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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

Investment is an integral part of life. People undertake investments in various forms. A 

student invests in education spending time and money to acquire knowledge to use in 

future. A cocoa farmer who spends years, money and energy cultivating cocoa is 

undertaking an investment. In the same vein a businessman who invests his money and 

time in the business is also undertaking an investment. Some people invest thousands of 

cedis in treatment and cosmetics to make them look more attractive.  

One thing that is common to all these people mentioned above is that they all invest with 

the hope of reaping a reward for their investments. The type of reward and the time 

(period) it takes to get the reward (return) from your investment will depend on the type 

of investment undertaken. For instance, where as it may take at least ten years to receive a 

reward from education it may take between three to four years for a farmer to start 

enjoying the fruits of his toils.  

Investment is putting money into something with expectation of profit. More specifically 

investment is the commitment of money or capital to the purchase of financial instrument 

or other assets so as to gain profitable returns in the form of interest, income (dividend or 

appreciation. Capital gains of the value of the investment. It is related to savings or 

deferring consumption. Investment is involved in many areas of the economy such as 

business management finance, firms, government etc.  
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Investment in the field of finance involves investing in marketable, public traded 

securities or investing in real assets. A financial asset represents a financial claim on an 

asset that is usually documented by some form of legal representation. Examples of 

financial assets are bonds and stocks. Real assets on the other hand represent tangible 

assets that can be seen, felt, held or collected. Examples are gold, real estates, cars etc. 

Real assets of an economy include land, buildings, machines, capital and knowledge that 

are used to produce goods and services. 

Investors in securities include individual investors and institutional investors such as 

investment banks, pension funds, mutual funds and insurance firms. 

Investment has been given many definitions by different people in the field of finance.  

To the economist, investment involves expenditure on capital goods or on inventory of 

goods or raw materials that are used to produce other goods and services causing future 

production and income to rise. 

“To the financial economist, investment loosely described involves foregoing current 

consumption in exchange for future opportunities”.  

It is therefore expected that the investor would be compensated for the time value of 

money, loss of purchasing power and risk associated with owning the investment.  

Hirt and Block (1998) in their book “Fundamentals of investment management, define 

investment as the commitment of current funds in anticipation of receiving a larger future 

flow of funds. 
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Investment involves the commitment of funds, time, energy and expertise in a venture 

with the view of getting a reward (return) from such a venture in the future. The 

investment decision is essentially how much not to consume in the present in order that 

more can be consumed in the future.  

The optimal investment decision maximizes the expected satisfaction (utility) gained 

from consumption over the planning horizon of the decision maker. It should be noted 

that idle cash is not an investment. Therefore a person who keeps millions of cedis at 

home is not investing that fund. Idle cash is not investment because its value reduces with 

time due to inflation. Secondary, idle cash does not generate any return. 

 

1.2 PROBLEM  STATEMENT 

In 2007 the Executive Chairman of Databank Financial Services, Ken Ofori-Atta, 

officially announced the performance of the EPACK fund at an Annual General Meeting. 

He said the fund's performance in  was over six times better than the second best 

performing mutual fund in Ghana. He said EPACK continues to be the most sought after 

mutual fund not only by local residents but also by Ghanaians abroad and that the fund 

has been doing very well over the years. The fund’s market capitalization rose by ¢105.6 

billion, representing 40%, to close at ¢382 billion by the end of December 2006; 

compared to a 19% appreciation in the market capitalization of the Ghanaian bourse. 

This study seeks to ascertain the truthfulness of the Executive Chairman and to access the 

performance of EPACK over the years by time series approach. 
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1.3 OBJECTIVES  

The research work seeks to:  

i. Apply a mathematical model to suit the share price of EPACK Mutual Fund. 

ii. Analyse the trend of the share prices of EPACK Mutual Fund. 

iii. Analyse the behaviour of the EPACK share prices with time. 

iv. Ascertain whether or not the assertions being made about the fund is true. 

 

 

1.4 METHODOLOGY 

The data was obtained from the DataBank Asset Management Services Limited, Kumasi 

branch. The data comprised averaged monthly EPACK share prices from January 1999 to 

December 2010. Trend analysis was conducted followed by Box-Jenkins Autoregressive 

Integrated Moving Average (ARIMA). Time series modeling procedure was used in 

modeling the data. Statistical Package for Social Scientist (SPSS) was used for the 

computation and analysis of the data in the series after which Matrix Laboratory 

(MatLab) was used to code for the forecasted values of EPACK share price.  

 

1.5 JUSTIFICATION / SIGNIFICANCE  

Since there is no published mathematical work on the performance of EPACK share 

prices, this thesis will serve as a source of knowledge both in the field of time series and 

that of EPACK share price.  

It will also serve as basis for further study in the field. 



5 
 

1.6 SCOPE/ LIMITATIONS 

Aside the stress and financial constraints that one may encounter in putting this piece of 

work together, I must say that laying hands on a project topic was really a difficult task. 

Moreover, the course was designed specifically for the weekends but hardly can we get 

our supervisors on weekends because they might be handling our colleagues in the other 

levels, hence we have to travel distances on week days to see our supervisors meaning not 

going for work for three days, this to me was my greatest limitations. 

 

1.7 ORGANIZATION OF THE THESIS 

The study will be structured into five chapters as follows: 

Chapter One covers the introduction of the study, which discusses the background of the 

study, problem statement, methodology, and significance of the study, 

Delimitations/Scope and the organization of study. 

In chapter two, relevant literature (publications) in the field of time series analysis, and 

Box-Jenkins Methodology was reviewed. Detailed description of the methodology 

employed was done in chapter three. The thesis thoroughly discussed Time series 

analysis, Box Jenkins Methodology and Forecasting techniques. Chapter four was 

devoted to the analysis of averaged monthly EPACK share prices from January 1999 to 

December 2010 by employing the methods discussed in chapter three. Chapter five 

concludes the study with its findings, conclusions and recommendations. 
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

Time series analysis and forecasting has become a major tool in different applications in 

hydrology and environmental management fields. Among the most effective approaches 

for analyzing time series data is the model introduced by Box and Jenkins, 

Autoregressive Integrated Moving Average (ARIMA).  In a study Naill, P.E. et al, [2009] 

used Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken 

for Amman airport station for the period from 1922-1999 with a total of 936 readings. In 

their research,  [(0, 1, 1).sup.12] model was developed. This model was 

used to forecasting the monthly rainfall for the upcoming  years to help decision 

makers establish priorities in terms of water demand management. They then 

recommended an intervention time series analysis to be used to forecast the peak values 

of rainfall data.  

Following the examples of other countries, in April  Japan launched wholesale 

electric power exchange operations as a primary item of system reform in line with 

electric liberalization. Only two years have passed since the initiation of these operations. 

However, in the summer of , the surge in market prices was evident, which 

suggested that certain measures should be taken to confront potential market risks. 

Establishing a useful system for forecasting market prices through the modeling of price 

fluctuations in the wholesale electric market became essential. Until then, various price 

models were being proposed. Taking both the limited amount of data and the model's 

purpose into consideration, Hiroshi et al.,  adopted the univariate time series 
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model. They conducted a time series analysis on the open price indexes in the JEPX spot 

market with the Box-Jenkins method. Since a seven-day cycle was observed in the data, 

they adopted the seasonal ARIMA model. In accordance with the procedures of the Box-

Jenkins method, they determined the degree of the model's polynomial using the 

autocorrelation and partial autocorrelation of the data and estimated the parameters of the 

model with the maximum likelihood method. They then conducted a forecast on next day 

JEPX spot market prices with this time series model and examined its validity and utility 

as a forecasting tool. They hypothesized that, price forecasts made with this model 

require only a small amount of data and will save substantial analysis work. 

Consequently, their method is expected to be widely used by market participants as the 

reference data for their bid pricing.  

Box-Jenkins modeling has some advantages over other techniques for the analysis of time 

series of climatological variables. Not only does it provide more information than other 

methods of analysis, in a more elegant way, but it is also perfectly acceptable from the 

mathematical point of view. Other methods may not be immediately applicable because 

of the problem of autocorrelation in time series. The method of Box-Jenkins univariate 

modeling was briefly discussed by Davies et al.,  in their research. As an example 

of its application to climatological time series analysis, and as an illustration of its 

usefulness, they examined the monthly activity of temperature inversions over Hemsby 

(Eastern England) over a 14-year period. Their results showed that the monthly activity 

series, for both surface and elevated inversions, are stationary. However, the series for 

surface midnight inversions had a seasonal non-stationarity of lag . There was  

month seasonality for surface inversions and weaker -month seasonality for elevated 
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inversions. The monthly activity of surface inversions exhibits less variation than the 

monthly activity of elevated inversions. This simply reflected the fact that the physical 

processes responsible for the formation of surface midnight inversions had more regular 

evolution overtime than those responsible for the formation of elevated inversions. Their 

results were in accordance with those obtained by using standard statistical techniques. 

In order to improve the control level of district-heating systems, it was necessary for the 

energy companies to have reliable optimization routines, implemented in their 

organizations. However, before a plan of heat production, a prediction of the heat demand 

first needs to be determined. Forecast of this heat demand course is significant for short-

term and long-term planning of heat production. This forecast is most important for 

technical and economic consideration. In a paper Bronislav et al., proposed the forecast 

model of heat demand based on the Box-Jenkins methodology. Their model was based on 

the assumption that the course of DDHD can be described sufficiently well as a function 

of the outdoor temperature and the weather independent component (social components). 

Time of the day affects the social components. The time dependence of the load reflected 

the existence of a daily heat demand pattern, which may vary for different week days and 

seasons. Forecast of social component was realized by means of Box-Jenkins 

methodology. Their model was used for prediction of heat demand in different locality.  

The use of the Box-Jenkins approach for forecasting the population of the United States 

up to the year 2080 was discussed by Peter Pflaumer in . It was shown that the Box-

Jenkins approach is equivalent to a simple trend model when making long-range 

predictions for the United States. An investigation of forecasting accuracy indicated that 
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the Box-Jenkins method produces population forecasts that were at least as reliable as 

those done with more traditional demographic methods. 

Nihan et al.,  explored the use of time series techniques for short term traffic 

volume forecasts. A data set containing monthly volumes on a freeway segment for the 

years  through  was used to fit a time series model. Their resulting model was 

used to forecast volumes for the year . The forecast volumes were then compared to 

actual volumes in . The results of their study indicated that time series techniques 

can be used to develop highly accurate and inexpensive short term forecasts. A discussion 

of the ways in which such models can be used to evaluate the effects of policy changes or 

other outside impacts was included. 

Dobre et al.,  published a paper on modeling the evolution of unemployment rate 

using the Box-Jenkins methodology during the period  monthly data. Their 

empirical study revealed that the most adequate model for the unemployment rate was 

. Using the model, they forecasted the values of unemployment rate for 

January and February . Therefore, their forecasted unemployment rate of Romania 

for January  was . 

Th.D Popescu, [2003] presented a paper on “Experiences with a computer aided 

procedure for time series analysis and forecasting using Box-Jenkins philosophy”. His 

paper presented some experiences with model building, parameter estimation and 

forecasting of different time series from industrial processes, biology, transport, using a 

program package for time series analysis and forecasting. AUTOB&J program was then 
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designed to meet all software needs pertaining to Box-Jenkins or ARIMA model 

building. 

In  Vähäkyla et al., worked on short-term forecasting of grid load using Box-

Jenkins techniques in their paper, they demonstrated the use of Box-Jenkins time series 

analysis in short-term load forecasting, and a forecasting system developed at the Imatra 

Power Company was described. Their forecasting algorithm was simple, fast and 

accurate, which made it suitable for online forecasting. Their transfer function model was 

used to introduce temperature effects, thus improving accuracy further. They 

hypothesized that their method gave good results in other forecasting problems of 

electrical energy systems. 

The sociologist or historian who wants to analyze time series data is often confronted 

with the fact that the data do not meet the requirements of the statistical models that he or 

she would like to apply. One of the problems commonly encountered is “outliers” that, if 

not treated properly, may distort model identification and parameter estimation. 

Statisticians working within the Box-Jenkins approach to time series analysis have 

recently developed a detection and estimation procedure that promises to be quite 

effective in modeling outliers. This procedure is introduced here in the version given by 

Chung Chen and Lon-Mu Liu. Several examples with simulated and real world data are 

presented.  

Chan  in his paper adopted the multiple time-series modeling approach suggested 

by Tiao and Box (1981) to construct a stochastic investment model for price inflation, 

share dividends, share dividend yields and long-term interest rates in the United 
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Kingdom. His method had the advantage of being direct and transparent. The sequential 

and iterative steps of tentative specification, estimation and diagnostic checking parallel 

those of the well-known Box-Jenkins method in the univariate time-series analysis. He 

then concluded that it was not required to specify any a priori causality as compared to 

some other stochastic asset models in his literature. 

Fishwick et al.,  discussed the results of a comparative study of the performance 

of Neural networks and conventional methods in forecasting time series. Their work was 

initially inspired by previously published works that yielded inconsistent results about 

comparative performance. They had experimented with three time series of different 

complexity using different feed forward, back propagation neural network models and the 

standard Box-Jenkins model. Their experiments demonstrated that for time series with 

long memory, both methods produced comparable results. However, for series with short 

memory, neural networks outperformed the Box-Jenkins model. They noted that some of 

the comparable results arose since the neural network and time series model appeared to 

be functionally similar models. They found that for time series of different complexities 

there were optimal neural network topologies and parameters that enabled them to learn 

more efficiently. Their initial conclusions were that neural networks were robust and 

provided good long-term forecasting. They were also parsimonious in their data 

requirements. Neural networks represented a promising alternative for forecasting, but 

there were problems determining the optimal topology and parameters for efficient 

learning.  
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CHAPTER THREE 

3.0 METHODOLOGY 

In this chapter, we shall first review techniques used to identify patterns in time series 

data (such as smoothing and curve fitting techniques and autocorrelations), then we shall 

introduce a general class of models that can be used to represent time series data and 

generate predictions (autoregressive and moving average models). Finally, we shall 

review some simple but commonly used modeling and forecasting techniques based on 

linear regression.  

 

3.1 TIME SERIES ANALYSIS 

Under this topic, we shall review techniques that are useful for analyzing time series data, 

that is, sequences of measurements that follow non-random orders. Unlike the analyses of 

random samples of observations that are discussed in the context of most other statistics, 

the analysis of time series is based on the assumption that successive values in the data 

file represent consecutive measurements taken at equally spaced time intervals. Detailed 

discussions of the methods described in this chapter can be found in Anderson (1976), 

Box and Jenkins (1976), Kendall (1984), Kendall and Ord (1990), Montgomery, Johnson, 

and Gardiner (1990), Pankratz (1983), Shumway (1988), Vandaele (1983), Walker 

(1991), and Wei (1989). 
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3.1.1 Two Main Goals 

There are two main goals of time series analysis: 

i. Identifying the nature of the phenomenon represented by the sequence of 

observations, and 

ii. Forecasting (predicting future values of the time series variable).  

Both of these goals require that the pattern of observed time series data is identified and 

more or less formally described. Once the pattern is established, we can interpret and 

integrate it with other data (i.e., use it in our theory of the investigated phenomenon, e.g., 

seasonal commodity prices). Regardless of the depth of our understanding and the 

validity of our interpretation (theory) of the phenomenon, we can extrapolate the 

identified pattern to predict future events. 

 

3.1.2  Systematic Pattern and Random Noise 

As in most other analyses, in time series analysis it is assumed that the data consist of a 

systematic pattern (usually a set of identifiable components) and random noise (error) 

which usually makes the pattern difficult to identify. Most time series analysis techniques 

involve some form of filtering out noise in order to make the pattern more salient. 

 

3.1.3 Two General Aspects of Time Series Patterns 

Most time series patterns can be described in terms of two basic classes of components: 

trend and seasonality. The former represents a general systematic linear or (most often) 

nonlinear component that changes over time and does not repeat or at least does not 
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repeat within the time range captured by our data (e.g., a plateau followed by a period of 

exponential growth). The latter may have a formally similar nature (e.g., a plateau 

followed by a period of exponential growth), however, it repeats itself in systematic 

intervals over time. Those two general classes of time series components may coexist in 

real-life data. For example, sales of a company can rapidly grow over years but they still 

follow consistent seasonal patterns (e.g., as much as 25% of yearly sales each year are 

made in December, whereas only 4% in August). 

 

Figure 3.1:  Plot of variable: Series G 

 

This general pattern is well illustrated in a "classic" Series G data set (Box and Jenkins, 

1976, p. 531) representing monthly international airline passenger totals (measured in 

thousands) in twelve consecutive years from 1949 to 1960 (see example data file G.sta 
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and graph above). If you plot the successive observations (months) of airline passenger 

totals, a clear, almost linear trend emerges, indicating that the airline industry enjoyed a 

steady growth over the years (approximately 4 times more passengers traveled in 1960 

than in 1949). At the same time, the monthly figures will follow an almost identical 

pattern each year (e.g., more people travel during holidays than during any other time of 

the year). This example data file also illustrates a very common general type of pattern in 

time series data, where the amplitude of the seasonal changes increases with the overall 

trend (i.e., the variance is correlated with the mean over the segments of the series). This 

pattern which is called multiplicative seasonality indicates that the relative amplitude of 

seasonal changes is constant over time, thus it is related to the trend. 

 

3.1.4 Trend Analysis 

There are no proven "automatic" techniques to identify trend components in the time 

series data; however, as long as the trend is monotonous (consistently increasing or 

decreasing) that part of data analysis is typically not very difficult. If the time series data 

contain considerable error, then the first step in the process of trend identification is 

smoothing. 

Smoothing: Smoothing always involves some form of local averaging of data such that 

the nonsystematic components of individual observations cancel each other out. The most 

common technique is moving average smoothing which replaces each element of the 

series by either the simple or weighted average of n surrounding elements, where n is the 

width of the smoothing "window" (see Box and Jenkins, 1976; Velleman and Hoaglin, 

1981). Medians can be used instead of means. The main advantage of median as 
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compared to moving average smoothing is that its results are less biased by outliers 

(within the smoothing window). Thus, if there are outliers in the data (e.g., due to 

measurement errors), median smoothing typically produces smoother or at least more 

"reliable" curves than moving average based on the same window width. The main 

disadvantage of median smoothing is that in the absence of clear outliers it may produce 

more "jagged" curves than moving average and it does not allow for weighting. 

In the relatively less common cases (in time series data), when the measurement error is 

very large, the distance weighted least squares smoothing or negative exponentially 

weighted smoothing techniques can be used. All those methods will filter out the noise 

and convert the data into a smooth curve that is relatively unbiased by outliers.. Series 

with relatively few and systematically distributed points can be smoothed with bicubic 

splines. 

Fitting a function: Many monotonous time series data can be adequately approximated 

by a linear function; if there is a clear monotonous nonlinear component, the data first 

need to be transformed to remove the nonlinearity. Usually a logarithmic, exponential, or 

(less often) polynomial function can be used. 

 

3.1.5 Analysis of Seasonality 

Seasonal dependency (seasonality) is another general component of the time series 

pattern. The concept was illustrated in the example of the airline passengers data above. It 

is formally defined as correlational dependency of order k between each i
th

 element of the 

series and the element (Kendall, 1976) and measured by autocorrelation (i.e., a 

correlation between the two terms); k is usually called the lag. If the measurement error is 
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not too large, seasonality can be visually identified in the series as a pattern that repeats 

every  element. 

Autocorrelation correlogram: Seasonal patterns of time series can be examined via 

correlograms. The correlogram (autocorrelogram) displays graphically and numerically 

the autocorrelation function , that is, serial correlation coefficients (and their 

standard errors) for consecutive lags in a specified range of lags (e.g., 1 through 30). 

Ranges of two standard errors for each lag are usually marked in correlograms but 

typically the size of auto correlation is of more interest than its reliability because we are 

usually interested only in very strong (and thus highly significant) autocorrelations. 

Examining correlograms: While examining correlograms, you should keep in mind that 

autocorrelations for consecutive lags are formally dependent. Consider the following 

example. If the first element is closely related to the second, and the second to the third, 

then the first element must also be somewhat related to the third one, etc. This implies 

that the pattern of serial dependencies can change considerably after removing the first 

order auto correlation (i.e., after differencing the series with a lag of 1). 
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Figure 3.2:  Graph of Autocorrelation Function 

Partial autocorrelations Function (PACF): Another useful method to examine serial 

dependencies is to examine the partial autocorrelation function (PACF) - an extension of 
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autocorrelation, where the dependence on the intermediate elements (those within the lag) 

is removed. In other words the partial autocorrelation is similar to autocorrelation, except 

that when calculating it, the (auto) correlations with all the elements within the lag are 

partialled out (Box and Jenkins, 1976; McDowall, McCleary, Meidinger, and Hay, 1980). 

If a lag of 1 is specified (i.e., there are no intermediate elements within the lag), then the 

partial autocorrelation is equivalent to auto correlation. In a sense, the partial 

autocorrelation provides a "clearer" picture of serial dependencies for individual lags (not 

confounded by other serial dependencies). 

Removing serial dependency: Serial dependency for a particular lag of k can be 

removed by differencing the series, that is converting each i
th

 element of the series into its 

difference from the (i-k)''
th
 element. There are two major reasons for such 

transformations. 

First, we can identify the hidden nature of seasonal dependencies in the series. Remember 

that, as mentioned in the previous paragraph, autocorrelations for consecutive lags are 

interdependent. Therefore, removing some of the autocorrelations will change other auto 

correlations, that is, it may eliminate them or it may make some other seasonalities more 

apparent. 

The other reason for removing seasonal dependencies is to make the series stationary 

which is necessary for ARIMA and other techniques. 

 

3.1.6 Autoregressive Integrated Moving Average (ARIMA) 

The modeling and forecasting procedures discussed in Identifying Patterns in Time Series 

Data involved knowledge about the mathematical model of the process. However, in real-

http://www.statsoft.com/textbook/statistics-glossary/s/#Stationary%20Series%20%28in%20Time%20Series%29
http://www.statsoft.com/textbook/time-series-analysis/#arima
http://www.statsoft.com/textbook/time-series-analysis/#identifying
http://www.statsoft.com/textbook/time-series-analysis/#identifying
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life research and practice, patterns of the data are unclear, individual observations involve 

considerable error, and we still need not only to uncover the hidden patterns in the data 

but also generate forecasts. The ARIMA methodology developed by Box and Jenkins 

(1976) allows us to do just that; it has gained enormous popularity in many areas and 

research practice confirms its power and flexibility (Hoff, 1983; Pankratz, 1983; 

Vandaele, 1983). However, because of its power and flexibility, ARIMA is a complex 

technique; it is not easy to use, it requires a great deal of experience, and although it often 

produces satisfactory results, those results depend on the researcher's level of expertise 

(Bails and Peppers, 1982). The following sections will introduce the basic ideas of this 

methodology.  

 

3.1.7 Two Common Processes 

3.1.7.1 Autoregressive process.  

Most time series consist of elements that are serially dependent in the sense that you can 

estimate a coefficient or a set of coefficients that describe consecutive elements of the 

series from specific, time-lagged (previous) elements. This can be summarized in the 

equation:  

 

where  

 is a constant (intercept), and 

1, 2, 3   are the autoregressive model parameters. 

Put into words, each observation is made up of a random error component (random 

shock, ) and a linear combination of prior observations. 
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Stationarity requirement: An autoregressive process happens to be stable if the 

parameters are within a certain range; for example, if there is only one autoregressive 

parameter then it must fall within the interval of -1 < < 1. Otherwise, past effects would 

accumulate and the values of successive xt' s would move towards infinity, that is, the 

series would not be stationary. If there is more than one autoregressive parameter, similar 

(general) restrictions on the parameter values can be defined (Box and Jenkins, 1976; 

Montgomery, 1990). 

 

3.1.7.2 Moving average process. 

Independent from the autoregressive process, each element in the series can also be 

affected by the past error (or random shock) that cannot be accounted for by the 

autoregressive component, that is: 

 

Where 

µ                is a constant, and 

1, 2, 3  are the moving average model parameters. 

Put into words, each observation is made up of a random error component (random 

shock, ) and a linear combination of prior random shocks. 

Invertibility requirement: Without going into too much detail, there is a "duality" 

between the moving average process and the autoregressive process ( Box and Jenkins, 

1976; Montgomery, Johnson and Gardiner, 1990), that is, the moving average equation 

above can be rewritten (inverted) into an autoregressive form (of infinite order). 

However, analogous to the stationarity condition described above, this can only be done 

http://www.statsoft.com/textbook/statistics-glossary/s/#Stationary%20Series%20%28in%20Time%20Series%29
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if the moving average parameters follow certain conditions, that is, if the model is 

invertible. Otherwise, the series will not be stationary. 

 

3.1.8 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) 

Methodology 

Autoregressive moving average model: The general model introduced by Box and 

Jenkins (1976) includes autoregressive as well as moving average parameters, and 

explicitly includes differencing in the formulation of the model. Specifically, the three 

types of parameters in the model are: the autoregressive parameters (p), the number of 

differencing passes (d), and moving average parameters (q). In the notation introduced by 

Box and Jenkins, models are summarized as ARIMA (p, d, q); so, for example, a model 

described as (0, 1, 2) means that it contains 0 (zero) autoregressive (p) parameters and 2 

moving average (q) parameters which were computed for the series after it was 

differenced once. 

Identification: As mentioned earlier, the input series for ARIMA needs to be stationary, 

that is, it should have a constant mean, variance, and autocorrelation through time. 

Therefore, usually the series first needs to be differenced until it is stationary (this also 

often requires log transforming the data to stabilize the variance). The number of times 

the series needs to be differenced to achieve stationarity is reflected in the d parameter 

(see the previous paragraph). In order to determine the necessary level of 

differencing, you should examine the plot of the data and autocorrelogram. Significant 

changes in level (strong upward or downward changes) usually require first order non 

seasonal (lag =1) differencing; strong changes of slope usually require second order non 

http://www.statsoft.com/textbook/statistics-glossary/s/#Stationary%20Series%20%28in%20Time%20Series%29
http://www.statsoft.com/textbook/statistics-glossary/s/#Stationary%20Series%20%28in%20Time%20Series%29
http://www.statsoft.com/textbook/statistics-glossary/s/#Stationary%20Series%20%28in%20Time%20Series%29
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seasonal differencing. Seasonal patterns require respective seasonal differencing. If the 

estimated autocorrelation coefficients decline slowly at longer lags, first order 

differencing is usually needed. However, some time series may require little or no 

differencing, and that over differenced series produce less stable coefficient estimates. 

At this stage (which is usually called Identification phase) we also need to decide how 

many autoregressive (p) and moving average (q) parameters are necessary to yield an 

effective but still parsimonious model of the process (parsimonious means that it has the 

fewest parameters and greatest number of degrees of freedom among all models that fit 

the data). In practice, the numbers of the p or q parameters very rarely need to be greater 

than 2. 

Estimation and Forecasting: At the next step (Estimation), the parameters are estimated 

(using function minimization procedures, so that the sum of squared residuals is 

minimized. The estimates of the parameters are used in the last stage (Forecasting) to 

calculate new values of the series (beyond those included in the input data set) and 

confidence intervals for those predicted values. The estimation process is performed on 

transformed (differenced) data; before the forecasts are generated, the series needs to be 

integrated (integration is the inverse of differencing) so that the forecasts are expressed in 

values compatible with the input data. This automatic integration feature is represented 

by the letter I in the name of the methodology (ARIMA = Auto-Regressive Integrated 

Moving Average). 

The constant in ARIMA models: In addition to the standard autoregressive and moving 

average parameters, ARIMA models may also include a constant, as described above. 

The interpretation of a (statistically significant) constant depends on the model that is fit. 
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Specifically, (1) if there are no autoregressive parameters in the model, then the expected 

value of the constant is , the mean of the series; (2) if there are autoregressive 

parameters in the series, then the constant represents the intercept. If the series is 

differenced, then the constant represents the mean or intercept of the differenced series; 

For example, if the series is differenced once, and there are no autoregressive parameters 

in the model, then the constant represents the mean of the differenced series, and 

therefore the linear trend slope of the un-differenced series. 

 

3.1.9 Identification Phase 

Number of parameters to be estimated: Before the estimation can begin, we need to 

decide on (identify) the specific number and type of ARIMA parameters to be estimated. 

The major tools used in the identification phase are plots of the series, correlograms of 

Autocorrelation Function (ACF), and Partial Autocorrelation Function (PACF). The 

decision is not straightforward and in less typical cases requires not only experience but 

also a good deal of experimentation with alternative models (as well as the technical 

parameters of ARIMA). However, a majority of empirical time series patterns can be 

sufficiently approximated using one of the 5 basic models that can be identified based on 

the shape of the Autocorrelogram Function (ACF) and Partial Auto correlogram Function 

(PACF). The following brief summary is based on practical recommendations of 

Pankratz (1983); Hoff (1983), McCleary and Hay (1980), McDowall, McCleary, 

Meidinger, and Hay (1980), and Vandaele (1983). Also, since the number of parameters 

(to be estimated) of each kind is almost never greater than 2, it is often practical to try 

alternative models on the same data. 
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1. One autoregressive (p) parameter: ACF - exponential decay; PACF - spike at lag 1, 

no correlation for other lags. 

2. Two autoregressive (p) parameters: ACF - a sine-wave shape pattern or a set of 

exponential decays; PACF - spikes at lags 1 and 2, no correlation for other lags. 

3. One moving average (q) parameter: ACF - spike at lag 1, no correlation for other 

lags; PACF - damps out exponentially. 

4. Two moving average (q) parameters: ACF - spikes at lags 1 and 2, no correlation for 

other lags; PACF - a sine-wave shape pattern or a set of exponential decays. 

5. One autoregressive (p) and one moving average (q) parameter: ACF - exponential 

decay starting at lag 1; PACF - exponential decay starting at lag 1. 

Seasonal models: Multiplicative seasonal ARIMA is a generalization and extension of 

the method introduced in the previous paragraphs to series in which a pattern repeats 

seasonally over time. In addition to the non-seasonal parameters, seasonal parameters for 

a specified lag (established in the identification phase) need to be estimated. Analogous to 

the simple ARIMA parameters, these are: seasonal autoregressive (ps), seasonal 

differencing (ds), and seasonal moving average parameters (qs). For example, the model 

(0,1,2)(0,1,1) describes a model that includes no autoregressive parameters, 2 regular 

moving average parameters and 1 seasonal moving average parameter, and these 

parameters were computed for the series after it was differenced once with lag 1, and 

once seasonally differenced. The seasonal lag used for the seasonal parameters is usually 

determined during the identification phase and must be explicitly specified. 

The general recommendations concerning the selection of parameters to be estimated 

(based on ACF and PACF) also apply to seasonal models. The main difference is that in 
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seasonal series, ACF and PACF will show sizable coefficients at multiples of the 

seasonal lag (in addition to their overall patterns reflecting the non seasonal components 

of the series). 

 

3.1.10 Parameter Estimation 

There are several different methods for estimating the parameters. All of them should 

produce very similar estimates, but may be more or less efficient for any given model. In 

general, during the parameter estimation phase a function minimization algorithm is used 

(the so-called quasi-Newton method; refer to the description of the Nonlinear 

Estimation method) to maximize the likelihood (probability) of the observed series, given 

the parameter values. In practice, this requires the calculation of the (conditional) sums of 

squares (SS) of the residuals, given the respective parameters. Different methods have 

been proposed to compute the SS for the residuals: (1) the approximate maximum 

likelihood method according to McLeod and Sales (1983), (2) the approximate maximum 

likelihood method with backcasting, and (3) the exact maximum likelihood method 

according to Melard (1984). 

Comparison of methods: In general, all methods should yield very similar parameter 

estimates. Also, all methods are about equally efficient in most real-world time series 

applications. However, method 1 above, (approximate maximum likelihood, no 

backcasts) is the fastest, and should be used in particular for very long time series (e.g., 

with more than 30,000 observations). Melard's exact maximum likelihood method 

(number 3 above) may also become inefficient when used to estimate parameters for 

seasonal models with long seasonal lags (e.g., with yearly lags of 365 days). On the other 

http://www.statsoft.com/textbook/statistics-glossary/a/#Algorithm
http://www.statsoft.com/textbook/nonlinear-estimation/
http://www.statsoft.com/textbook/nonlinear-estimation/
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hand, you should always use the approximate maximum likelihood method first in order 

to establish initial parameter estimates that are very close to the actual final values; thus, 

usually only a few iterations with the exact maximum likelihood method (3, above) are 

necessary to finalize the parameter estimates. 

Parameter standard errors: For all parameter estimates, you will compute so-called 

asymptotic standard errors. These are computed from the matrix of second-order partial 

derivatives that is approximated via finite differencing.  

Penalty value: As mentioned above, the estimation procedure requires that the 

(conditional) sums of squares of the ARIMA residuals be minimized. If the model is 

inappropriate, it may happen during the iterative estimation process that the parameter 

estimates become very large, and, in fact, invalid. In that case, it will assign a very large 

value (a so-called penalty value) to the SS. This usually "entices" the iteration process to 

move the parameters away from invalid ranges. However, in some cases even this 

strategy fails, and you may see on the screen (during the Estimation procedure) very 

large values for the SS in consecutive iterations. In that case, carefully evaluate the 

appropriateness of your model. If your model contains many parameters, and perhaps an 

intervention component, you may try again with different parameter start values. 

 

3.1.11 Evaluation of the Model 

Parameter estimates: we shall report approximate t values, computed from the 

parameter standard errors. If not significant, the respective parameter can in most cases 

be dropped from the model without affecting substantially the overall fit of the model. 
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Other quality criteria: Another straightforward and common measure of the reliability 

of the model is the accuracy of its forecasts generated based on partial data so that the 

forecasts can be compared with known (original) observations. 

 

Figure 3.3: Graph of Forecast, Model (0,1,1) (0,1,1) Seasonal lag 12 

However, a good model should not only provide sufficiently accurate forecasts, it should 

also be parsimonious and produce statistically independent residuals that contain only 

noise and no systematic components (e.g., the correlogram of residuals should not reveal 

any serial dependencies). A good test of the model is (a) to plot the residuals and inspect 

them for any systematic trends, and (b) to examine the autocorrelogram of residuals 

(there should be no serial dependency between residuals) 

Analysis of residuals: The major concern here is that the residuals are systematically 

distributed across the series (e.g., they could be negative in the first part of the series and 

approach zero in the second part) or that they contain some serial dependency which may 
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suggest that the ARIMA model is inadequate. The analysis of ARIMA residuals 

constitutes an important test of the model. The estimation procedure assumes that the 

residual are not (auto-) correlated and that they are normally distributed. 

Limitations: The ARIMA method is appropriate only for a time series that is stationary 

(that is, its mean, variance, and autocorrelation should be approximately constant through 

time) and it is recommended that there are at least 50 observations in the input data. It is 

also assumed that the values of the estimated parameters are constant throughout the 

series. 

 

3.1.12 Estimating the parameters of an ARIMA Model 

In practice most time series are non-stationary and the series is differenced until the series 

becomes stationary. An Autoregressive (AR), Moving Average (MA),or Autoregressive 

Moving Average (ARMA) model is fitted to the differenced series and estimation 

procedures are as described for the AR, MA, ARMA above. 

3.1.13 Stationarity and Invertibility Conditions of Specific Time Series model 

In the table below we display the stationarity and invertibility conditions of specific time 

series models and the behaviour of their theoretical ACF and PACF functions. 

  

Table 3.1            Specific Time Series Models 

http://www.statsoft.com/textbook/statistics-glossary/s/#Stationary%20Series%20%28in%20Time%20Series%29
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ARIMA 

MODEL 

STATIONARITY 

CONDITIONS 

INVERTIBILITY 

CONDITION 

ACF  

COEFFICIENTS 

PACF  

COEFFICIENTS 

 

(1,d,0) 

 

 

 

NONE 

 

Dies down 

Cuts off after lag 

one 

 

(2,d,0) 

 

 

 

 

NONE 

 

Dies down 

Cuts off after lag 

two 

 

(0,d,1) 

 

NONE 

 

 

Cuts off after lag 

one 

 

Dies down 

 

(0,d,2) 

 

NONE 

 

 

 

Cuts off after lag 

two 

 

Dies down 

(1,d,1)   Dies down Dies down 

 

 

 

3.2 THE BOX-JENKINS METHOD OF MODELING TIME SERIES 

The Box-Jenkins methodology is a statistical sophisticated way of analyzing and building 

a forecasting model which best represents a time series. The first stage is the 

identification of the appropriate  models through the study of the autocorrelation 

and partial autocorrelation functions. For example if the partial autocorrelation cuts off 
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after lag one and the autocorrelation function decays then  is identified. 

The next stage is to estimates the parameters of the  model chosen. 

The third stage is the diagnostic checking of the model. The Q-statistic is used for the 

model adequacy check. 

If the model is not adequate then the forecaster goes to stage one to identify an alternative 

model and it is tested for adequacy and if adequacy then the forecaster goes to the final 

stage of the process. 

The fourth stage is where the analysis uses the model chosen to forecast and the process 

ends. 

Below is a schematic representation of the box-Jenkins process. 
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Figure 3.4        The Box-Jenkins Process    

  

 

Identification 

 

 

Estimation 

                

Testing           

 

                                                                              NO            
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Forecasting                                                                                                             

 

 

 

 

Collect data for forecasting 
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Estimate parameters in 
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Use model to forecast 
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3.2.1 Identification techniques 

Identification methods are rough procedures applied to a set of data indicate the kind of 

representational model that will be further investigated. The aim here is to obtain some 

idea of the values  and  needed in the general linear ARIMA model and to obtain 

initial estimates for the parameters. 

The task here is to identify an appropriate subclass of models from the general ARIMA 

family   which may be used to represent a given time series. The 

approach will be as follows;  

(a) To difference  as many times as is needed to produce stationarity, reducing the 

process under study to the mixed autoregressive moving average process                 

 where  

(b) To identify the resulting ARMA process 

The principal tools for putting (a) and (b) into effect are the sample autocorrelation 

function and the sample partial autocorrelation function. Apart from helping to guess the 

form of the model, they are used to obtain approximate estimates of the parameters of the 

model. These approximations are useful at the estimates stage to provide starting values 

for iterative procedures employed at that stage. 

 

3.2.2 Use of the autocorrelation and Partial Autocorrelation functions in Identification 

A stationary mixed autoregressive moving average process of order , 

, the autocorrelation function satisfies the difference equation  
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Also, if 

    

The solution of this difference equation for the kth autocorrelation is, assuming distinct 

roots, of the form 

  

The stationarity requirement that the zeros of  lie outside the unit circle implies that 

the roots   lie inside the unit circle. Inspection of the equation  

 

Shows that in the case of a stationary model in which none of the roots lie close to the 

boundary of the unit circle, the autocorrelation function will quickly “die out” or decay 

for moderate and large . 

Suppose that a single real root, say  approaches unity, so that   where  is a 

small positive quantity. Then, since for k large,  the autocorrelation 

function will not die out quickly and will fall off slowly and very nearly linearly. 

Similarly if more than one root approaches unity the autocorrelation function will decay 

slowly. Therefore if the autocorrelation function dies out slowly it implies there is at least 

a root which approaches unity. As a result failure of the estimated autocorrelation 

function to die out rapidly might logically suggest that the underlying stochastic process 

is non-stationary in  but possible stationary in , or in some higher difference. 
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It is therefore assumed that the degree of differencing  necessary to achieve stationarity 

has been reached when the autocorrelation function of  die out fairly quickly. 

 

3.2.3 Identifying the Resulted Stationary ARMA process 

The autocorrelation function of an autoregressive process of order  tails off, its partial 

autocorrelation function has a cut off after lag . the autocorrelation function of a moving 

average process of order  cuts off after lag  and its partial autocorrelation tails off. 

Furthermore the autocorrelation function for a mixed process, containing a p
th

 order 

autoregressive component and q
th

 order moving average components, is a mixture of 

exponentials and damped sine waves after the first q - p lags conversely, the partial 

autocorrelation function for a mixed process is dominated by a mixture of exponentials 

and damped sine waves after the first  lags. 

 

3.2.4 Akaike’s Information Criteria (AIC) 

The AIC which was proposed by Akaike uses the maximum likelihood method. In the 

implementation of the approach, a range of potential ARMA models are estimated by 

maximum likelihood method, and for each, the AIC is calculated, given by 
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Where n is the sample size or the number of observation in the historical time series data 

 is the maximum likelihood estimate of , and it is the residual or shock variance,

, denotes the number of parameters estimated in the model. 

Given two or more competing models the one with the smaller AIC value will be 

selected. 

 

3.2.5 Schwarz’s Bayesian Information Criterion (BIC) 

Schwarz’s BIC like the AIC uses the maximum likelihood method. It is given by 

, 

Where     is the maximum likelihood estimate of   ,  ,  denotes the 

number of parameters estimated in the model, including a constant term and    is the 

sample size or the number of observations in the time series data.  The BIC imposes a 

greater penalty for the number of estimated model parameters than does AIC.   

Use of minimum  for model selection results in a chosen model whose number of 

parameters is less than that chosen under AIC.      

One disadvantage of the information criteria approach is the enormous work involved in 

computing the maximum likelihood estimates of several models which is time consuming 

and expensive. 

However this problem has been overcome by the introduction of computers since there 

are softwares which compute several of these information criteria values. Information 
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criteria are useful tools in model selection. They should not, however, be substituted for 

the careful examination of the autocorrelation and partial autocorrelation functions.  

 

3.2.6 Estimation of the Parameters of the Model Identified 

Once a model is identified the next stage of the Box-Jenkins approach is to estimate the 

parameters. In this study the estimation of the parameters was done using a statistical 

package called the Statistical Package for Social Scientists (SPSS).  

 

3.2.7 Testing the Model for Adequacy 

After identification an appropriate model for a time series data, it is very important to 

check that the model is adequate. The error terms  are examined and for the model to be 

adequate the errors should be random. If the error terms are statistically different from 

zero, the model is not adequate. 

The test statistic is the  –statistic. 

, 

Which is approximately distributed as a  with  degrees of freedom, where  

is the length of the times series ,  is the first k autocorrelations being checked , p is the 

order of the AR process and q is the order of the MA process, and r is the estimated 

autocorrelation coefficient of the i
th

 residual term. 
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If the calculated value of Q is greater than      for  degrees of freedom, then 

the model is considered inadequate and adequate if Q is less than  for  

degrees of freedom. 

If the model is tested inadequate then the forecaster should select an alternative model 

and test for the adequacy of the model. 

 

3.3 FORECASTING 

The fourth stage of the Box-Jenkins approach is to forecast the  model selected. Suppose 

the model chosen to fit a hypothetical data is  

 

And suppose further that the data is of length 60,  

     

 

Then                         

 

 

Hence, a forecast value for period 61 is 130.097. 

 

 



39 
 

3.4 EXPONENTIAL SMOOTHING 

Exponential smoothing has become very popular as a forecasting method for a wide 

variety of time series data. Historically, the method was independently developed by 

Brown and Holt. Brown worked for the US Navy during World War II, where his 

assignment was to design a tracking system for fire-control information to compute the 

location of submarines. Later, he applied this technique to the forecasting of demand for 

spare parts (an inventory control problem). He described those ideas in his 1959 book on 

inventory control. Holt's research was sponsored by the Office of Naval Research; 

independently, he developed exponential smoothing models for constant processes, 

processes with linear trends, and for seasonal data. 

Gardner (1985) proposed a "unified" classification of exponential smoothing methods. 

Excellent introductions can also be found in Makridakis, Wheelwright, and McGee 

(1983), Makridakis and Wheelwright (1989), Montgomery, Johnson and Gardiner (1990). 

 

3.4.1 Simple Exponential Smoothing 

A simple and pragmatic model for a time series would be to consider each observation as 

consisting of a constant (b) and an error component (epsilon), that is: Xt = b + t. The 

constant b is relatively stable in each segment of the series, but may change slowly over 

time. If appropriate, then one way to isolate the true value of b, and thus the systematic or 

predictable part of the series, is to compute a kind of moving average, where the current 

and immediately preceding ("younger") observations are assigned greater weight than the 

respective older observations. Simple exponential smoothing accomplishes exactly such 
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weighting, where exponentially smaller weights are assigned to older observations. The 

specific formula for simple exponential smoothing is: 

St = *Xt + (1- )*St-1 

When applied recursively to each successive observation in the series, each new 

smoothed value (forecast) is computed as the weighted average of the current observation 

and the previous smoothed observation; the previous smoothed observation was 

computed in turn from the previous observed value and the smoothed value before the 

previous observation, and so on. Thus, in effect, each smoothed value is the weighted 

average of the previous observations, where the weights decrease exponentially 

depending on the value of parameter (alpha). If is equal to 1 (one) then the previous 

observations are ignored entirely; if is equal to 0 (zero), then the current observation is 

ignored entirely, and the smoothed value consists entirely of the previous smoothed value 

(which in turn is computed from the smoothed observation before it, and so on; thus all 

smoothed values will be equal to the initial smoothed value S0). Values of in-between 

will produce intermediate results. 

Even though significant work has been done to study the theoretical properties of (simple 

and complex) exponential smoothing ( Gardner, 1985; Muth, 1960; McKenzie, 1984, 

1985), the method has gained popularity mostly because of its usefulness as a forecasting 

tool. For example, empirical research by Makridakis et al; (1982, Makridakis, 1983), has 

shown simple exponential smoothing to be the best choice for one-period-ahead 

forecasting, from among 24 other time series methods and using a variety of accuracy 

measures. Thus, regardless of the theoretical model for the process underlying the 
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observed time series, simple exponential smoothing will often produce quite accurate 

forecasts 

 

3.4.2 Choosing the Best Value for Parameter (alpha) 

Gardner (1985) discusses various theoretical and empirical arguments for selecting an 

appropriate smoothing parameter. Obviously, looking at the formula presented above, 

should fall into the interval between 0 (zero) and 1 (although,  Brenner et al., 1968, for an 

ARIMA perspective, implying 0 < < 2). Gardner (1985) reports that among 

practitioners, an  smaller than 0.30 is usually recommended. However, in the study by 

Makridakis et a; (1982), values above .30 frequently yielded the best forecasts. After 

reviewing the literature on this topic, Gardner (1985) concludes that it is best to estimate 

an optimum from the data, rather than to "guess" and set an artificially low value. 

Estimating the best value from the data: In practice, the smoothing parameter is 

often chosen by a grid search of the parameter space; that is, different solutions for are 

tried starting, for example, with = 0.1 to = 0.9, with increments of 0.1. Then  is 

chosen so as to produce the smallest sums of squares (or mean squares) for the residuals 

(i.e., observed values minus one-step-ahead forecasts; this mean squared error is also 

referred to as ex post mean squared error, ex post MSE for short). 

 

 

 

http://www.statsoft.com/textbook/time-series-analysis/#arima
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3.4.3 Indices of Lack of Fit (Error) 

The most straightforward way of evaluating the accuracy of the forecasts based on a 

particular value is to simply plot the observed values and the one-step-ahead forecasts. 

This plot can also include the residuals (scaled against the right Y-axis), so that regions of 

better or worst fit can also easily be identified. 

 

 

Figure 3.5:  Graph of Exponential smoothing 

 

This visual check of the accuracy of forecasts is often the most powerful method for 

determining whether or not the current exponential smoothing model fits the data. In 

addition, besides the ex post MSE criterion, there are other statistical measures of error 
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that can be used to determine the optimum  parameter (Makridakis, Wheelwright, and 

McGee, 1983): 

Mean error: The mean error (ME) value is simply computed as the average error value 

(average of observed minus one-step-ahead forecast). Obviously, a drawback of this 

measure is that positive and negative error values can cancel each other out, so this 

measure is not a very good indicator of overall fit. 

Mean absolute error: The mean absolute error (MAE) value is computed as the average 

absolute error value. If this value is 0 (zero), the fit (forecast) is perfect. As compared to 

the mean squared error value, this measure of fit will "de-emphasize" outliers, that is, 

unique or rare large error values will affect the MAE less than the MSE value. 

Sum of squared error (SSE), Mean squared error: These values are computed as the 

sum (or average) of the squared error values. This is the most commonly used lack-of-fit 

indicator in statistical fitting procedures. 

Percentage error (PE): All the above measures rely on the actual error value. It may 

seem reasonable to rather express the lack of fit in terms of the relative deviation of the 

one-step-ahead forecasts from the observed values, that is, relative to the magnitude of 

the observed values. For example, when trying to predict monthly sales that may 

fluctuate widely (e.g., seasonally) from month to month, we may be satisfied if our 

prediction "hits the target" with about ±10% accuracy. In other words, the absolute errors 

may be not so much of interest as are the relative errors in the forecasts. To assess the 

relative error, various indices have been proposed (Makridakis, Wheelwright, and 

McGee, 1983). The first one, the percentage error value, is computed as: 

PEt = 100*(Xt - Ft )/Xt 
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where Xt is the observed value at time t, and Ft is the forecasts (smoothed values). 

Mean percentage error (MPE): This value is computed as the average of the PE values. 

Mean absolute percentage error (MAPE). As is the case with the mean error value 

(ME, see above), a mean percentage error near 0 (zero) can be produced by large positive 

and negative percentage errors that cancel each other out. Thus, a better measure of 

relative overall fit is the mean absolute percentage error. Also, this measure is usually 

more meaningful than the mean squared error. For example, knowing that the average 

forecast is "off" by ±5% is a useful result in and of itself, whereas a mean squared error 

of 30.8 is not immediately interpretable. 

Automatic search for best parameter: A quasi-Newton function minimization 

procedure (the same as in ARIMA is used to minimize either the mean squared error, 

mean absolute error, or mean absolute percentage error. In most cases, this procedure is 

more efficient than the grid search (particularly when more than one parameter must be 

determined), and the optimum parameter can quickly be identified.. 

 

 

 

 

 

 

 

http://www.statsoft.com/textbook/time-series-analysis/#arima
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CHAPTER FOUR 

4.0 DATA ANALYSIS 

In this chapter we analyzed the share prices of EPACK by employing Box-Jenkins 

method of analyzing time series data. 

Data comprising of the average monthly EPACK share prices from January 1999 to 

December 2010 was obtained from the DATABANK Ghana Ltd, Kumasi office and used 

for the analysis. 

 

4.1 PRELIMINARY ANALYSIS 

This preliminary analysis consists of the computation of the descriptive statistics in the 

relation to the data. The results are displayed in the table below. 

The table below shows the descriptive statistics of the data. 

Table 4.1 Descriptive Statistics 

 

N Minimum Maximum Mean 

Std. 

Deviation Variance 

EPACK SHARE 

PRICES 

144 0.04 0.97 0.42 .32155 .103 
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Table 4.1 above displays some of the basic descriptive statistics of the share price of 

EPACK. It can be observed that over the period under consideration EPACK had a 

minimum share price of  from the beginning (i.e. January 1999) and a 

maximum of .  

 

 Fig. 4.1 Trajectory of EPACK share prices from January 1995 to February 2011 
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From Figure 4.1 above the EPACK share price was approximately constant from the first 

data point to about the 21
st
 data point before having a rise. It can be observed the in 

general the periodogram of the share prices of EPACK over the years exhibits an 

upwardly moving quadratic trend in the mean. This shows that the data is not stationary 

in the mean hence there is the need to difference twice in order to attain stationarity. 

Below is the graph obtained after the first differencing. 

 

   Fig. 4.2 Graph of First order differeced EPACK share prices from January 1999 to February 2011 
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Fig. 4.3 Graph of Second order differeced EPACK share prices from January 1995 to February 2011 

 

From the two graphs above the graph after the first difference exhibits non-stationarity 

whilst that after second order is stationary. Since the second order differenced data is 

stationary it is then used to model the share prices.  
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4.2 MODEL IDENTIFICATION 

      Fig. 4.4 Autocorrelation Function of PACK share prices 
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Fig. 4.5 Partial Autocorrelation Function of PACK share prices  
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The figures 4.4 and 4.3 above shows the autocorrelation and partial autocorrelation 

functions of the EPACK share prices for the period under consideration. The 

autocorrelation function dies down at a very slow rate confirm the existence of a trend in 

the mean whilst the partial autocorrelation function truncates after the first lag.  

                                               Fig. 4.6 ACF of Second order  differeced EPACK share prices 
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                                         Fig. 4.7 PACF of Second order differeced EPACK share prices 

 

From the correllograms above the autocorrelation functions tails off quickly to zero 

whilst the partial autocorrelation function truncates after lag . This gives an indication of 

an  model. 
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Because the data was first differenced to attain stationarity, the actual model identified is 

. The identified model might not be the best model for the data, therefore it 

is compared with other probable models and the best is chosen. 

 

4.3 MODEL SELECTION 

The identified model  is compared with other stationary second order 

differenced models , that is , , , 

, ,  and  , and the model of 

the least residuals is selected. 

Table 4.2 Model Selection 

MODEL RMSE MAPE NORMALIZED 

BIC 

    

    

    

    

    

    

    

    



54 
 

From table 4.2 above,  is ignored because of the principle of parsimony, 

which says that given any two models the model with the least number of parameters is 

more preferred. 

Comparing the rest of the models based on the RMSE( Root Mean Square Error), MAPE 

(Mean Absolute Percentage Error) and BIC( Bayesians Information Criterion) 

 is has the least error value. Hence our statistically most preferred model is  

. 

The theoretical form of the model is given by  

 

 

4.4 MODEL ADEQUACY 

The selected model is now diagnostically tested. This is done by the fact that the Q-

statistics is  distributed with  degrees of freedom. Where k is the 

maximum time lag   is the number of AR parameters and  is the 

number of Moving Average parameters 

 

 

 

 



55 
 

Table 4.3 Model Statistic 

Model 

Ljung-Box Q(18) 

Statistics Sig. 

DIFF(EPACK,2)-Model_1 20.699 0.002 

 

The estimate Box-Ljung Q-statistics for the model is 20.00.  

Since    the fitted model, that is  is of 

best fit and can be used to forecast. 

 

4.5  PARAMETER ESTIMATE 

Table 4.4  ARIMA Model Parameters 

   Estimate SE Sig. 

DIFF(EPACK,2)-Model_1  Constant 0.000 .001 .001 

AR Lag 1 -0.587 .081 .000 

Lag 2 -0.318 .081 .000 
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The Table above displays the parameter estimates of the selected model. After the 

parameters are estimated the model for the share price of EPACK over the period under 

consideration is given by  

 

 

4.6  TIME PATH 

The developed model for the EPACK share prices ( that is 

  ) is a fourth order homogeneous 

difference equation with constant coefficients.   The characteristic equation 

corresponding to this model is given by  

 

with characteristic roots . 

The solution of the model equation is  

 

where  are constants. 

The characteristic root with the largest absolute value is called the dominant root because 

it dominates the time path. For convergence, the absolute value of the dominant root must 

be less than  [that is ].  
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Since the dominant real characteristic root is  , the model will converge as 

. 
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CHAPTER FIVE 

5.0 FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the thesis by enumerating the finding, conclusions and 

recommendations.  

 

5.1 FORECASTING  

The obtained model is used to forecast for some future values of EPACK share prices. 

This is done by writing a MatLab code to forecast some future values. 

 

Table 5.1 The forecasted values 

DATE FORECAST (GH¢) 

January 2011  

February 2011  

March 2011  

April 2011  

May 2011  

June 2011  
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5.2 FINDINGS  

The following findings were made; 

1. The minimum share price of EPACK share price over the period under consideration 

is and it occurred at the start of the fund, that is January  through to 

October , and its Maximum share price over the period is  which also 

occurred on September .  

2. The average  share price over the period is  with a standard deviation of  

3. EPACK share prices over the years exhibited upwardly moving trend with a 

significant fall in the year , but continued rising from January  to 

December .  

4. EPACK share prices are so autocorrelated that there had to be a second order 

differencing to attain stationarity. 

5.  The ARIMA model equation for EPACK share price over the period under 

consideration is  

 

6. The EPACK share price ARIMA model is a fourth order difference equation with 

constant coefficients and since its dominant characteristic root is less than 1 (in 

absolute terms) the share price will eventually converge sinusoidally to a value. 
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5.3 CONCLUSIONS  

The following conclusions were made after the research. 

1. EPACK Fund share prices can be modeled using Box-Jenkins methodology of time 

series analysis. 

2. With a general upwardly moving quadratic trend in the EPACK Fund share prices 

over time shows confirms the assertion that EPACK Fund is a good investment 

package. 

3. The derived model is practicable because of its convergence and from the model 

EPACK share prices depends more on its past two observations that is. . 

4. The 2009 fall in the EPACK share prices can be attributed to the global economic 

meltdown in 2008. 

5. EPACK is not only being talked about but its share prices have experienced 

tremendous increase in value since its commencement. 

6. All things being equal the EPACK share will in the long run converge slowly.  

 

5.4 RECOMMENDATIONS 

Upon a successful research the following recommendation are made; 

1. With the exhibition of the upwardly moving trend in the EPACK share prices investor 

are advised to invest in the fund. 
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2. Fund Managers of EPACK should keep their current policy, since its working, but 

should research into other workable policy so as to maintain their shareholders when 

conditions change. 

3. Further research should be done to ascertain the actual cause for the significant fall in 

the EPACK share price in 2009. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

REFERENCE 

1. Barham Catherine and Begum Nasima (2007) “Time series analysis of the Labour Force 

Survey longitudinal data sets”, Economic  &Labour Market Review 1 (1).  

2. Bernhard Pfaff (2005). Analysis of Integrated and cointegrated Time Series with R. 

Springer. 

3. Box G.E.P. and Jenkins G.M.. (1976). Time Series Analysis: Forecasting and Control. 

Holden-Day, revised edition. 

4. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control. 

San Francisco: Holden-Day. 

5. Box, G.E.; Jenkins, G. M.; Reinsel, G. C. (1994). Time series analysis: Forecasting 

andcontrol. 3
rd

.Edition. New Jersey: Prentice Hall 

6. Box, G.E.P. – Jenkins, G.M. (1970, 1976) Time Series Analysis, Forecasting and 

Control. Revised Edition 1976, Holden-Day, San Francisco. 

7. Brockwell, Peter J. and Davis, Richard A. Time Series: Theory and Methods. New York: 

Springer-Veriag Inc., 1987. 

8. Bronislav Chramcov (2010), Forecast model of heat demand based on the Box-Jenkins 

Methodology. World Scientific and Engineering Academy and Society (WSEAS). 

Stevens Point Wisconsin, USA, 252-256. 

9. Chan, Wai-Sum (1989) Some Robust Methods for Time Series Modeling. Ph.D. 

dissertation, Temple University, USA 

10. Dobre Ion, Alexandru Adriana AnaMaria (2008), Modelling Unemployment Rate using 

Box-Jenkins Procedure, Journal of Applied Quantitative Methods, 3(2), 156-166; 



63 
 

11. Engle R.F. and Granger C.W.J. (1987). Co-integration and error correction: 

Representation, estimation, and testing. Econometrica, 55:251–176. 

12. Hirt Geoffrey and Block B. Stanley (1998), Fundamentals of Investment Management. 

McGraw Hill College. 

13. Hoff, J. C. (1983). A practical guide to Box-Jenkins forecasting. London: Lifetime 

Learning Publications. 

14. Katarina Juselius (2006). The Cointegrated VAR Model: Methodology and Applications. 

Springer, 

15. Kendall, M.G. – Ord, J.K. (1990) Time Series. 3rd edition, Sevenoaks: Edward Arnold. 

16. McDowall, D., McCleary, R., Meidinger, E. E., & Hay, R. A. (1980). Interrupted time 

series analysis. Beverly Hills, CA: Sage Publications. 

17. Mélard, G. – Roy, R. (1987) Confidence intervals and tests for autocorrelations. 

Computational Statistics & Data Analysis 5, 31–44. 

18. Melard, G. (1984). A fast algorithm for the exact likelihood of autoregressive-moving 

average models. Applied Statistics, 33, 104-119. 

19. NauR. F., “Introduction to arima: nonseasonal models”, 2005. 

http://www.duke.edu/rnau/411arim.htm. 

20. Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models: Concepts and 

cases. New York: Wiley. 

21. Pfaff, B.: “Analysis of Integrated and cointegrated Time Series with R”. Springer, 

September 2005. 

22. Shumway, Robert H. and Stoffer, David S. (2005). The Time Series Analysis and Its 

Applications with R Examples, Second Edition, Springer,  



64 
 

23. Tang Z, De Almeida C, Fishwick P. A (1991). Time series forecasting using neural 

networks vs. Box- Jenkins methodology. Simulation, 57: 303-310. 

24. Tiao, G.C. (1985) Autoregressive moving average models, intervention problems and 

outlier detection in time series. In: Handbook of Statistics, Vol. 5, E.J. Hannan, P.R. 

Krishnaiah and M.M. Rao, eds, 85–118. 

25. Vähäkyla P., Hakonen E. and Léman P. (1980), International Journal of Electrical Power 

& Energy Systems  2(1), 29-34.  

26. Vandaele, W. (1983). Applied time series and Box-Jenkins models. New York: Academic 

Press.  

27. Wang, Shoujun (2007). Time Series Analysis of Air Pollution in the City of Bakersfield, 

California.  

28. Witt, Thomas J.(2007), Using the autocorrelation function to characterize time series of 

voltage measurements.  

 

 

 

 

http://www.sciencedirect.com/science/journal/01420615
http://www.sciencedirect.com/science/journal/01420615
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235711%231980%23999979998%23386923%23FLP%23&_cdi=5711&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=5e7e56993fb029d9de65aeb9741d7323

