the soil 

uncultivable (Harwood et al., 1999: Hilson 2002a). Additionally, abandoned mined 

quarries by large and small-scale miners deprived of appropriate recovery led to 

additional destruction of the lands (Hilson, 2002b; Aryee et al., 2003). Obuasi has been 

described as a ‘hanging town’ (Mensah et al., 2015) for the reason that the superficial 

quarrying increase within the zone. The subversive approach of quarrying usually needs 

the application of heavyweight explosives to collapse the rocks, leading to serious 

destruction to the landscape (Aryee et al., 2003). Plate 2.3 illustrates impact of land 

degradation due to illegal small scall mining in Prestea.  

  

Plate 2.3. Impacts of land degradation due to illegal small-scale mining activities in  

Prestea (Mensah et al., 2015).  

  

  

2.1.3.3 Impacts on Water Quality  

In every part of the globe, water is known as the basic and vital of all normal capitals. 

Socio-economic growth and ecological differences could not be maintained devoid of 
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water (Ashton et al.,   2001).  Currently several nations encounter serious and increasing 

problems in attempts to satisfy the rising need for water that is determined by growing 

populace (Gleick, 1998; Ashton and Haasbroek, 2001). Water provisions are declining as 

result of decrease and contamination of resources coming from mining operations 

(Falkenmark, 1994, 1999; Rosegrant, 1997; Gleick, 1998). Plate 2.4 and 2.5 illustrates 

pollution of River Ankobra and River Asesree respectively due to mining activities in 

Prestea.  

  

Plate 2.4. Pollution of River Ankobra due to mining activities in Prestea (Mensah,  

2015).  

  

2.1.3.4 Impact on Air Quality  

Mining activities akin to other industrial processes, power plants and motor vehicles have 

a marked and profound effect on air quality, both in the mining area as well as in the 

nearest residential area. Mining (especially surface mining) operations create enormous 

quantity of particles of different dimensions that go through transfer and spread 

substantial quantity of floating materials as well as gaseous contaminants into the air. 

Such contaminants do not just disturb the pit workforces but also disturbs the neighboring 



 

13  

inhabitants, agrarian crops as well as animals (Singh et al., 2010). Plate 2.6 is a picture 

depicting the pollution of air due to mining operations.  

  

Plate 2.5. Pollution of River ‘Asesree’ due to mining activities in Prestea (Mensah, 

2015).  

  

Plate 2.6. Pollution of air due to mining activities (Jain, 2015).  
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2.1.3.5  Noise Pollution  

Noise is produced from virtually every shallow quarrying activity out of diverse, secure, 

moveable as well as thoughtless bases, thus tend to be a vital component of the quarrying 

surroundings. It means sound devoid of amenable musical excellence. In an 

environmental context, noise is defined simply as unwanted sound. Earth-moving tools, 

handling equipment as well as explosions are the main foundation of noise out of 

quarrying location (Tripathy, 1999). Noise is often regarded as a nuisance rather than as 

an occupational hazard. However, overexposure to noise according to WHO (1980) can 

cause serious hearing loss.   

  

2.1.3.6 Socio-Cultural Impact  

Extractions of minerals do not just disturb the biological and physical surroundings of 

mining societies; however circuitously disturb the soil and financial as well as cultural 

environs of the societies. Liquid and gaseous contaminants generated by miners in the 

surroundings cause medical and security dangers for the individuals dwelling in and their 

peripherals.  

  

2.2  Heavy Metal Contamination   

Heavy metals are substances, which show metallic features like ductility, malleability and 

characterized by comparatively dense as well as huge relative atomic mass that have an 

atomic number bigger than 20 (Raskin et al., 1994; Lasat, 2000). Living things in small 

amounts need heavy metals like Co, Cu, Fe, Mn, and Zn. Nevertheless, excessive 

quantities of such substances could be detrimental to living things (Elekes et al., 2010). 

According to Chibuike and Obiora (2014), certain metals like Pb, Cd, Hg, Cr, do not 

possess any useful influence on livig organism. Nevertheless, they are considered as the 

“key dangers” as they are much dangerous to living things.  In the soil, metals occur as 
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dispersed units or coupled with certain soil constituents (Chibuike and Obiora, 2014). 

Contamination factor determines the degree of contamination of an area. Table 2.1 

defines contamination factors for soil.  

  

Table 2.1 Different contamination factors (Cf) for soil (Hakanson, 1980)  

Cf 

value  

Cf  < 1  Low contamination factor indicating low contamination  

1 ≤ Cf < 3  Moderate contamination factor  

3 ≤ Cf  < 6  Considerable contamination factor  

 
  

The degree of contamination (Cdeg) is the sum of contamination factors for all the elements 

examined and was expressed as;  

Cdeg = ∑ni=1 Cf  

  

Mining operations could produce a huge amount of dissolvable mineral matter that is 

considered toxic to living thing and the entire surroundings (Mousa-Ibrahim, 1997). 

Prevalent contaminants associated with gold mining include heavy metals, hydrocarbons 

and toxic gases. After the precious metals are extracted from the ore, high levels of other 

parameters like arsenic are frequently conceded into tailings (Cunninghan et al., 1995). 

These metals will remain indefinitely once they are introduced and contaminate the 

environment because in contrast to carbon-based (organic) molecules, they do not 

degrade.  Contaminated soils with heavy metals tend to inhibit root growth (Schaller and  

Diez, 1991).  

  

2.3  Reclamation of Mine-Impacted Lands  

Restoration, Remediation and Reclamation are terminologies, which imply the 

enhancement of biotic and abiotic situations at a destroyed area. Restoration according to 

Contamination factor level   

C f    ≥ 6   Very high contamination factor   
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NRC (1992) is the procedure of returning a bionetwork to a nearly their past or premining 

state (the ideal starting point) previously physico-chemical disruption. Remediation is the 

clean up of a polluted site. Remedial processes eliminate or separate pollutants out of the 

surroundings (Finger et al.,   2004). Reclamation on the other hand has been defined by 

Yelpaala (2004) as the restoration of affected sites because of mining. Bradshaw (1996) 

defined it as a procedure of creating a portion of troubled field fit for farming. 

Reclamation was  extensively taken into consideration as of 20th century to be an 

essential solution.  

  

2.4  Remediation Techniques  

Selection of a suitable remediation method is considered as an important constituent 

within the handling of polluted area in the past 10 years (Vic et al.,   2001). In the course 

of choosing suitable remediation approach, danger handling, maintainable growth, 

costeffectiveness, practical appropriateness as well as investor’s opinions should be 

considered (Vic et al. 2001). Again, the selection of the suitable remediation method for 

an asumed location conferring to Martin and Ruby (2004) is dependent on its purpose 

(decreasing leachability or bioavailability of pollutants), the status of the method, soil 

properties, extent and depths of contamination. The envisioned field utiliztion once 

treated must as well be considered in arrangement remediation of contaminated sites.  

Soils contaminated by heavy metals can be remediated ex-situ or in-situ using either 

chemical, physical or biological means. The ex-situ remediation method requires removal 

of contaminated soil for treatment on or off site, and returning the treated soil to the 

resorted site. In-situ remediation on the other hand, is the treatment of contaminated soils 

onsite (Reed et al.,   1992). In-situ techniques are preferred to ex-situ techniques because 

they are less expensive and also have a reduced impact on the ecosystem. Two methods 

for remediating heavy metals contaminated soils are known. These are; (1) the 
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conventional approach like excavation and landfill, soil washing, encapsulation, 

electrokinesis, chemical immobilization and (2) the phytoremediation method, a 

technology which makes use of plants to eliminate heavy metals from contaminated soil 

(Adriano, 2001).    

  

2.4.1  Conventional Remediation Methods  

Over the years, conventional remediation technologies have been used to clean the vast 

majority of metal-polluted sites. This has been possible because, according to 

Cunningham et al. (1997), these technologies can function over a wide range of oxygen, 

pH, pressure, temperature, and osmotic potentials. They are also fast and relatively 

insensitive to heterogeneity in the contaminated array. Nonetheless, they also tend to be 

costly, clumsy (Cunningham and Ow, 1996) and even in some situations result in 

formation of secondary pollutants to the environment (Pulford and Watson, 2003). Some 

conventional remediations methods comprise excavation and landfill, Soil washing, 

Vitrification, Encapsulation, Electrokinesis, Immobilization techniques.  

  

2.4.2  Phytoremediation  

Phytoremediation is the employment of plants and their related rhizospheric microbes, 

soil improvement, as well as agronomic methods to eliminate, destroy, or cleanse 

dangerous contaminants out of the environs to make them inoffensive (Schwitzguébel, 

2002; Ouyang, 2002; Salt et al.,   1998). The idea of using plants to treat contaminated 

soils is because plants have highly efficient systems that obtain high amount of nutrients 

as well as certain substance and several metabolic actions via photosynthesis (Krämer, 

2005).   

It is the most rapidly developing environmentally friendly and cost effective technology 

for remediating contaminated soils (Raskin et al., 1997). The choice of using 
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phytoremediation as a technology to decontaminate contaminated sites is primarily 

triggered by the huge charges with the use of certain soil remediation techniques, and 

aspiration to employ a ‘green’, maintainable operation.   

  

Phytoremediation offer several benefits relative to certain remediation methods (Dercová 

et al., 2005; Schwitzguébel, 2002; Raskin et al., 1994):  

• It is cost- effective since it employs similar materials as agriculture,   

• it could be done with reduce ecological  disruption   

• it is much possible to be acknowledged by the community as it is much  

appealingly relative to the conventional techniques,  

• it has the potent for place contaminated with several types of contaminants  

• possibly less secondary air and water wastes are generated than with traditional 

methods  

• biotic contaminants might be broken down to CO2 and H2O, eliminating ecological 

harmfulness  

  

Plant output as well as the levels of alloys in the soil (Baker et al.,   1991) restrict the use 

of plants as an approach in refining the soil. For example, Thlaspi caerulescens is 

recognized as a Zn hyperaccumulator, however employment in the field is restricted since 

is a slow growth and very small biomass production (Ebbs and Kochian, 1997). Some of 

the disadvantages in using this method in treating contaminated sites include the 

following (Wuana and Okieimen, 2011; Schwitzguébel, 2002):   

• reliance on needed environmental condition of the plants,   

• large-scope activities need accessibility to agrarian tools and information,  

• achievement is reliant on the acceptance of the plants to the contamination,   
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• pollutants gathered in droping tissues might be decharged back into the environs 

in another season,   

• time taken to remediate sites far exceeds that of other technologies,  

• pollutants might still penerate the food link via living organism that dwell on plant 

material holding pollutants,  

• soil amendments might be necessary   

  

Phytoremediation is best applied at sites with shallow contamination of organic, nutrient, 

or metal pollutants. Plants; toxic metals, radionuclides and recalcitrant organic pollutants, 

polynuclear aromatic hydrocarbons (PAHs), as well as chlorinated solvents (Ouyang,  

2002; Schwitzguébel, 2002; Abhilash et al., 2009) can treat most classes of contaminants. 

In addition to soil, it been documented that plants fruitfully handled wastewater (Chavan 

et al.,   2007; Zurita et al.,   2009; Khan et al.,   2009), as well as even, treatment of the 

atmosphere by plants have also been reported (Liua et al., 2007).  

  

2.4.2.1 Phytoremediation Techniques  

Regarding the augmented quantity of knowledge on phytoremediation as well as growth 

of novel claims, numerous phytoremediation methods can be distinguished. These 

methods comprise rhizofiltration, phytoextraction, phytodegradation, phytostabilization 

and phytovolatilization (Gerhardt et al.,   2009; Mackova et al.,   2006; Yang et al.,   2005; 

Khan et al.,   2000).  

  

2.4.2.1.1  Rhizofiltration  

Rhizofiltration involves the employment of plants to take up, and solidify pollutants out 

of polluted aqueous sources in their roots (Schwitzguébel, 2002; Peng et al.,   2008). 

Commonly, it is employed for the handling of manufacturing release, agrarian run-offs, 

alloys as well as radioactive pollution. According to Suresh and Ravishankar (2004), 
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plants having huge root schemes are mostly employed for rhizofiltration. The advantages 

of using rhizofiltration include;   

• ability to be used as in-situ or ex-situ applications and   

• contaminants do not have to be translocated to the shoots, thus, species other than 

hyperaccumulators may be used (Henry, 2000)  

However, raising the potential plants in the nursery before transplanting them to the desired 

sites needs time and energy.  

  

2.4.2.1.2  Phytoextraction  

The capability of a plant to absorb pollutants in its roots as well as transfer them to the 

leaves is referred to as phytoextraction or phytoaccumulation (Krämer, 2005; Suresh and 

Ravishankar, 2004; Wang, 2004; USEPA, 1999). It includes the farming of tolerant 

plants, known as hyperaccumulators that concentrate soil contaminants in their above 

ground tissues (Krämer, 2005). These hyperaccumulators, according to Henry (2000) are 

capable of accumulating 100 times more metal than a common non-accumulating plant. 

This technique is generally used for metals like nickel, zinc, copper, lead, chromium and 

cadmium (Henry, 2000). It could be grouped into two approaches; chelate assisted and 

continuous or natural phytoextraction (Salt et al.,   1998). In induced phytoextraction, 

chelates (chemicals) such as EDTA, NTA, EDDS, etc. are combined to upsurge the 

movement as well as intake of metallic pollutants (Quartacci et al.,   2007; Saifullah et 

al.,   2009). Continuous phytoextraction on the other hand involves the use of plant having 

inbuilt capabilities to accrue huge amounts of alloy (hyperaccumulators) (McGrath et al.,   

2002).  
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2.4.2.1.3 Phytodegradation  

Phytodegradation (phytotransformation) is the breaking down of pollutants absorbed in 

plants by its   metabulous actions in the plants, or the breaking down pollutants outside 

to the plants via the influence of enzymes formed by the plant (ITRC, 1997; USEPA, 

1999).  

The contaminants are transformed into less harmful chemicals within the plant. 

According to ITRC (1997), there should first be the rapid sorption of the contaminants to 

the lipophilic plant cuticles, a first step to getting the contaminants either into the plant 

or onto its external root surface for enzymatic degradation. After which, the contaminants 

are degraded with the subsequent incorporation of the harmless products into plant 

tissues. The breakdown of contaminats within the root layer is termed rhizodegradation.  

This might be accomplished by actions either of microorgnisms or roots, or by both.   

  

2.4.2.1.4 Phytostabilization  

Phytostabilization is not a real cleanup technology for contaminated soil, but a 

management strategy for stabilizing trace elements that are potentially toxic (Vassilev et 

al.,   2004). It means in-place inactivation and as well as predominantly employed for the 

remediation of soil, sediment, and sludges (USEPA, 2000). It depends on the ability of 

roots to reduce pollutants movement as well as biological existence within the soil. The 

basic function of plants used in phytostabilization technique are;    

i. Reduction water infiltrating via the soil matrix that might lead to production of 

dangerous leachate as well as prevention of soil corrosion and dispersal of the 

poisonous alloy to certain places.   

ii. Function as a wall preventing immediate exposure to the pollutants in the soil   

iii. It is valuable for the handling of Pb, As, Cd, Cr, Cu and Zn.  
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2.4.2.1.5 Phytovolatilization  

Phytovolatilization is a unique type of phytoextraction, which could be employed just for 

the pollutants, which are very volatile. It includes the employment of plants absorbing 

pollutants out of the soil, altering it into instable state as well as releasing it into the 

atmosphere (ITRC, 1997; USEPA, 1999; Schnoor, 1997). In a study conducted by  

Sakakibara et al. (2010), arsenic was effectively volatilized in the form of As compounds 

(arsenite and arsenate) in the frond of Pteris vittata.   

  

The advantage of this method is that the contaminant, e.g. mercuric ion, may be 

transformed into a less toxic substance (that is, elemental Hg). However, the mercury 

diacharged in the air is likely to be reprocessed by rainfall and then released back into 

watercourses, repeating the manufacturing of methyl-mercury by anaerobic bacteria 

(Jadia and Fulekar, 2008).  

  

2.4.2.2 Mechanisms of Metal Accumulation by Plants  

Buildup of metals by plants depends on the type, availability and solubility of metals in 

soils, their translocation potential and the type of plant species involved (Lasat, 2002; 

Sinha et al., 2009). It can be divided into three steps; i) mobilization, root absorption and 

sequestration, ii) translocation and iii) tissue distribution and storage.  

  

2.4.2.3 Selection of Plants for Phytoremediation  

Phytoremediation as a plant-based technology, selection of proper phytoremediating 

species is possibly the most important factor affecting its success. Plants ideal for 

phytoremediation should fulfil the following main requirements;   
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i. they must be fast growing and have high biomass, ii. have deep root system, iii. 

have easily harvestable aboveground portion, iv. accumulate large amounts of metals 

(~ 1000 mg/kg) in aboveground biomass  

(Schnoor, 1997; Cunningham and Ow, 1996; Kumar et al., 1995).  

  

Researchers’ initial interest was on hyperaccumulator plants capable of accumulating 

potentially phytotoxic elements to concentrations more than 100 times than those found 

in non-accumulators (Chaney, 1983; Raskin and Ensley, 2000). Raskin et al. (1994) 

defined hyperaccumulators as plants containing more than 0.1% of Ni, Co, Cu, Cr and 

Pb or 1% of Zn in its leaves and stems on the dry weight basis, irrespective of the metal 

concentration in the soil. These plants have strongly expressed metal sequestration 

mechanisms and sometimes-greater internal requirements for specific metals (Shen et al.,   

1997). About 400 plant species from at least 45 plant families have been reported so far, 

as hyperaccumulators of metals (Salt and Kramer, 2000; Lasat, 2000; Ghosh and Singh,  

1998). Some of the families include Brassicaceae, Fabaceae, Euphorbiaceae, Asterraceae, 

Lamiaceae, and Scrophulariaceae (Dushenkov, 2003, Salt et al.,   1998).   

  

Crops like alpine pennycress (Thlaspi caerulescens), Ipomea alpine, Haumaniastrum 

robertii, Astragalus racemosus, Sebertia acuminate have been reported to have very high 

bioaccumulation potential for Cd/Zn, Cu, Co, Se, and Ni, respectively (Lasat, 2000). 

Willow (Salix viminalis L.), Indian mustard (Brassica juncea L.), corn (Zea mays L.), 

and sunflower (Helianthus annuus L.) have also reportedly shown high uptake and 

tolerance to heavy metals (Schmidt, 2003).   
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2.5  Nutrient Amendment  

An amendment is a physical, chemical, natural or synthesized compound, which when 

added to soil improves its physical, chemical and biological properties. Soil amendments 

such as fertilizer, manure, sewage sludge, or lime are used to help enhance plant growth. 

Phytoremediation researchers are interested in promoting plant growth, however, those 

involved with phytoextraction aim to do this while encouraging the accumulation of large 

quantities of metals within the plant. According to Salt et al. (1995), the efficiency of 

phytoextraction can be increased by optimizing practices such as irrigation, fertility, 

planting, and harvest time. The amendment of soil with fertilizers may transform certain 

elements, including heavy metals, to more plants available forms and enhance 

accumulation of the metals in the plants. The fertilizers must however, be clean to exclude 

the possibility of adding new metals to the soil.  

  

Organic soil amendments, such as composts, manures and sludges are now established 

amongst phytoremediation techniques (Brown et al.,   2003; Hartley et al.,   2009). These 

organic materials not only supply nutrients to plants but also add organic matter which is 

the most important factor affecting the success of reclamation to the soil. They are 

effective for metal immobilization in contaminated soils. The role of organic amendments 

in enhancing physical, chemical and biological properties of degraded soils is 

welldocumented (Adesodun and Mbagwu, 2008; Walker et al., 2004; Stewart et al., 2000; 

Pascual et al., 1999).   

  

Luo et al. (2006) demonstrated that, application of mobilizing and, or chelating agents to 

the soil is a reliable practice for increasing metal bioavailability, uptake and shoot 

accumulation by plants. Large biomass production is a prerequisite for removing large 

amounts of trace metals by hyperaccumulators. Amendment of soil with fertilizers 
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(organic and inorganic) is the most common method for increasing crop productivity, and 

a practical option for increasing plant biomass. For example, Coupe et al. (2012) reported 

that, highest concentrations of Pb (548 mg/kg) were found in the shoots of E. 

camaldeulensis grown in Pb contaminated soil.   

  

2.6  Characteristics of Chromolaena odorata species  

C. odorata (Plate 2.7) known locally in Ghana as ‘Acheampong weed’ belongs to the 

Asteraceae family. A rapidly growing perennial herb forms dense tangled bushes.   

  

Plate 2.7. Picture showing C. odorata plant  

  

C. odorata lives on every form of well-drained soils as well as soils having comparatively 

low fertility. It occurs in agricultural lands, forests, range/grasslands, riparian zones, 

ruderal/disturbed and scrub/shrublands.  C. odorata is reproduced sexually, though it 

might resprout out of the root crown following fire or death of old stems. It is not known 

to reproduce vegetatively (Nirola et al., 2016).  

  

C. odorata though known to be problematic invasive weed, has many benefits.  A study 

by Velasco- Alinsug et al. (2005) demonstrated that, C. odorata accumulated high 

amounts of Hg in its vegetative tissues, without exhibiting any toxicity symptoms at  
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Benguet Mines in Itogon, Benguet. Hamzah et al. (2012) described the species as a good 

potential for removal of Hg and Pb from artisanal gold mining, because of its ability to 

accumulate high concentrations of these metals without experiencing toxicity.   

C. odorata has been  reported to be one of the most problematic invasive species within 

protected rainforests in Africa (Struhsaker et al., 2005).   

  

2.7  Characteristics of Paspalum vaginatum species  

P. vaginatum (Plate 2.8) commonly known as seashore paspalum belongs to the Poaceae 

family. A low growing perennial grass reaches about 10 - 70 cm in height. It is highly 

stoloniferous and rhizomatous, and will tack down at the nodes forming a dense turf 

(Shadow, 2009a). The branches are lined with oval to lance-shaped spikelets, which grow 

pressed against the branches, making the panicle narrow. The leaves are fine, 

approximately 2 mm in width, sharply pointed with large sheaths, a small, scale-like 

ligule, and have a deep blue-green color (Shadow, 2009a).   

  

Plate 2.8.   Picture showing Paspalum vaginatum  

  

P. vaginatum has been widely used for rehabilitation of salt-affected lands, restoration of 

coastal wetlands, and forage for livestock (OIC, 1990; Vargas, 1995; NRCS, 1999; 

Fontenot, 2007). It is also used as a ground cover to prevent soil erosion. According to  
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Duncan and Carrow (2000), it can also be used as bioremediation agent in contaminated 

soils and (Alrawiq and Mushrifah, 2015) demonstrated that P. vaginatum has the ability to 

survive up to the Hg concentration of 2 mg/L.  

  

2.8  Characteristics of Chrysopogon zizanioides species  

C. zizanioides (Vetiveria zizanioides) (Plate 2.9) commonly known vetiver grasss is a 

densely tufted perennial grass, which belongs to the Poaceae family. It has erect, strong 

and stiff culms or tillers that arise from aromatic rhizomes, which can grow, to about 5 

feet tall (Chomchalow, 2001). C. zizanioides has panicle inflorescence of about 30 cm, 

which comprised of several slender racemes in whorls on a central axis with gray, green 

or purplish spikelets (Robert, 2009). This species has high tolerance to elevated 

concentrations of heavy metals such as As, Cd, Cu, Cr, Pb, Hg, Ni, Se and Zn in the soil 

(Danh et al., 2009: Chomchalow, 2003; Shu, 2003). Most varieties of C. zizanioides are 

naturally sterile hybrids and do not set seed; hence, it is asexually propagated.  

  
Plate 2.9 Picture showing Chrysopogon zizanioides  

  

C. zizanioides is a perennial bunch grass with many uses. It is used as a vegetative barrier 

for erosion control on farmlands because of its strong, compact root system and numerous 

stiff stems (Robert, 2009).  

  



 

28  

C. zizanioides has been found as an agent of phytoremediation and has been shown to 

enhance the degradation of heavy metals. Results from Nirola et al. (2016) showed that, 

C. zizanioides is an effective accumulator of metals like Cr, Pb, Ni, and Zn. Short and 

Long-term phytoaccumulation experiments for several heavy metals (Cu, Cr, Pb and Zn) 

performed Antiochia et al. (2007) revealed that, heavy metals are accumulated in roots 

of C. zizanioides rather than in the shoots. The authors affirmed the efficacy of the species 

as a particular hyper-accumulator for Pb and Zn.  There have been no reported problems 

associated with C. zizanioides since it is a non-invasive species with so many benefits to 

man, animals and the environment.  

  

2.9  Characteristics of Cynodon dactylon species  

Cynodon dactylon (Plate 2.10) commonly known as Bermuda grass is a prostrate, 

creeping, stonoiferous perennial herb, which belongs to the Poaceae family, which can 

thrive on a wide range of soil types and conditions. It withstands pH ranges from about  

5.0 to 8.5 and is boron tolerant; however, it tolerates alkaline soils more than acidic soils 

(ESA, 1992). C. dactylon also tolerates saline soils. It is extremely drought tolerant but 

shade intolerant (Shadow, 2009b). Cynodon dactylon is propagated both sexually and 

asexually. It can produce about 230 seeds per panicle. It been proven by Sainger et al. 

(2011) C. dactylon can be used for bioaccumulation and translocation factor were in order 

of Zn > Fe > Cu > Ni >Cr. Moreover, Wong and Chu (1985) observed higher  

concentrations of Cu, Cd and Zn in roots than aerial parts while contents of Cd, Mn and 

Zn were higher in the foliage of second harvest than the first. Despite their importance 

these grasses are difficult to remove and very invasive.  
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Plate 2.10. Picture showing Cynodon dactylon     
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CHAPTER THREE  

 3.0  MATERIALS AND METHODS  

3.1  Study Area   

The study was conducted at Bontesso in the Amansie West District of the Ashanti Region, 

Ghana. The district is located within latitude 6o 11' 29" and longitude 6o13' 31" N as 

shown in Figure 3.1. The Amansie West District spans an area of about 1,364 square 

kilometers and it is one of the largest districts in Ashanti Region covering about 5.4 % of 

the total land area of the Ashanti Region (MOFA, 2011).  
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Figure 3.1 Map of Ghana showing the Amansie West District  

  

Within the district, Bontesso is situated 42 km north-west of Obuasi and approximately 

60 km by road from Kumasi, the regional capital of the Ashanti Region, Ghana, and lies 

approximately 600 m north-east of Asanko Gold Mines. The project area, which falls 

within latitudes 6º 19' 40" N and 6º 28' 40" N and longitudes 2º 00' 55" W and 1º 55' 00" 

W is shown in Figure 3.1. The area is dominated by moderately steep hills and secondary 

vegetation interspersed with peasant farms. The population of the community was 

estimated at 1,000 with 2 % annual growth rate (MOFA 2011).  

  

Geologically, the community forms part of the Birimian Supergroup of the Kumasi basin 

and are mainly proximal metasedimentary with minor granitic intrusions and mafic 

ingenious rocks.  

  

3.2  Field Experiment  

Mined soil was collected from Bontesso, as drawn in Figure 3.2, a community with 

several illegal mining areas. A hectare of land was demarcated for the sampling. This 

area was further divided into 25 subplots (20 m × 20 m) forming a sampling grid. Out of 

these subplots, 9 were systematically chosen and quadrats (1 m × 1 m) were placed on 

each for soil sampling. Within each quadrat, 10 kg of soils were collected at two different 

depths, 0– 25 and 25 – 50 cm using soil auger. The total samples from each quadrat and 

depth were put together and mixed thoroughly to ensure uniform mixture and an 

aggregate of 90 kg of soil samples were taken from selected subplots. Samples were 

placed in labelled sacks and transported to the experimental garden at the Department of 

Crop and Soil  
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Sciences, KNUST for soil analysis and growth test measurements. Six soil samples of 

15g of bulked soil sample were taken to the laboratory for determination of physical and 

chemical properties, and the various heavy metals (As, Cd, Cu, Ni and Pb) as baseline 

metal concentrations.   

  
Figure 3.2 Map showing the sampling site in Bontesso  

  

3.3  Treatments and Soil Preparation  

3.3.1 Treatment  

Nine (9) treatments were used in the study and are presented in Table 3.1. Four (4) 

selected plant species namely; Chromolaena odorata (CO), Chrysopogon zizanioides 

(CZ), Paspalum vaginatum (PV) and Cynodon dactylon (CD) and combinations of some 

of the species in addition to the control (no plant species) were used as phytoremediation 

agents in the study.  
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3.3.2  Soil Preparation  

Laboratory assay of the N- level was carried out to verify whether the levels are consistent 

with the calculated values. For optimum soil condition suitable for plant growth, compost 

was used to adjust the N- level. The total nitrogen in 5 kg of mined soil was found to be 3.5 

g N based on the total nitrogen content of the soil obtained from the laboratory. The required 

nitrogen level substrate (5 kg) mined soil was adjusted to the target level by adding 485g 

of compost.  

  

Table 3.1. Treatments used in the study  

Treatment 

Control  

Species name  Common name  

-  -  

CO  Chromolaena odorata  Acheampong weed  

CZ  Chrysopogon zizanioides  Vetiver grass  

PV  Paspalum vaginatum  Seashore paspalum  

CD  Cynodon dactylon  Bermuda grass  

CO+PV  Chromolaena odorata + Paspalum vaginatum    

CO+CD  Chromolaena odorata +Cynodon dactylon    

CZ+PV  Chrysopogon zizanioides+Paspalum vaginatum    

CZ+CD  Chrysopogon zizanioides+ Cynodon dactylon    

  

3.4  Plant Preparation Methods  

Seedlings of the four (4) selected plant species (Chromolaena odorata, Chrysopogon 

zizanioides, Paspalum vaginatum and Cynodon dactylon) were collected from KNUST  

Botanical Garden. Seedlings were carefully uprooted to avoid damage to the plant roots. 

Samples of the selected plant species were taken to the laboratory in labelled paper 

packets for analysis to assess the initial metal concentrations in the roots and shoots.  

  

3.5  Experimental Design   

A randomize complete block design layout with nine (9) treatments soils mixed with 

compost, four (4) plant materials, four harvest periods and six replicates was designed. A 
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total of 54-labelled plastic bowls each with a height of 10 cm and diameter of 20 cm were 

filled with 10 kg of mixed soil and compost. Pots were laid out under shade of tress at the 

experimental garden of Department of Crop and Soil Sciences, KNUST (Plate 3.1).  

  

Plate 3.1. Layout of pots in experimental area  

  

3.6  Irrigating and Nursing of Plants Growth Performance   

Three hundred (300) ml of water was used for watering of plants every other morning 

after transplanting. The plants were monitored daily until 9 weeks when the final 

harvesting was done. Weeds were uprooted from the various bowls and soils were 

occasionally mixed to ensure aeration in each bowl.   

  

3.7  Data Collection  

3.7.1 Determination of Growth Parameters  

Growth parameters (plant height, leaf area and chlorophyll content) were measured in three-

week interval (weeks 3, 6 and 9) during the study.  
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3.7.1.1 Plant Heights  

Plant heights were determined using a calibrated meter rule, taking measurements from the 

base of each plant to the terminal leaf.   

3.7.1.2 Leaf Area  

The CI-202 Portable laser Leaf Area meter (Plate 3.2) from Bioscience Department was 

used for the determination of leaf area.   

  

Plate 3.2. CI-202 Portable laser leaf Area meter  

  

3.7.1.3 Chlorophyll Content  

Chlorophyll content was determined using the CCM-200 plus Chlorophyll Content Meter 

(Plate 3.3) from Bioscience Department.  
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Plate 3.3. CCM-200plus Chlorophyll Content Meter  

3.7.2 Soil Data  

Soil samples (10 g) were collected in 3-week intervals from each bowl for laboratory 

analyses. At the end of the 9th week, plants in each bowl were harvested and sent to the 

laboratory for analyses of heavy metals content.  

  

3.8  Soil Sample Preparation  

Soil samples taken from each of the nine (9) treatments soils at every period of sampling 

were air-dried and sieved (using 2 mm sieve). The fine soil particles were used for the 

various soil analyses.  

  

3.9  Soil Analysis  

3.9.1  Determination of Soil pH  

The soil’s pH was determined using a 1:1 (soil: water) ratio as reported by Black (1986).  

Ten (10) g of the soil sample was mixed with 10 ml of distilled water in a 50 ml beaker. 

The mixture was stirred for 5 mins and allowed to stand for 30 minutes. The pH of the 

suspension was recorded by dipping the electrode of a Eutech 510 pH meter in the top 

aspect of the mixture. The procedure was repeated for all the other pH determinations in 

the study.  
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3.9.2  Determination of Moisture Content  

Moisture contents for soil, compost and plants were calculated as follows; Soil 

moisture Content (%) =  ( W1−W2) x 100    

W1 

where  

W1 = weight of wet soil  

W2 = weight of dried soil  

  

3.9.3  Determination of Soil Organic Carbon   

Soil organic carbon was determined using the modified Walkley-Black wet oxidation 

procedure as described by Nelson and Sommers (1982). Organic carbon content of the 

soil was calculated as follows:  

Organic carbon (%) = M 

× 0.39 × mcf × 

(𝑉1− 𝑉2) w 

where  

M = molarity of ferrous sulphate  

V1 = ml ferrous sulphate solution required for blank V2 

= ml ferrous sulphate solution required for sample w = 

weight of air – dry sample in g  

100+% 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 mcf 
= moisture correcting factor =   

100 

3 × 0.001 × 100 % × 1.3 = 0.39  

3 = equivalent weight of carbon  

1.3 = compensation factor for incomplete oxidation of the organic carbon  

The procedure was repeated for all carbon determinations in the study.   
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3.9.4  Determination Soil Total Nitrogen   

Soil total nitrogen was determined by the Kjeldahl method as described in Soils  

Laboratory Staff (1984). Soil total nitrogen was calculated as follows:  

N × (a - b) × 1.4 × mcf 
Total nitrogen Content (%) =  w 

where  

N = concentration of HCl used in titration 

a = ml HCl used in sample titration b = 

ml HCl used in blank titration  

w = weight of air-dry soil sample  

1.4 = 14 × 0.001 × 100 % (14 = atomic weight of N)  

This procedure was repeated for all nitrogen determination in the study.  

  

3.9.5  Determination of Soil Available Phosphorus  

Soil available phosphorus was extracted with Bray’s No.1 extracting solution (0.03 M 

NH4F and 0.025 M HCl) as described by Nelsen and Sommers (1982). The following 

relations were used:   

Phosphorus Content (mg/kg soil) = ( a - b) × 15 × 10 × mcf  
w 

where a = mg/L P in sample 

extract b = mg/L P in blank  

15 = ml extracting solution 10 

= ml final sample solution w 

= sample weight in gram  

The procedure was determined for all phosphorus determination in the study.  
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3.9.6  Determination of Exchangeable Bases  

Exchangeable calcium, magnesium and potassium in the soil were extracted with 1.0 M 

ammonium acetate (Black, 1986). The procedure was repeated for all exchangeable bases  

in the study.  

  

3.9.7  Determination of Concentrations of Heavy Metals (As, Cd, Cu, Pb, and Ni)  

in the Soil  

Two (2) g of the dried soil sample was weighed into a Kjeldahl digestion tube. 

Perchloric, nitric and hydrochloric acids were added in the ratio 1:2:3. The mixture was 

then digested at a temperature of 450 oC until complete digestion was observed which 

was indicated by change in solution colour from brown to whitish. The digested mixture 

was filtered using a Whatman No. 42 filter paper and decanted into a 100 ml volumetric 

flask. The solution was then topped to the 100 ml mark with distilled water. The 

unknown concentrations of the filtrates were then analysed using Buck Scientific 210 

VGP Atomic Absorption  

Spectrometer (AAS).  

  

3.10  Characterization of Compost  

3.10.1 Dry Matter Content (DMC)  

The DMC was calculated using the formula.           

Dry Matter Content (%) = Average dry weight × 100  
Average fresh weight   

3.10.2 Electrical Conductivity (EC)  

In determining the EC of the sampled compost and soil, same aliquot prepared for the pH 

determination. Potassium chloride (KCl) was used as the reference solution to calibrate 

the electrical conductivity meter (Ecotestr EC Low). The conductivity electrode was 
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inserted into the supernatant and electrical conductivity reading were taken for each 

sample (Faithful, 2002).  

  

3.11  Plants Sample Preparation  

Harvested plant samples were cut into root and shoot, washed under running water and 

rinsed with distilled water to remove any traces of soil particles.  

  

3.12  Plant Analysis  

Fresh and dry weights, moisture content, total As, Cd, Cu, Ni and Pb were determined in 

plants.  

  

3.12.1 Dry Weight   

Fresh weights of plants were determined by taking the weights of the plants using Mettler 

PM 4000 sensitive balance immediately after harvest. For dry weights, samples were put 

in an oven at 120ºC, checking the weight of the samples periodically until three 

consecutive constant weights were measured. The final weight was recorded as the dry 

weight.  

  

3.12.2 Plants Tissue Digestion  

Dry plant samples (roots and shoots) were grinded using laboratory mill, placed into 

labelled crucibles and ashed in a muffle furnace for 3 hours at 450 oC. A 0.2 g of the 

ashed samples were weighed into a beaker containing 3 and 1 ml of concentrated HCl 

and HNO3 respectively. The solutions were heated for 15 minutes on a hot plate at 100 

oC to destroy oxidizable materials and carbonates. The solutions were topped to the 30 

ml mark with distilled water and filtered into 50 ml test tubes using Whatman No. 42 

filter papers.  
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3.12.3 Analytical Determination of Heavy Metals  

Filtrates obtained were analyzed for total As, Cd, Cu, Pb and Ni contents using a Buck  

Scientific 210 VGP Atomic Absorption Spectrometer (AAS).   

  

3.13  Analysis of Metal Concentrations  

3.13.1 Accumulation Ratio  

Accumulation ratio, the ratio of concentrations of heavy metals in the plant at harvest to 

the concentrations in the plant before transplanting, was determined using the relation;  

Accumulation ratio = Concentration of heavy metal in 

plant at harvest  

Concentration of heavy metal in plant before transplanting 

  

3.13.2 Bioaccumulation Factor (BF)  

Bioaccumulation factor (BF) was determined by dividing the concentration of heavy metal 

accumulated in plant tissue by the concentration of heavy metal present in the soil  

(Nazir at al., 2011).  BF = Concentration of  metal in 

plant tissue  

 

Concentration of metal in treatment soil 

Plants with BF value greater than one (BF > 1) are potential hyperaccumulators and suitable 

for phytoextraction.  

  

3.13.3 Translocation Factor (TF)  

Translocation factor (TF), the ability of plants to translocate heavy metals absorbed from 

the soil into the roots and shoots, was determined as the ratio of heavy metal concentration 

in plant shoot to that in plant root (Zacchini et al., 2009).  
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TF = Concentration of  metal in plant shoot  

 

Concentration of metal in plant root 

  

3.14 Reduction Percentage  

Reduction percentage was determined using the relation;  

Reduction (%) = ( A - B) × 100  
A 

where  

A = concentration of heavy metal in the treatment soil before transplanting  

B = concentration of heavy metals remaining in the treatment soil after harvest   

  

3.15 Contamination Factor and Degree of Contamination.  

Soil contamination was evaluated using the contamination factor (Cf) and the degree of 

contamination (Cdeg). These were computed using the relation Cf = C  

𝐶𝑟 
where,  

Cf = contamination factor for a specific heavy metal  

C = concentration of the heavy metal  

  

3.16 Food Crops  

The treated soils after harvesting the phytoremediation agents were used for the growing of 

food crops. Crops considered were tomato and okra.  

  

The concentrations of heavy metals (As, Cd, Cu, Ni and Pb) in the food crops were 

determined using the procedures described in Section 3.9.4.  
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3.17 Statistical Analysis of Heavy Metals Analyses  

Data obtained for heavy metal concentrations in soil and plants were subjected to analysis 

of variance (ANOVA) using R-Statistical Software, Version 3.2.3 (2016). Mean 

differences between concentrations of heavy metals in soil and plants were compared 

using Tukey-B at 5 % significance level.  

    

CHAPTER FOUR  

4.0  RESULTS AND DISCUSSION 4.1 Soil Physicochemical Properties and 

Concentration of Heavy Metals at the  

Study Site  

The average pH range of the study area was 5.71-6.24. The mined soil being slightly 

acidic was not surprising, as it has been reported by Mensah (2015) that, low pH value is 

a feature for most mined soils in Ghana. Assel (2006) reported pH levels as low as 3.96 

in soils in Prestea/Bogoso, a mining area in the western region of Ghana. Table 4.1 gives 

the experimental results obtained for the mined soil’s physical and chemical properties.  

Table 4.2 gives the mean concentration of heavy metals in the soil at the study site.   

  

Table 4.1.  Mined Soil physical and chemical properties at the study site  

Property  Value  

pH  5.71-6.24  

Moisture (%)  11.18  

Organic carbon (%)  0.21  

Organic matter (%)  0.36  

Total nitrogen (%)  0.09  

Available phosphorus (mg/kg soil)  4.79  

Exchangeable potassium (cmol(+)/kg soil)  0.37  

Exchangeable calcium (cmol(+)/kg soil)  1.23  

Exchangeable magnesium (cmol(+)/kg soil)  0.31  

Exchangeable sodium (cmol(+)/kg soil)  0.12  

Sand (%)  80.1  

Silt (%)  11.1  

Clay (%)  8.8  

Texture  Loamy sand  
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Table 4.2.  Mean concentration of heavy metals in the soil at the study site  

  
 

Heavy metal (mg/kg)  
 

Cdeg    As  Cd  Cu  Ni  Pb  

Soil  6.18 + 0.67  0.27 + 0.04  30.54 + 3.54  23.58 + 1.54  40.22 + 4.80  
2.84  

Cf  
0.52  0.34  0.84  0.67  0.47    

Standard (WHO)  12  0.8  36  35  85    

  

The average levels of soil organic carbon (SOC), total nitrogen as well as available 

phosphorus were generally low (Table 1). This could be due to the mining activities 

which result in the removal of vegetation and consequently, loss of plant nutrients 

(Amegbey, 2001). Lower levels of SOC, total Nitrogen and available Phosphorus have 

been reported by Sheoran et al. (2010) and  Assel, (2006) in mining areas of Ghana. This 

gives an indication of the disruption of ecosystem functioning and loss of litter layer due 

to mining activities. Variation in soil exchangeable bases contents were found to decrease 

in the order of Ca2+ > K+ > Mg2+ > Na+. This is an indication that Cation Exchange 

Capacity is affected by both pH and ionic strength of the soil solution especially in highly 

weathered  

soils.   

  

Contamination factors and degree of contamination obtained (Table 4.2) showed the 

study area was less contaminated by the metals considered in the study (As, Cd, Cu, Ni 

and Pb). Even the highest metal concentration of 85 mg/kg (Pb) was below the 

permissible limits for heavy metals in soils according WHO (1996). Contamination 

factors (Cf) for all metals considered in the study were less than 1 indicating low 

contamination of the individual metals as described by Hakanson (1980).  
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4.2  Biomass of Plants before Transplanting   

Results of moisture contents and dry weights of samples obtained from the field are 

shown in Table 4.3. The highest moisture content was observed in the roots of C. odorata 

(55.08 + 0.64%) followed by roots of P. vaginatum (54.54 + 1.2 %). C. zizanioides had 

the highest moisture contents in the shoot. C. odorata and C. zizanioides recorded the 

least root and shoot dry weights of 45.92+ 0.55 and 29.18+ 0.39 % in (Table 4.3). For 

phytoremediation to be successful, selection of proper phytoremediating species is one 

of the most important factors one must consider. According to earlier research, plant 

species with high biomass production are ideal for phytoremediation (Schnoor, 1997; 

Cunningham and Ow, 1996; Kumar et al.,   1995). The selected plant species for the study 

were effective in biomass production (Table 4.3) and were among the 400 plant species 

that have been reported as hyperaccumulators of metals (Salt and Kramer, 2000; Lasat,  

2000; Ghosh and Singh, 1998).  

  

Table 4.3.  Moisture content and percentage dry weight of plants before  

transplanting  

Species  

Moi sture  Dry we 

(%)  

ight  

Root  Shoot  Root  Shoot  

Chromolaena odorata  55.08 + 0.64  61.56 + 0.63  45.92 + 0.55  38.44 + 0.62  

Chrysopogon zizanioides  47.83 + 1.03  70.83 + 1.37  52.17 + 1.01  29.18 + 0.39  

Paspalum vaginatum  54.54 + 1.2  57.27 + 0.31  45.46 + 0.32  42.73 + 0.61  

Cynodon dactylon  45.44 + 0.61  52.29 + 0.48  54.56 + 0.71  47.71 + 0.68  

  

4.3  Concentrations of Heavy Metals in Plants before Transplanting  

The levels of heavy metals in plants selected for the study before transplanting are 

presented in Table 4.4. With the exception of levels of Cd, the levels of heavy metals 

were below the permissible limits in plants (WHO 1996) in all the plants selected for the 

study. These observations could be due to the ability of the species to extract higher levels 
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of Cd from soils, or higher levels of Cd in soils where the species were taken from. The 

observations in the present study confirm that accumulation of metals by plants depends 

on the availability and solubility of metals in soils, their translocation potential and the 

type of plant species involved (Lasat, 2002; Sinha et al.,   2009).  

  

4.4  Dynamics of pH, EC and Metal Concentrations in Soil after Planting  

Changes in pH and EC of the soil throughout the study were monitored at three different 

sampling periods (weeks 3, 6 and 9) and the results are presented in Figures 4.1 and 4.2.  

The mean pH of the soil through the study period ranges from 6.2 (moderately acidic) in 

the control treatment at 9th week to 7.2 (basic) in the combined used of  CO and PV plant 

species at week 6. Different dynamics were observed for each treatment.   

  

Table 4.4.  Concentrations of heavy metals in plant species before transplanting   

Species  

Concentration (mg/kg)  

Root  Shoot  Whole plant  

 As  

Chromolaena odorata  0.014 + 0.002  0.015 + 0.003  0.029   

Chrysopogon zizanioides  0.012 + 0.001  0.009 + 0.001  0.021   

Paspalum vaginatum  0.009 + 0.001  0.015 + 0.002  0.025   

Cynodon dactylon  0.006 + 0.004  0.012 + 0.001  0.017   

Standard (WHO)                                             0.10  

  Cd  

Chromolaena odorata  0.04 + 0.01  0.05 + 0.02  0.09   

Chrysopogon zizanioides  0.25 + 0.04  0.26 + 0.03  0.51   

Paspalum vaginatum  0.04 + 0.002  0.05 + 0.001  0.09   

Cynodon dactylon  0.06 + 0.02  0.08 + 0.003  0.14   

Standard (WHO)                                             0.02   

  Cu   Ni  

Chromolaena odorata  0.08 + 0.02  0.06 + 0.01  0.14   

Chromolaena odorata  0.94 + 0.13  0.93 + 0.1  1.87  

Chrysopogon zizanioides  0.11 + 0.05  0.13 + 0.01  0.24   

Paspalum vaginatum  0.24 + 0.11  0.27 + 0.09  0.51   

Cynodon dactylon  0.17 + 0.01  0.36 + 0.11  0.53   

Standard (WHO)                                              10   
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Chrysopogon zizanioides  0.14 +  0.08  0.09 + 0.01  0.23   

Paspalum vaginatum  0.07 + 0.002  0.05 + 0.002  0.12   

Cynodon dactylon  0.12 + 0.06  0.11 + 0.05  0.23   

Standard (WHO)                                              10   

  Pb  

Chromolaena odorata  0.008 + 0.002  0.004 + 0.0003  0.012   

Chrysopogon zizanioides  0.002 + 0.0007  0.002 + 0.0001  0.004   

Paspalum vaginatum  0.003 + 0.0009  0.004 + 0.0005  0.007   

Cynodon dactylon  0.002 + 0.0005  0.005 + 0.0003  0.007   

Standard (WHO)                                             2   

  

Generally, the control treatment recorded lower pH values from week 3 to week 9 than 

the other soil treatments. There was also a general increase in soil pH in all the treatments 

between the baseline and the 3rd week. However, after the week 3, a reduction in soil pH 

was observed under the control sample, CZ, CZ+PV and CZ+CD sample treatments to 

the 9th week.   
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Figure 4.1  Dynamics of soil pH with time  

 

Figure 4.2  Dynamics of soil electrical conductivity with time  

  

The pH recorded in CO increased from 6.2 to 7.4 in week 6 and declined to 7.2 at week 

9. The observed trend in combined use of CO and PV was different from the other 

treatments as it increased to 7.5 in week 3, decreased to 7.0 in week 6 and increased again 

to 7.1 in week 9. This is because some plants in soils, which is high in basic soils, becomes 

chemically unavailable but are sparingly available for plant use (Arizona Master and  

Manual, 1998).   

Electrical conductivity (EC) of the soil through the study period ranged from 72 us/cm in 

the control treatment at week 6 to 877 us/cm in the CZ at week 3 (Figure 4.2). With 

exception of CZ+CD sample, EC recorded in all the treatments generally increased from 

the beginning of the study to the 3rd week and then decreased afterwards. At week 3, PV 

recorded the highest EC while the control recorded the least. However, at weeks 6 and 9,  

ECs were highest in the CD treatments (473 µs/cm and 445 µs/cm respectively).   

  

Soil properties affect metal availability in different ways. Soil pH is one of the major 

factors that affect the availability of metal in the soil (Harter, 1983). Changes (increases) 
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in the pH and EC values observed relative to the initial (baseline) could be as a result of 

the compost added to the soil. The compost used to amend the soil had relatively high 

amount of organic matter (48.6 %) which is a source of exchangeable cations. These 

cations could displace H+ in the soil there by altering the pH and the EC of the soil  

(Adriano, 1986).  

  

Figures 4.3 - 4.7 show the dynamics of heavy metals concentrations in soil across the 

study period. There were general reductions in the levels of metals from the initial 

concentration (baseline) to the end of the study (week 9) in all treatments. Figure 4.3 

Dynamics of arsenic (As) concentration in soil with time  
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Figure 4.4 Dynamics of cadmium (Cd) concentration in soil with time  

 
Figure 4.5 Dynamics of copper (Cu) concentration in soil with time  

 

Figure 4.6 Dynamics of nickel (Ni) concentration in soil with time  
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Figure 4.7 Dynamics of lead (Pb) concentration in soil with time  

  

Among all the treatments excluding the baseline, control sample at week 3 recorded the 

highest concentration of As (6.08 mg/kg) and CO+PV at week 9 recorded the least (3.69 

mg/kg). The levels of Cd ranged from 0.12 mg/kg in CO+PV at week 9 to 0.25 mg/kg in 

the control sample at week 3. The control recorded the highest concentrations of Cd at all 

sampling periods. At the 3rd week of sampling, CO recorded the least level of Cd (0.21 

mg/kg). However, the trend changed in weeks 6 and 9 with CO+PV recording the least 

concentrations of 0.17 and 0.12 mg/kg, respectively. Cu concentrations ranged from  

19.29 mg/kg in CO+PV at the 9th week to 30.06 mg/kg in the control at the 3rd week.  

  

In all the sampling periods (weeks 3, 6 and 9), highest levels of Cu were observed in 

CO+PV combination. Similar to the other metals, a general decrease with time was 

observed in Ni at all sampling periods while CO+PV recorded least concentrations  

(23.16, 22.91 and 22.43 mg/kg in week 3, 6 and 9, respectively) at all sampling  of weeks  

3, 6 and 9, respectively). Pb concentrations ranged from 23.69 mg/kg in CO+PV at the  
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9th week to 39.51 mg/kg in control sample at the 3rd week. The least Pb concentrations in 

soil at weeks 3, 6 and were 34.56, 30.73 and 23.69 mg/kg in CO+PV, CO and CO+PV, 

respectively. The general reduction of metals observed is an indication that, plant species 

used for the study were effective in extracting metals from the soil. However, slight 

reductions were observed in the control treatments but these reductions were not  

significant.   

  

The levels of heavy metals in soil decreased with plant growth (i.e. as the plant species 

produce more biomass, more metals were extracted from the soil and thereby reducing 

the levels of the metals in the soil). These observations affirm the importance of high 

biomass production to the success of phytoremediation (Schnoor, 1997; Cunningham and 

Ow, 1996; Kumar et al., 1995). Again, the significant reductions of metals in plants 

treated soils than the control soil could also be due to the active contribution of plants to 

metal availability. This is done by the secretion of phytosidophores into the rhizosphere 

that chelate and solubilize metals that are soil bound (Kinnersely, 1993). Two 

mechanisms used by plants to enhance metal accumulation are acidification of the 

rhizosphere and exudation of carboxylates as reported by Zhao et al. (2001). Acidification 

of rhizosphere soil has been observed by Yang et al. (2005) in numerous plant types 

accruing Zn, Cu, Cd and Ni.   

  

Soil properties also play important role (most importantly organic matter content and pH) 

in the dynamics of heavy metals in the soil. The relationship between soil pH and EC and 

heavy metals are presented in Table 4.13. Weak negative correlations were observed 

between both pH and EC and the heavy metals. These mean that, as the pH and the EC 

of the soil increase, availability of the metals to the roots of the plant species decreases. 

Wang et al. (2006) also reported a similar observation as decrease in the availability of  
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Cd and Zn to the roots of Thlaspi caerulescens resulted from increase in soil pH.  

4.5 Percentage Reduction and Concentrations of Heavy Metals in Soil at Harvest At 

the end of the study, there was a general reduction in metal concentrations in all the soils 

and the results are presented in Table 4.5. The concentrations of the metals observed at 

harvest were all below the permissible limits (WHO, 1996). Percentage reduction for all 

metals in all treatments were below 50 % except for Cd reduction in CO+PV sample 

which recorded 53.1 % reduction. Least percentage reductions were recorded in the 

control for all metals (5.7, 19.1, 6.4, 4.8 and 5.4 % for As, Cd, Cu, Ni and Pb 

respectively).  

On the other hand, highest percentage reductions for all metals were recorded in CO+PV 

(40.1, 53.1, 36.8, 29.3 and 41.2 % for As, Cd, Cu, Ni and Pb respectively).   

  

Reductions for all metals in the sole plant treatments were highest in CO (C. odorata) 

treated soils indicating the potential of the species as phytoremediator for these metals. 

Followed closely to the C. odorata in metals reduction was PV (P. vaginatum) which 

exhibited higher phytoremediating potential compared to the C. zizanoides and C. 

dactylon. The evidence of the potential of these two species as phytoremediators was 

further confirmed when combined. The combination of C. odorata and P. vaginatum 

(CO+PV) resulted in highest reductions of all metals at harvest. This shows that for 

effective and efficient reclamation of an area polluted by these metals, there is the need 

to combine these two species on the land.  

  



 

 

  

Table 4.5. Mean percentage reduction and concentrations of heavy metals in soil at harvest   

Treatment  As 

(mg/kg)  
(%)  Cd 

(mg/kg)  
(%)  Cu 

(mg/kg)  
(%)  Ni 

(mg/kg)  
(%)  Pb 

(mg/kg)  
(%)  

Baseline  6.18 + 0.67    0.27 + 0.04    30.54 + 3.54    1.54 + 1.54    40.22 + 4.80    

Control  5.83 + 0.4e  5.7  0.22 + 0.01e  19.1  28.58 + 0.77e  6.4  22.44 + 0.51c  4.8  38.02 + 1.23f  5.4  

CO  4.42 + 0.55abc  28.4  0.14 + 0.02ab  46.2  20.74 + 0.67ab  32.1  17.45 + 1.74ab  25.9  25.23 + 3.77ab  37.2  

CZ  4.81 + 0.46cd  22.2  0.19 + 0.02cd  30.6  23.71 + 1.73c  22.3  18.68 + 1.27b  20.7  30.25 + 2.21cde  24.7  

PV  4.57 + 0.38bcd  25.9  0.17 + 0.02c  36.1  22.21 + 1.27bc  27.3  18.07 + 1.41ab  23.3  29.15 + 2.32cd  27.5  

CD  5.25 + 0.26de  15.1  0.2 + 0.01de  25  26.03 + 1.27d  14.7  20.88 + 0.47c  11.4  33.61 + 1.83e  16.4  

CO+PV  3.69 + 0.3a  40.1  0.13 + 0.01a  53.1  19.29 + 0.78a  36.8  16.66 + 1.86a  29.3  23.69 + 0.01a  41.2  

CO+CD  3.88 + 0.26ab  37.1  0.17 + 0.02bc  38.2  20.21 + 1.65ab  33.8  17.9 + 0.61ab  24.1  26.78 + 2.0 abc  33.4  

CZ+PV  4.33 + 0.46abc  29.8  0.18 + 0.01cd  33.2  20.63 + 1.69ab  32.4  17.63 + 1.07ab  25.2  30.7 + 0.99de  23.6  

CZ+CD  3.84 + 0.62ab  37.7  0.18 + 0.02cd  33.1  20.27 + 1.86ab  33.6  17.34 + 1.4ab  26.4  28.26 + 1.45bcd  29.7  

Standard (WHO)  12    0.8    36    35    85    

Mean ± SD in same column with different letters in superscripts differ significantly (P < 0.05). 
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4.6  Plant Growth Performance  

Another important feature for a plant to be ideal for phytoremediation aside high biomass 

production is the ability to tolerate high levels of heavy metals in the soil. Growth 

performance of the plants used as phytoremediation agents were monitored throughout 

the study period and growth parameters measured were height, leaf area and chlorophyll 

content. Growth patterns were observed in all plant species (Tables 4.6-4.8).   

  

There was a general increase in height and leaf area in the treatment with time (Tables  

4.6 and 4.7). At all the sampling periods, CZ+CD recorded the highest plant height (36.26, 

45.01 and 55.23 cm at weeks 3, 6 and 9 respectively) while CO+CD recorded the least 

height at all sampling periods (13.86, 18.66 and 21.42 cm at weeks 3, 6 and 9 

respectively). CO+PV recorded the largest leaf area among the treatments at week 3 

(47.99 cm2). However, at weeks 6 and 9, largest leaf areas were observed in CO (68.51 

and 80.64 cm2 respectively).   

  

PV recorded the largest leaf area at week 3 among the sole plant treatments but the trend 

changed in weeks 6 and 9 with CO recording the largest at both sampling periods. For 

the combinations, CO+PV recorded largest leaf area at all sampling periods. Generally, 

chlorophyll contents observed in all treatments increased from the 3rd week to the 6th 

week and then decreased in the 9th week with the exception of CO which recorded a 

general decreased from week 3 to 9. CO recorded the highest chlorophyll content at week 

3 (10.92 µmol/m2) while CZ recorded the least (1.26 µmol/m2). At weeks 6 and 9, highest 

chlorophyll contents were observed in CO+CD. CO among the sole plant treatments 

recorded highest chlorophyll contents at all sampling periods while the highest among 

the combinations were observed in CO+CD at periods of sampling.  
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Plant height and leaf area increased with time until harvest while chlorophyll contents 

peaked at week 6 and reduced due to yellowing as plants reach maturity. These 

observations in Tables 4.6-4.8 could be as a result of the addition of compost which might 

have supplied nutrients for the plant. Soil amendments such as fertilizer, compost, manure 

and sewage sludge are used to help enhance plant growth (Hartley et al.,   2009). The 

normal growth by the plant species could also be due to the low levels of heavy metals in 

the soil which were below the permissible limits as shown in Table 4.2.  

  

Table 4.6. Mean Height of Plants Species with Time  

Treatment  
 Week   

3  6  9  

CO  22.02 + 3.32  32.26 + 3.33  40.11 + 4.15  

CZ  25.15 + 4.12  31.63 + 1.93  36.75 + 3.47  

PV  21.92 + 4.14  30.51 + 6.12  35.07 + 5.01  

CD  16.57 + 4.22  22.96 + 5.29  27.33 + 7.55  

CO+PV  19.16 + 3.81  26.17 + 3.54  33.79 + 2.86  

CO+CD  13.86 + 2.24  18.66 + 2.34  21.42 + 1.95  

CZ+PV  25.4 + 3.46  34.41 + 2.73  41.26 + 2.81  

CZ+CD  36.24 + 5.69  45.01 + 4.6  55.23 + 4.18  

  

Table 4.7. Mean Leaf Area of Plant Species with Time   

Treatment  
 Week   

3  6  9  

CO  40.08 + 12.85  68.51 + 14.78  80.64 + 9.23  

CZ  32.1 + 5.28  37.35 + 7.33  44.94 + 6.6  

PV  47.48 + 9.15  67.03 + 16.3  78.55 + 11.5  

CD  25.72 + 8.09  35.69 + 12.28  41.18 + 12.79  

CO+PV  47.99 + 9.32  68.23 + 15.84  77.31 + 12.82  

CO+CD  36.14 + 12.83  47.32 + 7.32  54.13 + 6.97  

CZ+PV  41.71 + 8.12  52.67 + 8.72  59.14 + 11.32  

CZ+CD  29.11 + 6.42  38.23 + 4.46  47.34 + 6.74  
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4.7  Plant Analyses at Harvest  

4.7.1  Biomass of Plants at Harvest  

Table 4.9 shows the results of percentage dry weight and moisture content of plants at 

harvest. Higher moisture contents were observed in the shoots of all plants than their 

roots. In contrast, the roots of the plants recorded higher dry weights than the shoots. P. 

vaginatum recorded the highest amount of moisture in the roots (63.59 %) while the 

highest in the shoots were observed in C. zizanioides (83.46 %). In both roots and shoots, 

C. dactylon recorded highest percentage dry weights (53.89 and 44.19 % respectively) 

among the plants.  

  

Table 4.8. Mean Chlorophyll Contents in Plant Species with Time   

Treatment  

 Week    

3  6   9  

CO  10.92 + 1.03  10.03 + 2.12   7.71 + 1.8  

CZ  1.26 + 0.06  1.66 + 0.39   1.2 + 0.15  

PV  2.83 + 1.4  3.3 + 1.69   2.35 + 0.77  

CD  6.38 + 4.34  7.81 + 4.96   5.86 + 4.35  

CO+PV  7.79 + 1.79  8.81 + 1.49   7.11 + 1.71  

CO+CD  9.01 + 4.72  12.19 + 1.21   9.37 + 0.81  

CZ+PV  2.98 + 3.29  3.72 + 2.91   2.31 + 1.51  

CZ+CD  2.24 + 0.64  4.21 + 1.43   2.78 + 1.26  

  

Table 4.9. Moisture content and percent dry weight of plants at harvest  

Species  

Moisture  

 

Dry weight (%) 

 
 Root  Shoot   Root  Shoot  

Chromolaena odorata  59.76 + 0.78  79.99 + 0.58   40.19 + 0.75  19.99 + 0.58  

Chrysopogon zizanioides  52.64 + 1.3  83.46 + 1.66   47.33 + 1.33  16.49 + 1.61  

Paspalum vaginatum  63.59 + 1.29  67.17 + 0.35   36.11 + 0.22  32.8 + 0.39  

Cynodon dactylon  46.05 + 0.77  55.81 + 0.45   53.89 + 0.88  44.19 + 0.45  
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4.7.2. Accumulation (extractive) Potential of Plants for Heavy Metals  

The mean concentrations of heavy metals in plants species and their extractive potentials 

(accumulation ratio) at harvest are presented in Table 4.10. Concentration of As in the 

roots was highest in C. odorata (0.44 mg/kg) which was about 69, 33 and 83 % more than 

C. zizanioides, P. vaginatum and C. dactylon respectively. C. odorata significantly (P < 

0.05) recorded higher concentration of As (0.77 mg/kg) in the whole plant than C. 

zizanioides and C. dactylon (0.55 and 0.52 mg/kg respectively). The highest 

concentrations of Cd in roots, shoots and whole plant were significantly (P < 0.05) 

recorded by Cynodon dactylon (0.55, 0.75 and 1.29 mg/kg respectively).   

  

Similar levels (P > 0.05) of Cd were recorded in the roots of C. odorata, C. zizanioides 

and P. vaginatum. Concentration of Cu in the roots was highest significantly (P < 0.05) 

in C. odorata (0.94 mg/kg) and least in C. zizanioides (0.24 mg/kg). Similar observations 

were seen in the shoots and whole plant with C. odorata recording the highest 

concentrations of Cu (0.92 and 1.86 mg/kg) while C. zizanioides recorded the least (0.27 

and 0.51 mg/kg respectively). C. zizanioides and C. dactylon significantly (P < 0.05) 

recorded highest concentrations of Ni in the roots, shoots and whole plants (Table 4.8).   

  

Lead concentrations were significantly highest (P < 0.05) in C. odorata in the roots (0.087 

mg/kg), C. odorata and P. vaginatum (0.072 and 0.069 mg/kg) in the shoots and C. 

odorata (0.16 mg/kg) in the whole plant. According to Lăcătuşu et al. (2009),  

concentrations of metals in plants vary from species to species due to plant response under 

different environmental conditions (Mganga et al., 2011). The results affirmed the 

assertion that heavy metal concentrations in plants varied from species to species (Table 

4.10). Concentrations of As and Cd in all the species (root, shoot and whole) were above 
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the permissible limits in the plant according WHO (1996). On the other hand, Cu, Ni and 

Pb concentrations in all plants organs were below the permissible limits.  

  

The capability of the species to accumulate heavy metals was assessed by their 

accumulation ratio (ratio of heavy metal concentration in the plants before the experiment 

to that of heavy metal concentration in the plants after each harvest). Highest 

accumulation ratios of As were observed in both roots and shoots of P. vaginatum (37.6 

and 34.4 respectively). Nonetheless, the highest in the whole plant was recorded by C. 

odorata (33.2) indicating its higher capability in accumulating As than the other species.  

This observation is in accordance with Aziz (2011) who reported higher accumulation 

(63) ratio in C. odorata for As. According to Goldsbrough (2000), a requirement of great 

importance to accumulation of toxic metals is the ability to tolerate the metals that are 

extracted from the soil. This suggest that, C. odorata and P. vaginatum are good 

candidates for phytoremediating As.  C. odorata and P. vaginatum among the species 

showed highest accumulating capabilities for Cd by recording highest accumulation 

ratios in both plant organs and whole plant as well (12.9 and 13.3 in the roots, 12.9 and 

12 in shoot and 11.3 and 11.2 in the whole plant).   

  

Table 4.10. Concentration of heavy metals in plant at harvest  

Species  

Root   Shoot   Whole plant  

Mean (mg/kg)  Ratio  Mean (mg/kg)  Ratio  Mean (mg/kg)  Ratio  

  As    

Chromolaena odorata  0.44 + 0.02b  32.4  0.33 + 0.1a  22.2  0.77 + 0.07b  33.2  
Chrysopogon zizanioides  0.26 + 0.04ab  21.6  0.30 + 0.1a  33.1  0.55 + 0.06a  26.6  
Paspalum vaginatum  0.33 + 0.03ab  37.6  0.36 + 0.03a  34.4  0.69 + 0.03ab  27.3  
Cynodon dactylon  0.24 + 0.09a  15.8  0.27 + 0.01a  23.6  0.52 + 0.1a  29.6  
Standard (WHO)    0.10    

    Cd    

Chromolaena odorata  0.52 + 0.05a  12.9  0.65 + 0.02b  12.9  1.17 + 0.07bc  11.3  
Chrysopogon zizanioides  0.53 + 0.03a  2.1  0.52 + 0.03a  2  1.04 + 0.05ab  2.1  
Paspalum vaginatum  0.53 + 0.06a  13.3  0.48 + 0.03a  12  1.01 + 0.04a  11.2  



 

61  

Cynodon dactylon  0.55 + 0.06b  10.9  0.75 + 0.02c  9.3  1.29 + 0.04c  9.2  
Standard (WHO)    0.02    

    Cu    

Chromolaena odorata  0.94 + 0.01d  1  0.92 + 0.03c  1  1.86 + 0.02d  1.8  
Chrysopogon zizanioides  0.24 + 0.02a  2.2  0.27 + 0.03a  2.1  0.51 + 0.05a  2.1  
Paspalum vaginatum  0.53 + 0.02c  2.2  0.53 + 0.03b  2.2  1.06 + 0.2c  2.1  
Cynodon dactylon  0.36 + 0.02b  1.3  0.33 + 0.02a  0.9  0.69 + 0.04b  1.3  
Standard (WHO)    10    

    Ni    

Chromolaena odorata  0.096 + 0.01a  1.2  0.086 + 0.004a  1.4  0.18 + 0.001a  1.1  
Chrysopogon zizanioides  0.17 + 0.02b  1.2  0.14 + 0.02b  1.6  0.31 + 0.04b  1.4  
Paspalum vaginatum  0.094 + 0.01a  1.4  0.072 + 0.002a  1  0.16 + 0.009a  1.4  
Cynodon dactylon  0.16 + 0.02b  3.2  0.14 + 0.02b  1.3  0.30 + 0.04b  1.3  
Standard (WHO)    10    

    Pb    

Chromolaena odorata  0.087 + 0.001c  11.6  0.072 + 0.003b  17.4  0.16 + 0.007c  16.3  
Chrysopogon zizanioides  0.044 + 0.002a  17.5  0.047 + 0.002a  28.2  0.09 + 0.003a  21.8  
Paspalum vaginatum  0.059 + 0.005b  17.9  0.069 + 0.002b  20.7  0.13 + 0.006b  18.2  
Cynodon dactylon  0.055 + 0.001ab  14.7  0.042 + 0.003a  7.2  0.10 + 0.01a  12.9  
Standard (WHO)    2    

Mean ± SD in same column with different letters in superscripts are significantly different 

(P < 0.05).  

  

Generally, C. zizanioides and P. vaginatum were seen as best plants for the accumulation 

of Cu, Ni and Pb as they recorded highest accumulation ratios for these metals in both 

plant organs and whole plant. Ability of C. zizanioides to accumulate heavy metals in the 

present study affirms the findings of Nirola et al. (2016) who also reported that C. 

zizanioides is an effective accumulator of metals like Cr, Pb, Ni, and Zn.  

  

4.7.3 Bioaccumulation (hyperaccumulating) Potential of Plants for Heavy Metals 

Bioaccumulation ratio was determined in both organs and the whole plant and the results 

are presented in Table 4.11. The proportion of metal levels found within the plant biomass 

to the concentration found in the soil is known as bioaccumulation ratio. It determines 

the extent of hyperaccumulation by hyperaccumulators. Plants with BR > 1 are classified 

as suitable for phytoextraction and are classified as hyperaccumulators (Nazir et al., 2011;  
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Rotkittikhun et al., 2006; Harrison and Chirgawi, 1989).   

  

Bioaccumulation ratios of all plant species (in both organs and whole plant) for Cd were 

greater than 1 (Table 4.11). C. dactylon recorded the highest ratios in both the organs and 

the whole plant (2.05 in the root, 2.8 in the shoot and 4.85 in the whole plant) indicating 

that all plant species used in the study are suitable for phytoextraction of Cd. This is also 

an indication of the species high selective affinity for the uptake of Cd, an evidence seen 

in Table 4.11 where all species recorded levels of Cd above the permissible limits of 

metals in plants (WHO, 1996). Although bioaccumulation ratios for all plant species for 

As, Cu, Ni and Pb in both plant organs and whole plant observed were less than, the plants 

were identified as potential accumulators for these metals based on the accumulation 

ratios (Table 4.11).  

  

  

Table 4.11. Bioaccumulation factor for heavy metals  

Species  

Bioaccumulation ratio  

Root  Shoot  Whole plant  

 As  

Chromolaena odorata  0.07  0.05  0.12  

Chrysopogon zizanioides  0.04  0.05  0.09  

Paspalum vaginatum  0.06  0.05  0.11  

Cynodon dactylon  0.03  0.04  0.07  

  Cd  

Chromolaena odorata  1.94  2.43  4.37  

Chrysopogon zizanioides  1.93  1.98  3.91  

Paspalum vaginatum  1.99  1.8  3.79  

Cynodon dactylon  2.05  2.8  4.85  

  
 Cu   

Chromolaena odorata   0.03  0.03  0.06  

Chrysopogon zizanioides   0.008  0.009  0.02  

Paspalum vaginatum   0.02  0.02  0.04  

Cynodon dactylon   0.01  0.01  0.02  

  
 Ni   

Chromolaena odorata   0.004  0.004  0.008  
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Chrysopogon zizanioides   0.007  0.006  0.01  

Paspalum vaginatum   0.004  0.003  0.007  

Cynodon dactylon   0.007  0.006  0.01  

  
 Pb   

Chromolaena odorata  0.002  0.002  0.004  

Chrysopogon zizanioides  0.001  0.001  0.002  

Paspalum vaginatum  0.002  0.002  0.004  

Cynodon dactylon  0.001  0.001  0.002  

Values >1 are in bold font  

  

4.7.4. Translocation Factors for Heavy Metals  

Table 4.12 shows the results of concentrations of metals in roots compared to 

concentrations in shoots (translocation ratio). The species generally showed selective 

translocations for metals. Transport of metals within plant organs is dependent on the 

type of metal involved. Generally, according to Kabata-Pendias (2001), Ag, B, Li, Mo, 

and Se are easily transported from roots to above grounds parts; Cd, Mn, Ni, and Zn are 

moderately mobile; and Co, Cr, Cu, Fe, Hg and Pb are strongly bound in root cells. Plants 

with high translocation factor (TF > 1) are considered good phytotranslocators (Zacchini 

et al., 2009). C. zizanioides and C. dactylon recorded TFs greater than 1 for As indicating 

that, the species are good phytostabilizers for As. C. odorata, C. zizanioides and C. 

dactylon were all observed to be good phytostabilizers for Cd (Table 4.12). Only C. 

zizanioides showed good phytostabilizing potential for Cu and C. zizanioides and P. 

vaginatum for Pb. Ni was strongly bound in the root cells as all plant species recorded TF 

values less than 1.  

  

Table 4.12. Translocation factors for heavy metals concentrations in root 

compared to concentrations in shoot of plants  

Species  

 Translocation factors   

As   Cd  Cu  Ni  Pb  

Chromolaena odorata  0.75  1.26  0.98  0.9  0.83  

Chrysopogon zizanioides  1.26  1.03  1.12  0.84  1.07  
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Paspalum vaginatum  0.92  0.92  1.0  0.77  1.16  

Cynodon dactylon  1.11  1.37  0.92  0.89  0.77  

Values >1 are in bold font  

  

4.8  Correlation Analysis   

The results of Pearson correlation coefficient matrix for heavy metals (As, Cd, Cu, Ni 

and Pb), EC and pH of the soil samples are presented in Table 4.13. The computed 

statistical results showed that As had strong significant positive correlations with Cd, Cu, 

Ni and Pb (r = 0.7114, 0.7959, 0.7208, and 0.7657). Cd had a strong positive and 

significant relationships with Cu and Ni (r = 0.7589 and 0.7380) and a very strong 

significant positive correlation with Pb (r = 0.8142). Cu on the other hand had very strong 

significant positive correlations with Ni and Pb (r = 0.8710 and 0.8483).   

  

There was also a very strong positive and significant relationship between Ni and Pb (r =  

0.8600). However, all metals had weak negative correlations with pH (r = -0.1377, 

0.1061, -0.1651, -0.2093 and -0.1876 for As, Cd, Cu, Ni and Pb respectively) and very 

weak negative insignificant correlations with EC (r = -0.0812, -0.0785, -0.0838, -0.0734 

and -0.0932 for As, Cd, Cu, Ni and Pb, respectively). The correlations between pH and  

As as well as Cd were insignificant while with Cu, Ni and Pb were significant.   

Table 4.13 Pearson correlation coefficient matrix for the heavy metals in soil 

samples  

Parameter  As  Cd  Cu  Ni  Pb  EC  pH  

As   1              

Cd   0.7114*   1            

Cu   0.7959*   0.7589*   1          

Ni   0.7208*   0.7380*   0.8710*   1        

Pb   0.7657*   0.8142*   0.8483*   0.8600*   1      

EC  -0.0812  -0.0785  -0.0838  -0.0734  -0.0932  1    

pH   -0.1377   -0.1061   -0.1651*   -0.2093*   -0.1876*  0.1478   1  

*=Correlation is significant at the 0.05 level (2-tailed)  
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4.9  Food crops  

Table 4.14 shows the results of percentage dry weight and moisture content of okro and 

tomato grown on the treated soils after phytoremediation agents were harvested. 

Generally, no significant differences (P > 0.05) in both moisture content and percentage 

dry weight of okra were observed among the treatments. However, tomatoes grown on 

the control soils and soil treated with CZ and CZ+CD significantly (P < 0.05) recorded 

the highest amount of moisture (78.88, 81.23 and 78.01 %) while PV relatively recorded 

the least (68.46 %). Dry weight of tomato was relatively highest in PV treated soil (31.52 

%) least in soil treated with CZ (18.74 %).   

  

Soils contaminated by heavy metals are reported to inhibit plant growth, affect nutrient 

uptake and homeostasis (Schaller and Diez, 1991), and are frequently accumulated by 

agricultural crops. Afterwards, these toxic metals enter the food chain with a significant 

amount of potential to affect animal and/or human health. One of the advantages of using 

phytoremediation in reclaiming polluted lands is keeping the topsoil in usable condition 

that can be used for agricultural activities (Dercová et al.,   2005; Schwitzguébel, 2002;  

Raskin et al.,   1994). The treated soils after harvesting of the phytoremediation agents 

were used for crop production. Dry weights observed from both crop plants (okro and 

tomato) showed that the soils were healthy for crop production  

  

Table 4.14. Moisture content and percentage dry weight of vegetables at harvest  

Treatment  

Okra  Tomato  

Moisture  Dry weight  Moisture  Dry weight  

 (%)   
Control  73.73 + 1.56a  26.27 + 1.55a  78.88 + 1.92d  21.12 + 1.91a  

CO  73.39 + 1.30a  26.61 + 1.29a  70.51 + 2.74ab  29.41 + 2.63cd  

CZ  77.09 + 1.57a  22.81 + 1.60a  81.23 + 1.77d  18.74 + 1.81a  

PV  75.3 + 2.56a  24.69 + 2.55a  68.46 + 2.77a  31.52 + 2.73d  

CD  77.09 + 1.47a  22.9 + 1.48a  76.64 + 3.19bc  23.34 + 3.22abc  
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CO+PV  76.1 + 1.62a  27.48 + 1.58a  72.17 + 1.22abc  27.7 + 1.22bcd  

CO+CD  72.99 + 1.59a  23.8 + 1.72a  71.77 + 1.67abc  28.13 + 1.52bcd  

CZ+PV  72.46 + 1.75a  27 + 1.75a  72.11 + 1.55abc  27.87 + 1.52bcd  

CZ+CD  74.89 + 2.55a  25.11 + 2.55a  78.01 + 1.61cd  21.97 + 1.64ab  

Mean ± SD in same column with different letters in superscripts differ significantly (P <  

0.05).  

  

Results of the concentrations of heavy metals in okro and tomato are presented in Figures 

4.8-4.12. Concentrations of As in both crops were below the permissible limits in 

vegetables (WHO). The observed As concentrations in tomato were relatively higher in 

each treated soil than the concentrations in okro. Concentrations of As in okro ranged 

from 0.0004 mg/kg to 0.0009 mg/kg and 0.0005 mg/kg to 0.0017 mg/kg in tomato with 

the controls recording the highest in both crops while CO+PV recorded the least. 

Concentrations of Cd in both crops were below the permissible limits in vegetables  

(WHO) (Figure 4.14).  

  

Both okro and tomato had the highest levels of Cd were recorded in the plants grown on 

the control soils (0.0017 and 0.00096 mg/kg, respectively), while the least for both crops 

were observed in CO+PV treated soil (0.0005 mg/kg and 0.0005 mg/kg, respectively).  

The Cu concentrations in both crops in all treated soils were below the permissible limits 

vegetables (WHO). Highest concentrations of Cu in both okro and tomato were observed 

in the control treated soils (0.0077 mg/kg and 0.0073) and the least concentrations were 

recorded by CO+PV for both crops (0.0033 mg/kg and 0.0031 mg/kg).   
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Figure 4.9.  Concentrations of cadmium (Cd) in okra and tomato  
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Figure 4.10.  Concentrations of copper (Cu) in okra and tomato   

 
Figure 4.11.  Concentrations of nickel (Ni) in okra and tomato  
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Figure 4.12.  Concentrations of lead (Pb) in okra and tomato  

In all the treated soils, concentrations of Ni in both crops were below the vegetables 

(WHO,1996) (Figure 4.11). Generally, Ni concentrations were higher tomato than okro 

in all treated soils. Crop plants grown on the control soils recorded highest concentrations 

of both okro and tomato (0.0017 mg/kg and 0.0023 mg/kg) while those grown on CO+PV 

treated soils recorded the least for both crops (0.0006 mg/kg and 0.0011 mg/kg). Similar 

to the other metals in the study, levels of Pb were below the permissible limits (0.43 

mg/kg) in edible plants (WHO). Tomato plants relatively recorded higher concentrations 

of Pb than okro plants in all the treated soils. The observed concentrations of Pb in the 

control soils were highest for both okro and tomato (0.00085 mg/kg and 0.0011 mg/kg 

respectively). The least Pb concentration in okro was recorded in the CZ+PV treated soil 

(0.00052 mg/kg) while the least in tomato was observed in CO+PV treated soil (0.00058 

mg/kg).  

  

The observed low concentrations of metals in the crops could be due to lower levels of 

metals concentrations observed in the soils at harvest of the phytoremediation agents. 

Nonetheless, there was a general observation in levels of metals in both crops where by 

crops grown in the control treated soils with relatively higher concentrations of heavy 

metals recording higher concentrations of the metals in the crops. Similarly, lower 

concentrations of heavy metals were observed in crops grown on the combined C. odorata 

and P. vaginatum treated soils that had lower concentration of heavy metals (Table 4.12 

and Figures 4.8-4.12). These observations affirm that, accumulation of metals by plants 

is dependent on the availability and solubility of metals in soils (Sinha et al.,   2009).  

    

CHAPTER FIVE  

 5.0  CONCLUSIONS AND RECOMMENDATIONS  



 

70  

5.1  Conclusions  

The following major conclusions can be drawn from the study:  

i. The results of the study showed that, soil in the study area was moderatly acidic 

with pH of 6.24 with loamy sand texture. Soil organic carbon content, total 

nitrogen and available phosphorus were low (0.21 %, 0.09 % and 4.79 mg/kg 

soil). Levels of heavy metals in the area were low (40.22, 30.54, 23.58, 6.18 and 

0.27 mg/kg for Pb, Cu, Ni, As and Cd, respectively). Contamination factors and 

degree of contamination showed that, the study area was less contaminated by 

the metals considered in the study.  

ii. Addition of compost enhanced the phytoaccumulation potentials of the plant 

species used in the study. Combined use of C. odorata and P. vaginatum resulted 

in higher reductions for all metals from the soil (40.1, 53.1, 36.8, 29.3 and 41.2 

% in As, Cd, Cu, Ni and Pb, respectively). C. odorata was the most effective 

species among the selected species in reducing the concentrations of all metals in 

the soil  

(28.4, 46.2, 32.1, 25.9 and 37.7 % in As, Cd, Cu, Ni and Pb, respectively).  

  

Accumulation of As was higher in both roots and shoots of P. vaginatum with 

accumulation ratios of 37.6 and 34.4, respectively. But more As was accumulated 

in the whole of C. odorata plant than the rest (33.2). P. vaginatum accumulated 

more Cd in the root with ratio 13.3 and C. odorata accumulated more in the shoot 

and whole plant (ratios; 12.9 and 11.3). For Cu, accumulations were higher in C. 

dactylon in the roots (ratio; 3.2), C. zizanoides in the shoots (ratio; 1.6) and C. 

zizanioides in the whole plant (ratio; 1.4 each).  
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C. zizanioides accumulated higher amount of Pb in both shoot and whole (28.2 

and 21.8) and P. vaginatum accumulated higher in the root (17.9).  

  

Bioaccumulation ratios for As, Cu, Ni and Pb in all the plant species were less 

than 1, which shows that the species are not suitable for phytoextraction of these 

metals. All the species had BRs greater than 1 for Cd showing they are good 

phytoextractors for Cd.  

iii. The levels of every heavy metals observed in the food crops (okro and tomato) 

were very low ranging from 0.0004 to 0.0017 mg/kg for As, 0.00052 to 0.0017 

mg/kg for Cd, 0.0033 to 0.0077 mg/kg for Cu, 0.0006 to 0.0022 mg/kg for Ni and 

0.00055 to 0.0011 mg/kg for Pb in both crops. This means that, soils treated by 

the use phytoremediation technique can be used for growing food crop.  

  

5.2  Reommendations  

 Attention should be given to the establishment of native plant species with the potential 

to extract heavy metals from the soil (hyperaccumulators) to remediate contaminated 

mine areas across the country effectively.   

  

Further long term research on the field should focus on combining different plant species 

with hyperaccumulating potentials such as C. odorata and C. zizanioides for the 

remediation of heavy metals contaminated soils. P. viginantum and C. dactylon, 

rhizofiltration species, should also be considered for phytoextraction of heavy metals.  

Other food crops should be considered in future research to test the ability of treated soils 

in supporting crop growth.  
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APPENDICES  

APPENDIX A  

Guidelines for comparison of accepted levels of heavy metals in soils and plants.  

Table A 1. WHO permissible limits for heavy metals in plant and soil.  

Elements  *Target value of soil (mg/kg)  **Permissible value of plant (mg/kg)  

As  12  0.1  

Cd  0.8  0.02  

Cu  36  10  

Ni  35  10  

Pb  85  2  

*Target values are specified to indicate desirable maximum levels of elements in 

unpolluted soils  

**Source: WHO (1996)  

Table A 2. WHO/FAO Safe limits for Heavy Metals in edible plants  

Elements  Safe limits for Heavy Metals in edible plants (mg/kg)  

As  -  

Cd  0.2  

Cu  3.0  

Ni  1.63  

Pb  0.43  
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Table A3 Physical and chemical properties of compost   

Property  Value  

pH  8.46  

Moisture (%)  15  

Dry matter (%)  32.21  

EC (ds/m)  0.8  

Organic matter (%)  48.6  

Total nitrogen (%)  1.34  

Total phosphorus (%)  1.3  

Total potassium (%)  1.23  

Total calcium (%)  0.38  

Total magnesium (%)  0.2  

Feacal coliform (MPN)  1  

  

    

APPENDIX B  

Analysis of variance (ANOVA) Tables  

BA. Analysis of variance (ANOVA) Tables for heavy metals in soil at harvest  

Table BA 1. Analysis of variance for arsenic  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  5  1.9817  0.3963  2.54    

Block.*Units* stratum            

Treatment  8  23.4696  2.9337  18.80  <.001  

Residual  40  6.2421  0.1561      

Total  53  31.6934        
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Table BA 2. Analysis of variance for cadmium  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  5  0.0049350  0.0009870  5.41    

Block.*Units* stratum            

Treatment  8  0.0359447  0.0044931  24.62  <.001  

Residual  40  0.0072993  0.0001825      

Total  53  0.0481790        

  

Table BA 3. Analysis of variance for copper  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  5  32.207  6.441  4.93    

Block.*Units* stratum            

Treatment  8  467.709  58.464  44.75  <.001  

Residual  40  52.256  1.306      

Total  53  552.172        

  

Table BA 4. Analysis of variance for nickel  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  5  33.2014  6.6403  7.78    

Block.*Units* stratum            

Treatment  8  169.5954  21.1994  24.83  <.001  

Residual  40  34.1492  0.8537      

Total  53  236.9459        

  

Table BA 5. Analysis of variance for lead  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  
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Block stratum  5  50.574  10.115  2.67    

Block.*Units* stratum            

Treatment  8  915.891  114.486  30.19  <.001  

Residual  40  151.669  3.792      

Total  53  1118.134        

  

BB. Analysis of variance (ANOVA) Tables for concentration of heavy metals in plant 

at harvest  

Table BB 1. Analysis of variance for arsenic concentration  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  2  0.004897  0.002448  0.56    

Block.*Units* stratum            

Treatment  7  0.085882  0.012269  2.80  0.048  

Residual  14  0.061245  0.004375      

Total  23  0.152023        

    

Table BB 2. Analysis of variance for cadmium concentration  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  2  0.002659  0.001329  0.82    

Block.*Units* stratum            

Treatment  7  0.163049  0.023293  14.34  <.001  

Residual  14  0.022736  0.001624      

Total  23  0.188443        
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Table BB 3. Analysis of variance for copper concentration  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  2  0.0005860  0.0002930  0.50    

Block.*Units* stratum            

Treatment  7  1.6209716  0.2315674  394.41  <.001  

Residual  14  0.0082198  0.0005871      

Total  23  1.6297775        

  

Table BB 4. Analysis of variance for nickel concentration  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  2  0.0013968  0.0006984  4.22    

Block.*Units* stratum            

Treatment  7  0.0290805  0.0041544  25.10  <.001  

Residual  14  0.0023168  0.0001655      

Total  23  0.0327942        

    

Table BB 5. Analysis of variance for lead concentration  

Source of variation  d.f.  s.s.  m.s.  v.r.  F pr.  

Block stratum  2  0.00004362  0.00002181  1.05    

Block.*Units* stratum            

Treatment  7  0.00523653  0.00074808  35.95  <.001  

Residual  14  0.00029133  0.00002081      

Total  23  0.00557149        

  

Cr = reference level  
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Table C. Different degree of contamination (Cdeg) for soil (Hakanson, 1980)  

Cdeg class  Degree of contamination level  

Cdeg < 8  Low degree of contamination   

8 ≤ Cdeg < 16  Moderate degree of contamination  

16 ≤ Cdeg  < 32  Considerable degree of contamination  

Cdeg  ≥ 32  
Very high degree of contamination  

  

  

  

  

    

APPENDIX C  

Experimental set up  

 
Plate C 1. Experimental layout;  
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Plate C 2. Chromolaena odorata  Plate C 3. Chrysopogon zizanioides  

    

  
Plate C 4. Paspalum vaginatum  Plate C 5. Cynodon dactylon  
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Plate C 6. Chromolaena odorata/  Plate C 7. Chromolaena odorata/ Cynodon  

Paspalum vaginatum  dactylon  

  

    
Plate C 8. Chrysopogon zizanioides/ Paspalum  Plate C 9. Chrysopogon zizanioides/  

vaginatum  Cynodon dactylon  

  
Plate C 10. Tomato plant  Plate C 11. Okro plant  

  

  


