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Abstract

In this study, a detailed review of the article published by Qi et al. (2013) on

fractional Cattaneo heat equation in a semi-infinite medium has been made. In

reviewing this article, two fractional Cattaneo heat equations modeling the heat

flux and temperature distributions have been established and their exact solutions

proofed in detail forms. Firstly, the solution of the fractional Cattaneo heat flux

equation is established using Laplace transform. secondly, the exact solution

of the fractional Cattaneo heat equation modeling temperature distribution is

established in a series form through Fox-function using Laplace transform (and

the inverse Laplace transform). In addition to the review, an implicit finite

difference scheme has been used to solve the three c lasses of generalized fractional

Cattaneo heat equations (GCE’s) in a semi-infinite medium. Three numerical

examples were provided using both the analytical solutions and finite difference

solutions to demonstrate the effects of fractional derivatives of orders α and β

on temperature distributions. Graphical representation of the solutions were

presented using Matlab software. Finally, a comparison and discussion of the

analytical and finite difference scheme solutions from the graphs of the various

numerical examples have been made.
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Chapter 1

Introduction

The Fourier heat diffusion equation is an equation which is not only relevant in

modeling heat diffusion in Physics, but also has wide spread application in sev-

eral field of studies such as engineering, economics etc. Although the equation

is mathematically correct, it predicts an infinite speed of heat transmission in a

medium due to its parabolic nature. To make the law applicable to most physical

processes, a relaxation time was introduced by Cattaneo and Vernotte to modify

the Fourier law thus producing the Non-Fourier heat equation. This equation is

called the Cattaneo-Vernotte heat equation. By its hyperbolic nature, this equa-

tion predict a finite speed of heat propagation. According to Turut and Guzel

(2013), the Non-Fourier effects of heat conduction are of both fundamental in-

terest and great potential value in practical engineering. The replacement of the

integer orders of the derivatives of the generalized Cattaneo equation with frac-

tional orders produces the generalized fractional Cattaneo heat equation. Quiet

often, numerical approximation techniques are employed in solving many partial

differential equations including the fractional Cattaneo heat equation.

1.1 Problem Statement

In solving problems using partial differential equations, the exact solutions or

approximate solutions are often required. The exact or approximate solution

derived for a particular partial differential equation usually depends to a large

extend on the medium in which it is solved. The type of medium used influ-

ences the initial and boundary conditions to the problem. In terms of efficiency

and accuracy, exact solutions of partial differential equations are often preferred

to approximate solutions. However, establishing exact solutions of partial frac-

1



tional differential equations such as the fractional Cattaneo heat equation can be

stressful, time consuming and complex. Sometimes, special functions with com-

plex properties are needed to establish the exact solution of a partial fractional

differential equation. A typical example is the exact solution established by Qi

et al. (2013) for fractional Cattaneo heat equation in a semi-infinite medium. In

their work, an H-function which is a special function was used to establish the ex-

act solution. Although Qi et al. (2013) established an exact solution for fractional

Cattaneo heat equation in a semi-infinite medium, establishing and computing

exact analytical solutions of such partial fractional differential equations is often

a complex and difficult task. In view of such difficulties in establishing exact

solutions, Turut and Guzel (2013) stated that many partial fractional differential

equations are solved using numerical approximation techniques.

1.2 Objectives of Study

The objectives of this study includes:

(1) To establish in detail the exact solution of the generalized fractional Cat-

taneo heat equation in a semi-infinite provided by Qi et al. (2013)

(2) To solve the fractional Cattaneo heat equation in a semi-infinite medium

using a numerical scheme.

(3) To compare the results of the analytical solution to the result of the nu-

merical scheme method of solving the fractional Cattaneo heat equation in

a semi infinite medium .

(4) To discuss the effects of fractional derivatives of order α and β on the

temperature distribution.

2



1.3 Justification of Study

Considering the great potential of fractional models and their successful applica-

tion in many fields, and the fact that the exact solutions are often difficult to be

established or used for computations, a numerical scheme approximation of the

partial differential equation often provides an easier way of approximating the

solution. To the best of my knowledge, no researcher has solved the fractional

Cattaneo heat equation in a semi-infinite medium with Neumann boundary condi-

tions using a numerical scheme approximation technique. Hence, this study seeks

to use one of the numerical schemes (implicit finite difference scheme) to solve

the fractional Cattaneo heat equation in a semi-infinite medium with Neumann

boundary conditions.

1.4 Methodology

In this work, a review of the article published by Qi et al. (2013) was made first.

This was followed by using the implicit finite difference scheme to discretize the

three classes of the generalized fractional Cattaneo heat equations(GCEs). Fi-

nally, graphical representations of the exact solutions and implicit finite difference

solutions of the GCEs was made for the purpose of comparisons and discussions.

1.5 Outline of Study

Basically, this study is organized into five chapters. Chapter one contains the

background to the problem, statement of problem and the justification of the

study. In chapter two, related studies by other researchers which are relevant

to this study will be cited. Furthermore, chapter three will provide a detailed

review of the article published Qi et al. (2013). Firstly, the exact solution of

the heat flux modeling equation will be established. Secondly, a detailed proof

of the exact solutions of the fractional Cattaneo heat equation in a semi-infinite

3



medium will be made. The final part of chapter three will use the implicit finite

difference scheme to discretize the three classes of generalized Cattaneo heat

equations (GCE’s) to serve as numerical examples. Subsequently, chapter four

will provide comparisons, analyses and discussion of the graphical representations

of the analytical solutions and finite difference solutions of the fractional Cattaneo

heat equation in a semi-infinite medium. Lastly, the conclusions and suggestions

from this study will be made in chapter five.
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Chapter 2

RELATED STUDIES

2.0.1 INTRODUCTION

This chapter presents a summary of related research works on fractional calculus

and differential equations from other researchers. It cites recent works of other

researchers that are related to this study. Research works on key functions of this

study such as Mittag-Leffler function and Fox-function will be cited

2.0.2 Related Works from other Researchers

The Fourier heat diffusion law is an equation which establishes a linear rela-

tionship between the heat flux and the temperature gradient within a medium,

i.e

q(x, t) = −D∂xu(x, t) (2.1)

where q(x, t) is the heat flux, u(x, t) is the temperature function and D is diffusion

constant. Due to the parabolic nature of the law, it predicts infinite speed of heat

transmission. This makes the law not practically applicable to most physical

phenomena. To make the Fourier heat conduction equation applicable to most

physical phenomena, a relaxation of the flux is introduced. (shooda, 2009) stated

the relaxed Cattaneo equation as:

∂tU(x, t) + τ∂2
tU(x, t) = D∂xxU(x, t) (2.2)

where τ is the relaxation time, D is thermal diffusivity constant and U(x, t) is

temperature function. Such an equation is hyperbolic and it predicts a finite

5



speed of heat transmission. This equation possess both diffusion and wave-like

properties of heat transmission. Qi et al. (2013) gave the exact solution of (2.2)

as:

G(x, t) =

√
D

τ
e−t/2τI0

(
1

2τ

√
t2 − τ

D
x2

)
u

(
t− x

√
τ

D

)
(2.3)

where I0(.) is the modified Bessel function of order zero and u(.) denotes the

unit step function. The replacement of the integer orders of (2.2) with fractional

orders produces the generalized fractional Cattaneo heat equation:

∂βt U(x, t) + τ∂αt U(x, t) = D∂xxU(x, t) (2.4)

(shooda, 2009) studied three Generalized Cattaneo Equations(GCEs) and con-

cluded that GCEI and GCEIII models subdiffusion while GCEII models superdif-

fusion.

The GCEs include:

∂γt U(x, t) + τ γ∂2γ
t U(x, t) = D∂xxU(x, t) (GCEI) (2.5)

∂2−γ
t U(x, t) + τ γ∂2

tU(x, t) = D∂xxU(x, t) (GCEII) (2.6)

∂γt U(x, t) + τ∂1+γ
t U(x, t) = D∂xxU(x, t) (GCEIII) (2.7)

Although the use of fractional calculus has been on the ascendancy in recent

times, the concept of fractional calculus is not new. The concept has existed for

several centuries. The study of fractional calculus began in 1695 when L’Hospital

inquired in a letter to Leibniz what could happen if the order of a derivative is a

fraction. Since 1695, fractional calculus has drawn the attention of famous math-

ematicians such as Euler, Laplace, Fourier, Abel, Liouville Rieman and Laurent.

Rahimy (2010) stated three major definitions of fractional derivatives, namely:
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Caputo, Rieman-Liouville and Grundwald-Letnikov fractional derivatives. He

further added that, for zero initial conditions all the three definitions coincide.

This allows a numerical solution of initial value problems for differential equations

of non-integer order independent of the chosen definition of fractional deriva-

tive. Many researchers or engineers resort to the Caputo derivatives or use the

Riemann-Liouville derivatives but avoid the problem of initial values of fractional

derivative by treating only the cases with zero initial conditions. According to

Ben and Cresson (2005), fractional differential equations associated with alpha-

derivatives appear in many problems such the classical Schrodinger equation. Kil-

bas et al. (2006) in their monograph provides an extensive work on the properties

of different kinds of fractional derivatives and integrals. In addition, Podlubny

(1999) also provided a detailed account of the properties of fractional derivatives

and some analytic solution methods of fractional derivatives.

To stress on the relevance and wide spread use of fractional differential

equations in modeling, Turut and Guzel (2013), stated that fractional order par-

tial differential equations are increasingly being used to model problems in fluid

flow, finance, physical and biological processes and systems. They stated that

fractional ordinary differential equations, fractional partial differential equations

and fractional integral equations have received wide research and application.

Gutierrez et al. (2010) further added that fractional order calculus and differen-

tial equations are tools used to better described many real systems as it is well

suited in analyzing problems of fractal dimensions with long term memory and

chaotic behavior. With these characteristics, engineers and almost all branches

of science tend to apply it in solving problems. To demonstrate the practical uses

of fractional calculus, Dizielinski et al. (2010) presented some practical applica-

tion of fractional order system models namely: ultra capacitor fractional order

modeling and fractional order beam heating modeling. In categorizing the me-

dia fractional partial differential equation may be best suited for, Dominik et al.

(2011) pointed out that heat transfer in a solid(beam) can be described by an

7



integer order partial differential equation while in a heterogeneous media, it can

be described by sub-or hyper diffusion which often result in a fractional partial

differential equation. Ting-Hui and Xiao-Yun (2011) also studied fractional heat

conduction equation in spherical coordinate system. Ghazizadeh and Maerafat

(2010) formulated a heat conduction constitutive equation using the recently in-

troduced fractional Taylor formula by expanding the single-phase lag model. The

equation has been shown to be capable of modeling Diffusion-to-Thermal wave

behavior of heat propagation when the order of differentiation is changed. With

courage, Emillia (2001) extended the study of fractional calculus into abstract

mathematics by studying fractional calculus in Banach spaces.

According to Housbold et al. (2009), the Mittag-Leffler function, a frac-

tional exponential function, arises naturally in the solution of fractional order

differential equations or fractional order integral equations and especially in in-

vestigations of fractional generalizations of kinetic equation, random walks, su-

per diffusive transport, Levy flights and complex systems. In recent decades,

the interest in Mittag-Leffler function and Mittag-Leffler type functions is con-

siderably on the rise among engineers and scientists due to its vast potential

applications in several applied problems such as fluid flow, rheology, diffusive

transport akin to diffusion, electric networks, probability, statistical distribution

theory etc. (Mainardi and Pagnini, 2007) presented the fundamental solution of

the fractional diffusion equation of distributed order based on its Mellin-Barnes

representation. They also provided a series expansion to point out the distribu-

tion of time-scales related to the distribution of fractional orders. In a related

study, Mainardi et al. (2005) presented the fundamental solution of the Cauchy

problem for space-time fractional diffusion equation in terms of a special func-

tion(Fox H-function). The Fox-function, introduced by Charles Fox in 1961, is

a special function of very general nature. It has been recognized to play a fun-

damental role in probability theory and fractional calculus as well as in their

applications, including non-Gaussian stochastic processes, anomalous relaxation

8



and diffusion.

Mostly, the solutions of fractional partial differential equations are achieved

through numerical and approximations techniques since they do not often have an

exact analytic solution. Over the years, different researchers have used different

numerical methods to solve fractional differential equations. Ahmad et al. (2010)

presented the Homotopy Analysis Method(HAM) to obtain symbolic approximate

solution for linear and non-linear differential equations of fractional order. They

stated that their results show that the Adomian Decomposition Method, Vari-

ational Iteration Method and Homotopy Perturbation Method are special cases

of the Homotopy Analysis Method(HAM). Marek (2011) constructed a numeri-

cal scheme to solve two term sequential fractional differential equations with the

orders of Caputo derivatives in the range(0,1). The proposed method is based on

the existence and uniqueness theorem and the transformation of sequential frac-

tional order differential equation into its equivalent fractional integral equations.

Among the several methods of solving fractional differential equations, Beheshti

et al. (2012) solved fractional differential equations using Jacobi polynomials. The

method is based on expanding the derivative of the unknown solution in terms of

Jacobi polynomials. Also, Saeedi (2012) presented an operational method known

as the Haar wavelet method for approximating the solution of a non-linear frac-

tional integro-differential equation of second kind. The technique of this method

is based on reducing the main equation to system of algebraic equation by ex-

panding the solution of the integro-differential equation as Haar wavelets with

unknown coefficients. Furthermore, Diethelm and Neville (2002) discussed the

existence, uniqueness and structural stability of solutions of nonlinear differential

equations of fractional order. They investigated the dependency of the solution

on the order of the differential equation and initial conditions. (Mariusz, 2009)

presented numerical solution of Cattaneo-Vernotte equation using finite difference

scheme. The theoretical models were verified experimentally. Xiao-Jun (2012a)

from the geometric point of view explored the interpretation of local fractional

9



derivative and integral equations. He investigated the Fourier law of heat conduc-

tion and heat conduction equation in fractal orthogonal system based on Cantor

sets. Xiao-Jun (2012b) investigated local fractional Volterra/Fredholm integral

equations, local fractional non-linear integral equations and local fractional sin-

gular equations. Manuel and Coito (2004) established a relation showing that

the Grundwald-Letnikov and generalized Cauchy derivatives are equal. They

presented an integral representation for both direct and reversed fractional dif-

ferences. Miller and Stephen (2009) showed that polynomials and exponential

functions can be deformed into their derivatives using µ- fractional derivative for

0 < µ < 1.

2.0.3 Concluding Remark:

In conclusion, this chapter has provided some useful relevant research related

studies in fractional differential equations. The next chapter will make use of some

of the functions mentioned in this chapter. Functions such as the H-function(Fox-

function) and the generalized Mittag-Leffler function will be used extensively

in establishing the exact solution of the generalized fractional Cattaneo heat

equation in a semi-infinite medium with Neumann boundary conditions. The

implicit finite difference scheme will also be used to solve the fractional Cattaneo

heat equation in a semi-infinite medium with Neumann boundary conditions.
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Chapter 3

Methodology

3.1 INTRODUCTION

This chapter discusses the modeling of the heat flux and temperature distribution

in a semi-infinite medium with Neumann boundary conditions. It also provides a

vivid proof of the exact solution of the heat flux and the temperature distribution

function established by Qi et al. (2013). The short time and long time temper-

ature distribution functions was established. Relevant theorems and definitions

were applied in establishing the exact solutions. Implicit finite difference scheme

was also applied to solve the three generalized Cattaneo heat equations(GCEs).

3.2 MODELING THE HEAT FLUX

The heat flux which is the amount of heat energy flowing per unit area in a region

of space is modeled classically by the Fourier law(equation 2.1). The infinite speed

of heat transmission predicted by the Fourier law does not make it applicable to

real situations. Hence, the constitutive heat flux model proposed by Cattaneo

and Vernotte is one of the most widely used(Qi et al. (2013)):

q(x, t) + τ∂tq(x, t) = −λ∂xT (x, t) (3.1)

where q(x, t), T (x, t), τ and λ are heat flux vector, the temperature, re-

laxation time and the thermal conductivity respectively. τ has the dimension

dτe = sα−β

let qv(t) = −∂xT (x, t), thus (3.1) becomes

q(x, t) + τ∂tq(x, t) = λqv(t)

11



where qv(t) is the temperature gradient with respect to space.

Let q(x, t) = ∂0
t q(x, t) in (3.1). Replacing the integer order derivatives with

fractional order derivatives β − 1 and α − 1 respectively produces the fractional

differential heat flux equation

∂β−1
t q(x, t) + τ∂α−1

t q(x, t) = λqv(t) (3.2)

3.2.1 Fractional Derivatives

A fractional derivative is a derivative whose order is a fraction. There are three

kinds of fractional derivatives, namely: Caputo derivatives, Grundwald Letnikov

derivatives and Riemann Liouville derivatives. For easier treatment of the bound-

ary and initial conditions in modeling of physical phenomenons, the Caputo

derivatives are usually preferred to other types of fractional derivatives because

their initial conditions are stated in integer order derivatives and they are easy

to solve. Three major kinds of fractional derivatives are defined below.

Caputo derivative(Qi et al. (2013)):

∂γt f(x, t)
def
=


1

Γ(1−γ)

∫ t
0
f ′(x,t)
(t−t′)γ dt

′, 0 < γ < 1

1
Γ(−γ)

∫ t
0

f(x,t′)
(t−t′)1+γ dt

′, γ < 0

(3.3)

Riemann Liouville derivative(Rahimy (2010)):

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(τ)dτ

(t− τ)α−n+1
, (n− 1 ≤ α < n)

Grundwald-Letnikov derivative(Rahimy (2010)):

aD
α
t f(t) = lim

h−→0
h−α

t−a
h∑
j=0

(−1)j
(
α
j

)
f(t− jh)

where n is an integer, γ and α are fractional orders of the derivatives above
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3.2.2 Solving Fractional Derivatives(Caputo Derivatives)

All derivatives considered in this study are treated as Caputo derivatives. Laplace

transform and the Laplace Convolution theorem shall be employed to solve the

fractional derivatives in the semi-infinite medium considered in this work.

Laplace Transform: The Laplace transform of a function h(t) is given by

h(s) =

∫ ∞
0

h(t)e−stdt (3.4)

Laplace transform of Caputo derivative

For a derivative of integer order n , the Laplace transform is given by

L
{
dny
dxn

}
= sny(s)− sn−1yn−1(0)− sn−2yn−2(0)− · · · − sy′(0)− y(0)

= sny(s)−
∑n−1

k=0 s
n−k−1yk(0), n− 1 < γ < n

Given that n is a fraction denoted by γ, then the Laplace transform of a fractional

derivative is given by:

L

{
dγy

dtγ

}
= sγY (s)−

γ−1∑
k=0

sγ−k−1yk(0+) (3.5)

Convolution Theorem: The Laplace convolution theorem is used to express

the inverse Laplace transform of a product of two transformed functions. For two

functions in the Laplace domain F(s) and G(s), the inverse Laplace transform of

their product is given by:

L−1{F (s)G(s)} = (f ∗ g)(t)

Theorem 3.2.1 : If f(t) and g(t) are causal functions, then

(f ∗ g)(t) =

∫ t

0

f(t− t′)g(t′)dt′

13



3.2.3 The solution of the Fractional Heat flux equation

To solve for the heat flux, the Laplace transform of a fractional derivative and

theorem (3.2.1) are used. For easy representation q(x, t) and T (x, t) are repre-

sented by q and T respectively.

L{c0∂
β−1
t q}+ τL{c0∂α−1

t q} = −λL{∂xT}

sβ−1q(s)−
∑1

k=0 s
β−k−1qk(0+) + τsα−1q(s)− τ

∑1
k=0 s

α−k−1qk(0+)

= −λ∂xT

(sβ−1 + τsα−1)q(s) = c− λgradT (s) (3.6)

With zero initial conditions:

c = (
∑1

k=0 s
β−k−1qk(0+) + τ

∑1
k=0 s

α−k−1qk(0+)) = 0

q(s) = − λgradT (s)

(sβ−1 + τsα−1)
= −λ

τ

sα−1

( s
β−α

τ
+ 1)

[gradT (s)] (3.7)

To solve equation (3.7), let

G(s) =
sα−1

( s
β−α

τ
+ 1)

=
∞∑
k=0

(−1

τ
)ks−(α−1)−(α−β)k, F (s) = gradT (s) (3.8)

Hence, the heat flux, q(t) = L−1{G(s)F (s)}

L−1{G(s)F (s)} = −λ
τ

∫ t

0

g(t− t′)f(t′)dt′

g(t′) = L−1(
∞∑
k=0

(−1

τ
)ks−(α−1)−(α−β)k)

= L−1(
∞∑
k=0

− 1

τ k
s−p)

where p = (α− 1) + (α− β)k

using the Laplace inverse transform formula,
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L−1{s−p} = tp−1

Γ(p)

g(t′) = L−1(
∞∑
k=0

(−1

τ
)ks−p) =

∞∑
k=0

(−1

τ
)k
t′p−1

Γ(p)
(3.9)

=
∞∑
k=0

(−1

τ
)k

t′(α−1)+(α−β)k−1

Γ((α− β)k + (α− 1))
(3.10)

g(t′) = t′(α−1)−1

∞∑
k=0

(− t′(α−β)

τ
)k

Γ[(α− β)k + (α− 1)]
(3.11)

let, v = (α− 1) and µ = (α− β)

g(t′) = t′α−2Eα−β, α−1(−t
′α−β

τ
) (3.12)

where, Eµ, v(z) =
∑∞

k=0
zk

Γ(µk+v)
is the Mittag-Leffler function

f(t′) = L−1[gradT (s)] = gradT (t′)

Given that:

f(t′) = gradT (t′), g(t′) = t′α−2Eα−β,α−1

(
− t′α−β

τ

)
The heat flux,

q(t) = −λ
τ

∫ t

0

g(t− t′)f(t′)dt′

q(t) = −λ
τ

∫ t

0

(t− t′)α−2Eα−β, α−1

(
−(t− t′)α−β

τ

)
[gradT (t′)]dt′ (3.13)

q(t) = −λ
τ

∫ t

0

(t− t′)α−2Eα−β, α−1

(
−(t− t′)α−β

τ

)
[∂xT (t′)]dt′ (3.14)

Hence, equation(3.13) (Qi et al. (2013) equation(5)) is the solution of

the fractional heat flux equation in a semi- infinite medium
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3.3 MODELING THE TEMPERATURE DIS-

TRIBUTION IN THE SEMI-INFINITE MEDIUM

In modeling the temperature distribution in a semi-infinite medium, the fractional

heat flux equation(3.2), the energy conservation law and the divergence theorem

are used.

Energy conservation law:

ρc∂tT (x, t) = -div q(x,t) (3.15)

Applying divergence theorem to (3.2) above produces

∂x · (∂β−1
t q(x, t) + τ∂α−1

t q(x, t) = −λ∂xT (x, t)), (0 < β ≤ α ≤ 2)

From properties of fractional order derivative, i.e

∂α

∂tα
(∂

βq
∂tβ

) = ∂α+βq
∂tα+β

= ∂α+β
t q and ∂

∂x
( ∂
∂y

) = ∂x(∂y) = ∂y(∂x)

∂β−1
t (∂xq(x, t)) + τ∂α−1

t (∂xq(x, t)) = −λ∂x(∂xT (x, t)) (3.16)

substitute (3.15) into (3.16)

∂β−1
t (∂1

t T (x, t)) + τ∂α−1
t (∂1

t T (x, t)) =
λ

ρc
∂xxT (x, t)

∂βt T (x, t) + τ∂αt T (x, t) = D∂xxT (x, t), D =
λ

ρc
(3.17)

∂βt T (x, t) + τ∂αt T (x, t) = D∆T (x, t), ∆ = ∂xx (3.18)

Hence, the partial differential equation modeling the temperature distribution in

the semi-infinite medium is given by:

∂βt T (x, t) + τ∂αt T (x, t) = D∂xxT (x, t), 0 ≤ x <∞, t > 0 (3.19)
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3.3.1 Assumptions of the model

In modeling the heat transmission in a semi-infinite medium in this study, the

following assumptions are employed:

• the temperature distributions occurs in a semi-infinite medium(0 ≤ x <∞),

which is initially at uniform temperature.

• the boundary surface temperature gradient is given by a time-dependent

function.

• heat can only enter or leave the body through the surface at x=0 and

that any thermal process begins at time t=0. Hence, (3.19) becomes a one

dimensional fractional Cattaneo heat equation.

∂βt T + τ∂αt T = D∂xxT, 0 ≤ x <∞, t > 0

• the temperature and the time derivative of the temperature are initially

zero throughout the medium.

• temperature far from the surface will be neglected.

The above assumptions leads to the following initial and Neumann boundary

conditions:

T (x, 0) =
∂T (x, 0)

∂t
= 0, 0 ≤ x <∞ (3.20)

T (∞, t) = 0, t ≥ 0 (3.21)

−λ∂T (0, t)

∂x
=
∂β−1q(0, t)

∂tβ−1
+ τ

∂α−1q(0, t)

∂tα−1
(3.22)

Let ∂T (0,t)
∂x

= −qw(t) and (3.22) can be written as

qw(t) =
1

λ

(
∂β−1q(0, t)

∂tβ−1
+ τ

∂α−1q(0, t)

∂tα−1

)
(3.23)
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The initial-boundary value problem (3.22) can be solve by using the discretization

method of solving the inverse Laplace transform(Qi et al. (2013))

3.3.2 Establishing the exact Solution of the fractional

Cattaneo heat equation in terms of temperature

Since the temperature distribution modeling equation occurs in a semi-infinite

medium (0 ≤ x < ∞), the transform (3.4) is a good choice in solving it. The

solution in the Laplace domain shall be converted to a Fox-function via Taylor

series expansion. This makes it easier to solve using the inverse Laplace transform

of the H-function(Fox-function).

Solving for the exact solution

Applying the transform (3.4 ) to (3.19) yields

sβT (x, s)−
1∑

k=0

sβ−1T
(0)

(x, 0) + τsαT (x, s)− τ
1∑

k=0

sα−1T
(0)

(x, 0)

= D
∂2T (x, s)

∂x2
−D∂T (x, 0)

∂x
− T (x, 0)

(sβ + τsα)T̄ (x, s)− c0 = D
∂2T (x, s)

∂x2
− T x(x, 0)− T (x, 0) (3.24)

c0 =
1∑

k=0

sβ−1T
(0)

(x, 0) + τ
1∑

k=0

sα−1T
(0)

(x, 0)

From initial conditions:, (c0, T x(x, 0), T (x, 0)) = 0

∂2T̄ (x, t)

∂x2
=
sβ + τsα

D
T̄ (x, t) (3.25)
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Equation(3.25) is a homogeneous second order differential equation with a general

solution of the form:

T̄ (x, s) = c1e
m1x + c2e

m2x (3.26)

(3.25) is of the form:

∂2T̄

∂x2
− AT̄ = 0, (3.27)

where, A = sβ+τsα

D
.

The characteristic differential equation of (3.27) is

m2 − A = 0,=⇒ m = ±
√
A

=⇒ m1 = +

√
sβ + τsα

D
, m2 = −

√
sβ + τsα

D

T̄ (x, s) = c1e
+x

√
sβ+τsα

D + c2e
−x

√
sβ+τsα

D (3.28)

T (x, s) = c1e
+x

√
sβ+τsα

D (3.29)

Considering the boundary conditions:

∂T (0,s)
∂x

= −qw(s) and T (∞, s) = 0

equation (3.29) doesn’t satisfy the boundary condition, T (∞, s) = 0

Hence, the solution of the temperature distribution is:

T (x, s) = c2e
−x

√
sβ+τsα

D (3.30)

Determining the constant of the solution: c2

Differentiating (3.30) with respect to x produces

∂T (x, s)

∂x
= (−

√
sβ + τsα

D
)c2e

−x
√
sβ+τsα

D
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Using the model assumptions, ∂T (0,s)
∂x

= −qw(s) and T (x, 0) = 0

=⇒ −qw = (−
√
sβ + τsα

D
)c2e

−(0)

√
sβ+τsα

D

⇒ c2 = qw(s)

√
D

sβ + τsα
(3.31)

Thus, the solution of the fractional Cattaneo heat equation in the Laplace domain

is:

T (x, s) = qw(s)

√
D√

sβ + τsα
e
− x√

D

√
sβ+τsα

(Qi et al. (2013)) (3.32)

Using the convolution theorem, the inverse Laplace transform of the temperature

distribution function is given by:

T (x, t) =

∫ t

0

G(x, t′)qw(t− t′)dt′ (3.33)

3.4 EXAMINING THE INFLUENCE OF THE

FRACTIONAL DERIVATIVES OF ORDERS

α and β ON THE TEMPERATURE DIS-

TRIBUTION

This section examines the influence of the fractional Cattaneo derivatives of orders

α and β on the temperature distribution. The values of α and β lies within the

interval: 0 < β ≤ α ≤ 2. The α- order will be used to examine the temperature

distribution at the boundary and within the medium for a short time. The long

time effect on the temperature distribution within the medium and the boundary

will be examined using the fractional order parameter β.
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3.4.1 The Influence of fractional derivative of order α on

temperature distribution

For a large value of α, the inverse Laplace transform of sα or sβ−α in the Laplace

domain will lead to a short time for temperature distribution within the medium

or at the boundary. To examine the effects of the α-order derivative on temper-

ature distribution, let the Laplace transform of G(x, t), be G(x, s)

From (3.32),

G(x, s) =

√
D√

sβ + τsα
e
− x√

D

√
sβ+τsα

G(x, s) =

√
D

√
τsα
√

(1 + τ−1sβ−α)
e
− x√

D

√
τsα
√

(1 + τ−1sβ−α)

For τ 6= 0,

G(x, s) =

√
D√
τsα

e−r
√
z

√
z

(3.34)

Where

z = 1 + τ−1sβ−α, r =
x
√
τsα√
D

(3.35)

let

g(z) = e−r
√
z/
√
z (3.36)

3.4.2 Representing the Solution in terms of Taylor series

Establishing the solution in Taylor series makes it easier to convert it into a Fox-

function. When the solution is written in Taylor series, the derivative component

of the Taylor series formula can be transformed into a Fox-function(H-function).

In the Fox-function domain, it is easier to take the inverse Laplace transform of

the solution of a fractional partial differential equation.

Taylor series representation
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Taylor series expansion of g(z) about a point z=1 is given by

g(z) =
∞∑
k=0

gk(1)

k!
(z − 1)k (3.37)

3.4.3 Fox-Function(H-function)

The H-function is a generalized function. In its special cases, it can be used to

represent almost every named mathematical function and continuous statistical

distribution. The Laplace and Fourier Transforms (and their inverses) and the

derivatives of H-function are also expressed in terms of the H-function. The H-

function is firmly rooted in gamma functions, integral transform theory, complex

analysis and statistical distribution theory. The H-function is often represented

in terms of Mellin-Barnes inversion integral. The H-function can be solved using

the residue theorem. Examples of statistical distributions that can be represented

in terms of the H-function include: exponential, Rayleigh, Chi-Square, Weibull

and beta functions. More information about the H-function(Fox-function) can be

obtained from the monographs of Kilbas et al. (2006), Podlubny (1999), Mathai

et al. (2009) and Carl (1992). The H-function is usually represented by the

notation below.

Notation of H-Function(Fox-function):

H(x) = Hm,n
p,q (z) = Hm,n

p,q

[
z|(aq ,Aq)(bq ,Bq)

]
= Hm,n

p,q [z|(a1,A1).....(ap,Ap)

(b1,B1).....(bq ,Bq)
] (3.38)

Mellin transform inversion integral(Carl (1992))

=
1

2πi

∫
L1

{
∏m

j=1 Γ(bj +Bjs)}{
∏n

j=1 Γ(1− aj − Ajs)}
{
∏q

j=m+1 Γ(1− bj −Bjs)}{
∏p

j=n+1 Γ(aj + Ajs)}
z−sds (3.39)

General Mellin-Barnes integral:

=
1

2πi

∫
L2

{
∏m

j=1 Γ(bj −Bjs)}{
∏n

j=1 Γ(1− aj + Ajs)}
{
∏q

j=m+1 Γ(1− bj +Bjs)}{
∏p

j=n+1 Γ(aj − Ajs)}
zsds (3.40)
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where, i = (−1)
1
2 , z 6= 0 and z−s = exp(−s{In|z|+ iarg(z)}, zs = exp(s{In|z|+

iarg(z)}). In |z| is the natural logarithm of, |z| and arg(z) is not the principal

value. m,n, p, q ∈ N0 with 0 ≤ n ≤ p, 1 ≤ m ≤ q, Ai, Bj ∈ R+, z, ai, bj ∈

R or C, i = 1 · · · p, j = 1 · · · q, L1, is a suitable contour separating the

poles ζjv = −(
bj+v

Bj
), j = 1 · · · q, v = [0, 1, 2 · · · ], of the gamma func-

tion, Γ(bj +BjS), to the left of L1 from the pole wλk = (1−aλ+k)
Aλ

of the gamma

function, Γ(1 − aλ − Aλs), which lie to the right of L1. When the parameters

Aj, Bj in notation (3.38) above reduces to one, Meijer G-function is produced

below:

G(x) = Gm,n
p,q (z) = Gm,n

p,q

[
z|(aq ,1)

(bq ,1)

]

Expressing the solution in terms of Fox H-function

The inverse Laplace transform of exponential solutions of fractional nature are

not usually achieved by simply looking into a standard inverse Laplace transform

table. However, if the solution can be expressed in terms of a derivative, the

opportunity exist to get the inverse Laplace transform. Hence, the Fox-function

provides this opportunity to obtain the inverse Laplace transform of a fractional

derivative or solution.

using the identity (1.125)(Mathai et al. (2009)), the solution (i.e 3.34) can be

transformed into an H-function(Fox-function)

H1,0
0,1

[
z|(b,B)

]
= B−1z

b
B exp

(
−z 1

B

)
From the solution: g(z) = e−r

√
z/
√
z

Let u = r
√
z

g(z) = ru−1exp(−u) = r
(

1−1u
−1
1

)
exp

(
−u 1

1

)

= rH1,0
0,1

[
u| −

(−1,1)

]
(3.41)
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Using the derivative definition of the H-function (Equation(1.69)) of (Mathai

et al. (2009))

(
d

dz

)n {
zρ−1Hm,n

p,q

[
azσ|(ap,Ap)

(bq ,Bq)

]}
= zρ−n−1Hm,n+1

p+1,q+1

[
az|(1−ρ,σ),(ap,Ap)

(bq ,Bq),(1−ρ+n,σ)

]
(3.42)

gk(z) = r

(
d

dz

)k {
z0H1,0

0,1

[
rz

1
2 | −

(−1,1)

]}
(3.43)

gk(z) = z−krH1,1
1,2

[
(r2z)

1
2 |(0,1/2)

(−1,1),(k,1/2)

]
gk(z) = rH1,1

1,2

[
(r2z)

1
2 |(0,1/2)

(−1,1),(k,1/2)

]

gk(1) = rH1,1
1,2

[
r|(0,1/2)

(−1,1),(k,1/2)

]
(3.44)

substitute(3.44) into(3.37)

g(z) =
∞∑
k=0

(z − 1)k

k!
rH1,1

1,2

[
r|(0,1/2)

(−1,1),(k,1/2)

]
(Qi et al. (2013)) (3.45)

g(z) =
∞∑
k=0

(z − 1)k

k!

(
1

2πi

∫
L

Θ(s)(r)−sds

)

θ(s) =
Γ(s− 1)Γ(1− 1

2
s)

Γ(1− k − 1
2
s)

Modification of the solution

The Fox-function has a some properties which makes it possible to modify the

solution.

Using property 1.4(of Mathai et al. (2009)), the last part of (3.45) is modified as

follows:

Hm,n
p,q

[
z|(aq ,Aq)(bq ,Bq)

]
= κHm,n

p,q

[
zκ|(aq ,κAq)(bq ,κBq)

]
(3.46)
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rH1,1
1,2

[
r| (−k,1/2)

(−1,1),(k,1/2)

]
= 2rH1,1

1,2

[
r2| (0,1)

(−1,2),(k,1)

]
Using property 1.6,(Mathai et al. (2009))

Hm,n+1
p+1,q+1

[
z|(0,γ),(a1,A1).....(ap,Ap)

(b1,B1).....(bq ,Bq),(r,γ)

]
= (−1)rHm+1,n

p+1,q+1

[
z|(a1,A1).....(ap,Ap),(0,γ)

(r,γ),(b1,B1).....(bq ,Bq)

]
(3.47)

2rH1,1
1,2

[
r2| (0,1)

(−1,2),(k,1)

]
= (−1)k2rH2,0

1,2

[
r2| (0,1)

(k,1),(−1,2)

]
(3.48)

Using property 1.5,(Mathai et al. (2009))

zσHm,n
p,q

[
z|(ap,Ap)

(bq ,Bq)

]
= Hm,n

p,q

[
z|(aq+σAp,Ap)

(bq+σBq ,Bq)

]
(3.49)

(−1)k2rH2,0
1,2

[
r2| (0,1)

(k,1),(−1,2)

]
= (−1)k2(r2)

1
2H2,0

1,2

[
r2| (1/2,1)

(k+1/2,1),(0,2)

]

= 2(−1)kH2,0
1,2

[
r2| (1/2,1)

(k+1/2,1),(0,2)

]
(3.50)

using the Mellin inversion integral

2(−1)kH2,0
1,2

[
r2| (1/2,1)

(k+1/2,1),(0,2)

]
= 2(−1)k

(
1

2πi

∫
L

Γ(k + 1
2

+ s)Γ(2s)

Γ(1
2

+ s)
(r2)−sds

)

Using gamma duplication rule,

Γ(2s)

Γ(1
2

+ s)
=

Γ(s)22(s)−1

√
π

(3.51)

= 2(−1)k
(

1
2πi

∫
L

Γ(s)Γ(k + 1/2 + s)22(s)−1
√
π

(r2)−sds
)

=
(−1)k√

π

(
1

2πi

∫
L

Γ(s)Γ(k + 1/2 + s)

(
r2

4

)−s
ds

)

=
(−1)k√

π
H2,0

0,2

[
r2

4
| −
(0,1),(k+1/2,1)

]
(3.52)
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Substituting (3.52) into (3.45)

g(z) =
1√
π

∞∑
k=0

(−1)k
(z − 1)k

k!
H2,0

0,2

[
r2

4
| −
(0,1),(k+1/2,1)

]
(3.53)

But G(x, s) =
√
D√
τsα
g(z) , hence

G(x, s) =

√
D√
τsα

1√
π

∞∑
k=0

(−1)k
(z − 1)k

k!
H2,0

0,2

[
r2

4
| −
(0,1),(k+1/2,1)

]
(3.54)

Substituting, z − 1 = τ−1sβ−α and r = x
√
τsα√
D

, into (3.54) yields

G(x, s) =

√
D√
τsα

1√
π

∞∑
k=0

(−1)k
(τ−1sβ−α)k

k!
H2,0

0,2

[
x2τsα

4D
| −
(0,1),(k+1/2,1)

]
(3.55)

Inverse Laplace transform of(3.55)

Using the inverse Laplace transform of the H-function((2.21) in (Mathai et al.

(2009) p.51)

L−1
{
s−ρHm,n

p,q

[
asσ|(ap,Ap)

(bq ,Bq)

]
; t
}

= tρ−1Hm,n
p+1,q

[
at−σ|(ap,Ap),(ρ,σ)

(bq ,Bq)

]
(3.56)

let ρ = k(α− β) + α/2 in (3.55)

The new solution of the temperature Modeling equation:

Let the inverse Laplace transform of G(x, s) be G(x, t). Thus,

G(x, t) = L−1

{√
D√
πτ

∞∑
k=0

(−1)k

k!

s−ρ

τ k
H2,0

0,2

[
x2τsα

4D
| −
(0,1),(k+1/2,1)

]}

G(x, t) =

√
D√
πτ

∞∑
k=0

(−1)k

k!

tk(α−β)+α/2−1

τ k
H2,0

1,2

[
τx2

4Dtα
|(k(α−β)+α/2,α)
(0,1),(k+1/2,1)

]
(3.57)

(Qi et al. (2013)) established (3.57) as the new exact solution of the generalized

fractional Cattaneo heat equation in a semi-infinite medium.
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Reducing G(x, t) to Lower order H-function

Representing G(x, t) in Mellin-Barnes inverse integral provides a means of elimi-

nating some pairs of Γ(.) functions. This is achieved using Stirling’s approxima-

tion formula.

G(x, t) =

√
D√
πτ
t
α
2
−1

∞∑
k=0

(− 1
τ
t(α−β))k

k!

1

2πi

∫
L

Γ(s)Γ(k + 1/2 + s)

Γ(k(α− β) + α
2

+ αs)

(
τx2

4Dtα

)−s
ds

Using Stirling’s approximation:

lim
1
2
→∞

Γ(k + 1
2

+ s)

Γ(1
2
)

=

√
2π
(

1
2

) 1
2

+k+s− 1
2 e−

1
2

√
2π
(

1
2

) 1
2
− 1

2 e−
1
2

=

(
1

2

)k+s

(3.58)

=

√
D√
τ
t
α
2
−1

∞∑
k=0

(− 1
2τ
t(α−β))k

k!

1

2πi

∫
L

Γ(s)

Γ(k(α− β) + α
2

+ αs)

(
τx2

2Dtα

)−s
ds

=

√
D√
τ
t
α
2
−1

∞∑
k=0

(− 1
2τ
t(α−β))k

k!
H1,0

1,1

[
τx2

2Dtα
|(k(α−β)+α

2
,α)

(0,1)

]
(3.59)

3.4.4 Evaluating Fox-Function through Series Expansion

The H-function can be evaluated as a series expansion using the residue theorem.

If a complex function f has singularity at the point z0, then f has a Laurent

series representation. That is

f(z) =
∑∞

k=−∞ ak(z − z0)k = · · ·+ a−2

(z−z0)2
+ a−1

(z−z0)
+ a0 + a1(z − z0) + · · ·

Which converges for all z near z0 and valid within the open disk of radius R,

0 < |z − z0| < R

Residue:

The co-efficient a−1, of 1
(z−z0)

in the Laurent series above is called the residue of
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the function f at the isolated singularity z0. The notation a−1 = Res(f(z), z0)

denotes the residue at z0

Residue theorems

Theorem 3.4.1 : If f has a simple pole at z = z0, then

Res(f(z), z0) = lim
z−→z0

(z − z0)f(z)

Theorem 3.4.2 : If the function f has a pole of order, n at z = z0, then

Res(f(z), z0) =
1

(n− 1)!
lim
z−→z0

dn−1

dzn−1
(z − z0)nf(z)

Applying theorem(3.4.1), equation(3.59) can be evaluated as a series expansion

at the pole of the gamma function Γ(s).

Residue at the poles of Γ(s) is given by

=

√
D√
τ
t
α
2
−1

∞∑
k=0

(− 1
2τ
t(α−β))k

k!

∞∑
v=0

(−1)v

v!

1

Γ(k(α− β) + α
2
− αv)

(
τx2

2Dtα

)v
(3.60)

G(x, t) =

√
D√
τ
t
α
2
−1

∞∑
k=0

(− 1
2τ
t(α−β))k

k!

(
1− τx2

2Dtα

)(k(α−β)+α
2
−1)

Γ(k(α− β) + α
2
)

(3.61)

If α = 2

=

√
D√
τ
t
α
2
−1

∞∑
k=0

(− 1
2τ
z(α−β))k

k!Γ(k(α− β) + α
2
)
, (3.62)

where z = te−
τx2

2Dtα

G(x, t) =

√
D√
τ
t
α
2
−1εα−β,α

2

(
− 1

2τ
z

)
(3.63)

(3.63) is a Fox-Wright function.

Using convolution theorem (3.2.1), and using integration by parts, the tempera-
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ture function is obtained. i.e

T (x, t) =
∫ t

0
G(x, t′)qw(t− t′)dt′ ,

Hence, the equation for temperature distribution within a short period

of time inside the medium is given by:

T (x, t) =

√
D√
τ
t
α
2 εα−β,α

2
+1

(
− 1

2τ
z

)
qw (3.64)

3.4.5 The influence of the fractional derivative of order

β on temperature distribution

Since β is less than or equal to α (i.e β ≤ α), the inverse Laplace transform of sβ or

sα−β in the solution will result in large time for the temperature distribution. To

solve the solution in terms of sβ let the Laplace transform of G(x, t), be G1(x, s)

From (3.32),

G1(x, s) =

√
D√

sβ + τsα
e
− x√

D

√
sβ+τsα

G1(x, s) =

√
D√

sβ
√

(1 + τsα−β)
e
− x√

D

√
sβ
√

(1 + τsα−β)

For τ 6= 0,

G1(x, s) =

√
D√
sβ
e−r1

√
z1

√
z1

(3.65)

Where

z1 = 1 + τsα−β, r1 =
x
√
sβ√
D

(3.66)

Expressing the solution in terms of Taylor series and Fox-function

From (3.65), let

g1(z1) =
e−r1

√
z1

√
z1

(3.67)
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The Taylor series representation of (3.67) about the point z1 = 1 can be written

as:

g1(z1) =
∞∑
k=0

gk1(1)

k!
(z1 − 1)k (3.68)

The exponential part of (3.67) can be expressed as a Fox-function using the

identity (1.125)( Mathai et al. (2009)), (equation 3.67) as follows:

H1,0
0,1

[
z|(b,B)

]
= B−1z

b
B exp

(
−z 1

B

)
From the solution: g1(z1) = e−r1

√
z1/
√
z1

Let u1 = r1
√
z1

g1(z1) = r1u
−1
1 exp(−u1) = r1

(
1−1u

−1
1

1

)
exp

(
−u

1
1
1

)

= r1H
1,0
0,1

[
u1| −

(−1,1)

]
(3.69)

Using the derivative definition of the H-function (Equation(1.69)) of (Mathai

et al. (2009))

(
d

dz

)n {
zρ−1Hm,n

p,q

[
azσ|(ap,Ap)

(bq ,Bq)

]}
= zρ−n−1Hm,n+1

p+1,q+1

[
az|(1−ρ,σ),(ap,Ap)

(bq ,Bq),(1−ρ+n,σ)

]

gk1(z1) = r1

(
d

dz1

)k {
z0H1,0

0,1

[
r1z

1
2
1 | −

(−1,1)

]}
(3.70)

gk1(z1) = z−k1 r1H
1,1
1,2

[
(r2

1z1)
1
2 |(0,1/2)

(−1,1),(k,1/2)

]
gk1(z1) = r1H

1,1
1,2

[
(r2

1z1)
1
2 |(0,1/2)

(−1,1),(k,1/2)

]
For z1 = 1,

gk1(1) = r1H
1,1
1,2

[
r1|(0,1/2)

(−1,1),(k,1/2)

]
(3.71)

substituting (3.71) into (3.68) yields

g1(z1) =
∞∑
k=0

(z1 − 1)k

k!
r1H

1,1
1,2

[
r1|(0,1/2)

(−1,1),(k,1/2)

]
(3.72)
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g1(z1) =
∞∑
k=0

(z1 − 1)k

k!

(
1

2πi

∫
L

Θ(s)(r1)−sds

)

θ(s) =
Γ(s− 1)Γ(1− 1

2
s)

Γ(1− k − 1
2
s)

Modifying the solution

Similarly, using property 1.4 (of Mathai et al. (2009)), the last part of (3.72) is

modified as follows:

Hm,n
p,q

[
z|(aq ,Aq)(bq ,Bq)

]
= κHm,n

p,q

[
zκ|(aq ,κAq)(bq ,κBq)

]
(3.73)

r1H
1,1
1,2

[
r1| (−k,1/2)

(−1,1),(k,1/2)

]
= 2r1H

1,1
1,2

[
r2

1|
(0,1)

(−1,2),(k,1)

]
Using property 1.6, (Mathai et al. (2009))

Hm,n+1
p+1,q+1

[
z|(0,γ),(a1,A1).....(ap,Ap)

(b1,B1).....(bq ,Bq),(r,γ)

]
= (−1)rHm+1,n

p+1,q+1

[
z|(a1,A1).....(ap,Ap),(0,γ)

(r,γ),(b1,B1).....(bq ,Bq)

]
(3.74)

2r1H
1,1
1,2

[
r2

1|
(0,1)

(−1,2),(k,1)

]
= (−1)k2r1H

2,0
1,2

[
r2

1|
(0,1)

(k,1),(−1,2)

]
(3.75)

using property 1.5, (Mathai et al. (2009))

zσHm,n
p,q

[
z|(ap,Ap)

(bq ,Bq)

]
= Hm,n

p,q

[
z|(aq+σAp,Ap)

(bq+σBq ,Bq)

]

(−1)k2r1H
2,0
1,2

[
r2

1|
(0,1)

(k,1),(−1,2)

]
= (−1)k2(r2

1)
1
2H2,0

1,2

[
r2

1|
(1/2,1)

(k+1/2,1),(0,2)

]

= 2(−1)kH2,0
1,2

[
r2

1|
(1/2,1)

(k+1/2,1),(0,2)

]
(3.76)

using the Mellin inversion integral

2(−1)kH2,0
1,2

[
r2

1|
(1/2,1)

(k+1/2,1),(0,2)

]
= 2(−1)k

(
1

2πi

∫
L

Γ(k + 1
2

+ s)Γ(2s)

Γ(1
2

+ s)
(r2

1)−sds

)
(3.77)

Using gamma duplication rule,

Γ(2s)

Γ(1
2

+ s)
=

Γ(s)22(s)−1

√
π
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equation(3.77) is can be reduced to:

= 2(−1)k
(

1
2πi

∫
L

Γ(s)Γ(k + 1/2 + s)22(s)−1
√
π

(r2
1)−sds

)

=
(−1)k√

π

(
1

2πi

∫
L

Γ(s)Γ(k + 1/2 + s)

(
r2

1

4

)−s
ds

)

=
(−1)k√

π
H2,0

0,2

[
r2

1

4
| −
(0,1),(k+1/2,1)

]
(3.78)

Substituting (3.78) into (3.72)

g1(z1) =
1√
π

∞∑
k=0

(−1)k
(z1 − 1)k

k!
H2,0

0,2

[
r2

1

4
| −
(0,1),(k+1/2,1)

]
(3.79)

But G1(x, s) =
√
D√
sβ
g1(z1) , hence

G1(x, s) =

√
D√
sβ

1√
π

∞∑
k=0

(−1)k
(z1 − 1)k

k!
H2,0

0,2

[
r2

1

4
| −
(0,1),(k+1/2,1)

]
(3.80)

Substituting, z1 − 1 = τsα−β and r1 = x
√
sβ√
D

, into (3.80) yields

G1(x, s) =

√
D√
sβ

1√
π

∞∑
k=0

(−1)k
(τsα−β)k

k
H2,0

0,2

[
x2sβ

4D
| −
(0,1),(k+1/2,1)

]
(3.81)

Inverse Laplace transform of(3.81)

Using the inverse Laplace transform of the H-function((2.21) in Mathai et al.

(2009), p.51)

L−1
{
s−ρHm,n

p,q

[
asσ|(ap,Ap)

(bq ,Bq)

]
; t
}

= tρ−1Hm,n
p+1,q

[
at−σ|(ap,Ap),(ρ,σ)

(bq ,Bq)

]
(3.82)

let ρ1 = k(β − α) + β/2 in (3.81)

Representing the inverse Laplace transform of G1(x, s) as G1(x, t) implies

G1(x, t) = L−1

{√
D√
π

∞∑
k=0

(−τ)k

k!
s−ρ1H2,0

0,2

[
x2sβ

4D
| −
(0,1),(k+1/2,1)

]}
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G1(x, t) =

√
D√
π

∞∑
k=0

(−τ)k

k!
tk(β−α)+β/2−1H2,0

1,2

[
x2

4Dtβ
|(k(β−α)+β/2,β)
(0,1),(k+1/2,1)

]
(3.83)

Reducing G1(x, t) to a lower order Fox-function

Expressing (3.83) in Mellin-Barnes integral will provide a means of reducing the

equation to a lower order Fox-function,

G1(x, t) =

√
D√
π
t
β
2
−1

∞∑
k=0

(−τt(β−α))k

k!

1

2πi

∫
L

Γ(s)Γ(k + 1/2 + s)

Γ(k(β − α) + β
2

+ βs)

(
x2

4Dtβ

)−s
ds

(3.84)

Using Stirling’s approximation:

lim
1
2
→∞

Γ(k + 1
2

+ s)

Γ(1
2
)

=

√
2π
(

1
2

) 1
2

+k+s− 1
2 e−

1
2

√
2π
(

1
2

) 1
2
− 1

2 e−
1
2

=

(
1

2

)k+s

(3.85)

substituting (3.85) into (3.84) produces

=
√
Dt

β
2
−1

∞∑
k=0

(−1
2
τt(β−α))k

k!

1

2πi

∫
L

Γ(s)

Γ(k(β − α) + β
2

+ βs)

(
x2

2Dtβ

)−s
ds

=
√
Dt

β
2
−1

∞∑
k=0

(−1
2
t(β−α))k

k!
H1,0

1,1

[
x2

2Dtβ
|(k(β−α)+β

2
,β)

(0,1)

]
(3.86)

solving (3.86) as a series expansion at the pole of Γ(s).

=
√
Dt

β
2
−1

∞∑
k=0

(−1
2
τt(β−α))k

k!

(
1− x2

2Dtβ

)(k(β−α)+β
2
−1)

Γ(k(β − α) + β
2
)

(3.87)

=
√
Dt

β
2
−1

(
1− x2

2Dtβ

)β
2
−1 ∞∑

k=0

(−1
2
τφ(β−α))k

k!Γ(k(|β − α|) + β
2
)

(3.88)
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G1(x, t) =
√
Dt

β
2
−1

(
1− x2

2Dtβ

)β
2
−1

Eβ−α,β
2

(
−1

2
τφ

)
(3.89)

Where φ ' te−
x2

2Dtβ

Solving the convolution,

T1(x, t) =

∫ t

0

G1(x, t′)qw(t− t′)dt′ (3.90)

produces the long time temperature distribution function.

The temperature distribution for long time inside the medium is given

by:

T1(x, t) =
√
Dt

β
2

(
1− x2

2Dtβ

)β
2
−1

Eβ−α,β
2

+1

(
−1

2
τφ

)
(3.91)

3.4.6 Examining Temperature Distribution at the Bound-

ary

While equation(3.64) and (3.91) can be used to study the temperature distribu-

tions inside the medium, it is important to also study the temperature distribution

at the boundary. This section examines the boundary surface temperature for

short time and long time based on the fractional derivatives of orders α and β.

Asymptotic expressions of the boundary surface temperatures are established be-

low:

From (3.32), the boundary temperature is given by

T (0, t) =

∫ t

0

G(0, t′)qw(t− t′)dt′ (3.92)

(Qi et al. (2013)) established the boundary temperature as:

T (0, s) =
qw
√
D

s
√
sβ + τsα

(3.93)
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Let the Laplace transform of G(0, t), be G(x, s)

Effects of fractional derivative of order α on boundary temperature

For short time boundary temperature, the α -parameter is considered since it is

larger than β. In the Laplace domain

T (0, s) = qw(s)

√
D√
τsα

1

s
√
τ−1sβ−α + 1

T (0, s) = qw(s)

√
D

s
√
τsα

(
τ−1sβ−α + 1

)− 1
2

Let

G1(0, s) =

√
D

s
√
τsα

(
τ−1sβ−α + 1

)− 1
2

L−1{G1(0, s)} = L−1{
∑∞

k=0(−1)k
( 1
2)
k
τ−ks−[k(α−β)+α2 +1]

k!
; t}

= t
α
2

∞∑
k=0

(−1)k
(

1
2

)
k
τ−ktk(α−β)

k!Γ(k(α− β) + α
2

+ 1)
(3.94)

(a)k = Γ(a+k)
Γ(a)

, (a)0 = 1, where (a)k is the Pochammar symbol

G1(0, t′) =

√
D

τ
t
α
2E

1
2

(α−β),α
2

+1(−1

τ
tα−β) (3.95)

G1(0, t) ∝ t
α
2

(
1− t(α−β)

τ
+
t2(α−β)

τ 2
· · ·
)

For a short time, the boundary surface temperature is given by:

T (0, t) = G1(0, t)qw

T (0, t) =

√
D

τ
t
α
2E

1
2

(α−β),α
2

+1(−1

τ
tα−β)qw (3.96)

Effects of fractional derivative of order β on boundary temperature

distribution

To examine the temperature distribution for a long period of time at the bound-

ary, the the β-parameter is considered since it has small value compared to α. In
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the Laplace domain,

T (0, s) = qw(s)

√
D

s
√
sβ

1

s
√
τsα−β + 1

G2(0, s) =
∞∑
k=0

(−1)k
(

1
2

)
k
τ ks−[k(β−α)+β

2
+1]

k!

The inverse Laplace transform of G2(0, s) is given by:

G2(0, t) = L−1{
∞∑
k=0

(−1)k
(

1
2

)
k
τ ks−[k(β−α)+β

2
+1]

k!
}

= t
β
2

∞∑
k=0

(−1)k
(

1
2

)
k
τ ktk(β−α)

k!Γ(k(β − α) + β
2

+ 1)
(3.97)

=
√
Dt

β
2E

1
2

(β−α),β
2

+1
(−τtβ−α) (3.98)

To examine a long period of temperature distribution at the boundary,

the equation below is considered:

T (0, t) =
√
Dt

β
2E

1
2

(|β−α|),β
2

+1
(−τtβ−α)qw (3.99)

G2(x, s) can also be express as an infinite series in the Laplace domain as:

G2(0, s) = s−(β
2

+1)
(
1− 1

2
τs−1(β−α) + 1

4
τs−2(β−α) · · ·

)
L−1{G2(0, s)} = L−1{s−(β

2
+1)

(
1− 1

2
τs−1(β−α) +

1

4
τ 2s−2(β−α) · · ·

)
} (3.100)

G2(0, t) ∝ t
β
2

(
1− τt(β−α) + τ 2t2(β−α) · · ·

)
(3.101)
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3.4.7 The generalized fractional Cattaneo heat equation

and its special cases

This section looks at how the generalized fractional Cattaneo heat equation can

be transformed into other forms of diffusion equations under special conditions.

The classical solution of (3.1) of integer orders

α = 2 ,β = 1 is given by (2.3),i.e

G(x, t) =

√
D

τ
e−t/2τI0

(
1

2τ

√
t2 − τ

D
x2

)
u

(
t− x

√
τ

D

)

The new solution established for the fractional Cattaneo

The new solution (Qi et al. (2013)) ,i.e(3.57) is given below:

G(x, t) =

√
D√
πτ

∞∑
k=0

(−1)k

k!

tk(α−β)+α/2−1

τ k
H2,0

1,2

[
τx2

4Dtα
|(k(α−β)+α/2,α)
(0,1),(k+1/2,1)

]
Special cases of the fractional Cattaneo model(3.19)

(i) when τ = 0,

(3.19) becomes the fractional wave- diffusion (Qi et al. (2013)), i.e

∂βU(x, t)

∂tβ
= D

∂2U(x, t)

∂x2
(3.102)

The above equation has its solution as:

G(x, s) =

√
D√
sβ
exp

(
− x√

D

√
sβ
)

Proof : The Laplace transform of equation(3.102) is given below.

L{∂
βU(x, t)

∂tβ
} = L{D∂

2U(x, t)

∂x2
}

SβU(x, s) +
1∑

k=0

Sβ−1U
(0)

(x, s) = D
∂2U(x, t)

∂x2
(3.103)
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Considering zero initial conditions

SβU(x, s) = D
∂2U(x, t)

∂x2
(3.104)

solving (3.104) in the Laplace domain produces the solution

G(x, s) =

√
D√
sβ
exp(− x√

D

√
sβ) (3.105)

=

√
D√
sβ
H1,0

0,1

[
x√
D

√
sβ|(0,1)

]
(3.106)

Using the inverse Laplace transform for the Fox H-function (3.106) is obtained

as:

=
√
Dt

β
2
−1H1,0

0,1

[
x√
Dtβ
|(
β
2
,β
2

)

(0,1)

]

= t
β
2
−1W

(
− x√

Dtβ
;−β

2
,
β

2

)
(3.107)

where:

W (z;µ, v) =
∑∞

k=0
zµ

k!Γ(µk+v)
is the Wright function(Qi et al. (2013))

(ii) if τ = 0 and β = 1,

(3.19) becomes the classical heat equation, i.e

∂U(x, t)

∂t
= D

∂2U(x, t)

∂x2

which has the solution

G(x, t) =

√
D

πt
exp

(
− x2

√
4Dt

)
(3.108)
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3.5 USING A NUMERICAL SCHEME TO STUDY

THE FRACTIONAL CATTANEO HEAT

EQUATION IN A SEMI-INFINITE MEDIUM

The implicit finite difference scheme is used in solving the numerical examples

in this study. The implicit finite difference scheme is a scheme that evaluates

a derivative at future time step. In all numerical examples in this chapter :

Surface temperature gradient, qw,= 1.0, relaxation time, τ = 0.1, Diffusivity

constant, D = 1.0

3.5.1 Discretizing a fractional derivative

The Grundwald- Letnikov definition of a fractional derivative is the bases of

finite difference schemes for fractional derivatives. (Mariusz (2009)) stated that

a Caputo derivative can be converted to a Grundwald- Letnikov derivative using

the relation

C∂βt U(x, t) =GL ∂βt

(
U(x, t)− U(x, t)|t=0 − t

∂U(x, t)

∂t
|t=0

)
(3.109)

where C stands for Caputo derivative and GL means Grundwald-Letnikov deriva-

tive

U(x, t)|t=0 = p0,
∂U(x, t)

∂t
|t=0 = p1 (3.110)

GL ∂
βU(x,t)
∂tβ

= lim
δt−→∞

1
(δt)β

∑ t
δt
k=0(−1)k

(
β
k

)
(U(x, t)− p0 − kδtp1)

' 1

(δt)β

j∑
k=0

(−1)k
(
β
k

)(
U j−k
i − p0 − kδtp1

)
(3.111)

The Grundwald-Letnikov weight:,

wβk = (−1)k
(
β
k

)
= (−1)k

Γ(β + 1)

Γ(k + 1)Γ(β − k + 1)
(3.112)
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wβ0 = 1, wβk = (1− (β + 1)/k)wβk−1 (3.113)

In order to discretize a fractional differential equation, two homogeneous grids

are defined below.

spatial: 0 = x0 < x1 < x2 · · · , xn = a, and temporal: 0 = t0 < t1 < t2 · · · tm = T .

To discretize space and time, let

δx = a
n+1

, δt = T
m
, x = iδx, t = jδt, 0 < j < m, 0 < i < n+ 1.

The temperature at any time at any point in the medium is represented by

U(x, t) = U j
i , 0 < xi < a, 0 < tj < T

3.5.2 Discretization for Example 1a

The generalized Cattaneo heat equation (4.2) is used, i.e.

∂2−γ
t U(x, t) + τ γ∂2

tU(x, t) = D∂xxU(x, t) GCEII,

∂βt U(x, t) + τ γ∂αt U(x, t) = D∂xxU(x, t) 0 ≤ x <∞, t > 0 (3.19)

comparing the fractional orders of GCEII with the generalized factional Cattaneo

heat equation

β = 2− γ, α = 2

The exact solution of the above equation is:

U(x, t) = e−
x2

2Dtβ tβ/2
∞∑
k=0

(
−τβte−

x2

2Dtβ

)k
k!(kβ + β

2
+ 1)

qw

The initial and boundary conditions include:

U(x, 0) = 0, U(x,∞)=0, Ux(0, t) = −qwf(t), Ut(x, 0) = 0.

The differential equation is discretize below using implicit finite difference scheme

1
(δt)β

∑j+1
k=0w

β
k

(
U j+1−k
i − p0 − kδtp1

)
+ τ

(δt)2

(
U j+1
i − 2U j

i + U j−1
i

)
= D

(δx)2

(
U j+1
i+1 − 2U j+1

i + U j+1
i−1

)
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c0

j+1∑
k=0

wβk

(
U j+1−k
i − p0 − kδtp1

)
+
(
U j+1
i − 2U j

i + U j−1
i

)
= r0

(
U j+1
i+1 − 2U j+1

i + U j+1
i−1

)

−m0U
j+1
i + r0

(
U j+1
i+1 + U j+1

i−1

)
= 2U j

i − U
j−1
i − c0

j+1∑
k=1

wβk

(
U j+1−k
i − p0 − kδtp1

)
(3.114)

where, m0 = c0w
β
0 + 1 + 2r0, p0 = 0, p1 = 0

Writing out the above implicit finite scheme line by line produces the following:

For j = 0:

−m0U
1
i + r0

(
U1
i+1 + U1

i−1

)
= 2U0

i − U−1
i − c0w

β
1U

0
i

For j = 1:

−m0U
2
i + r0

(
U2
i+1 + U2

i−1

)
= 2U1

i − U0
i −

(
c0w

β
1U

1
i + c0w

β
2U

0
i

)

For j = 2:

−m0U
3
i + r0

(
U3
i+1 + U3

i−1

)
= 2U2

i − U1
i −

(
c0w

β
1U

2
i + c0w

β
2U

1
i + c0w

β
3U

0
i

)

:

:

:

For j = n-1:

−m0U
n
i +r0

(
Un
i+1 + Un

i−1

)
= 2Un−1

i −Un−2
i −c0

(
wβ1U

n−1
i + wβ2U

n−2
i + · · ·+ wβn−1U

1
i + wβnU

0
i

)
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From the above, a tridiagonal matrix equation is established below.

A.U j+1 = b(i)

A =



−m0 2r0 0 0 · · · · · · 0

r0 −m0 r0 0 · · · · · · 0

0 r0 −m0 r0 · · · · · · 0

: :
. . . . . . :

0 0 r0 −m0 r0

0 0 0 r0 −m0


, U j+1 =



U j+1
1

U j+1
2

:

U j+1
n+1


(3.115)

where

b(i) = −2U j
i + U j−1

i + c0

j+1∑
k=1

wβkU
j+1−k
i − 2δtqwf(t)

c0 = (δt)(2−β)

τ
, r0 = D(δt)2

τ(δx)2
, p0 = 0, p1 = 0

The ’ghost points’: U−1
i and U j

−1

can be replaced in the implicit finite scheme by applying the central difference

scheme to the Neumann boundary conditions:

U1
i − U−1

i

2δt
= 0,

U j
1 − U

j
−1

2δx
= −qwf(t)

From the above, U−1
i = U1

i and U j
−1 = U j

1 + 2δxqwf(t)

The short time heat flux(surface temperature gradient) for example 1a is defined

below

q(x, t) = e−x
√
D

τ
t
α
2E

1
2

(α−β),α
2

+1(−1

τ
tα−β) (3.116)

U j+1 is a vector of unknown values of U . In computation at each time step, the

value of U always depend on the previous values of U . This produces the memory

effect that is usually associated with fractional derivatives.
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3.5.3 Example 1c: Discretization of Boundary surface Tem-

perature,T(0,t)

Using (4.2), the finite difference scheme for the boundary surface temperature is

presented below. From example 1a, the GCEII (4.2) was discretized as:

c0

j+1∑
k=0

wβk

(
U j+1−k
i − p0 − kδtp1

)
+
(
U j+1
i − 2U j

i + U j−1
i

)
= r0

(
U j+1
i+1 − 2U j+1

i + U j+1
i−1

)
At the boundary, x0

For i = 0

c0

∑j+1
k=0w

β
k

(
U j+1−k

0 − p0 − kδtp1

)
+
(
U j+1

0 − 2U j
0 + U j−1

0

)
= r0

(
U j+1

1 − 2U j+1
0 + U j+1

−1

)
Using the Neumann boundary condition,

Uj+1
1 −Uj+1

−1

2δx
= −qwf(t)

=⇒ U j+1
−1 = U j+1

1 + 2δxqwf(t)

and initial conditions (p0 = 0 p1 = 0), the boundary temperature at the future

time step, U j+1
1 is given by:

U j+1
1 =

1

2r0

(
m0U

j+1
0 − 2U j

0 + U j−1
0 + c0

j+1∑
k=1

wβkU
j+1−k
0 − 2δxr0qwf(t)

)
(3.117)

where, m0 = (c0w
β
0 + 1 + 2r0)

A few lines of the scheme for matlab implementation are written below:

For j = 0:

U1
1 =

1

2r0

(
m0U

1
0 − 2U0

0 + U−1
0 + c0w

β
1U

0
0 − 2δxr0qwf(t)

)

For j = 1:

U2
1 =

1

2r0

(
m0U

2
0 − 2U1

0 + U0
0 + c0

(
wβ1U

1
0 + wβ2U

0
0

)
− 2δxr0qwf(t)

)
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For j = 2:

U3
1 =

1

2r0

(
m0U

3
0 − 2U2

0 + U1
0 + c0

(
wβ1U

2
0 + wβ2U

1
0 + wβ3U

0
0

)
− 2δxr0qwf(t)

)

:

:

:

:

For j = n-1

Un
1 =

1

2r0

(
m0U

n
0 − 2Un−1

0 + Un−2
0

)
+

1

2r0

(
c0

(
wβ1U

n−1
0 + wβ2U

n−2
0 + wβ3U

n−3
0 + · · ·+ wβn−1U

1
0 + wβnU

0
0

))
− δxqwf(t)

3.5.4 Discretization for Example 2.1a: Temperature dis-

tribution within the medium

The exact solution of GCEI established from this study is:

U(x, t) = e−
x2

2Dtβ tβ/2
∞∑
k=0

(
−τβ/2te−

x2

2Dtβ

)k
k!(kβ + β

2
+ 1)

qw

The initial and boundary conditions for this example will include:

U(x, 0) = 0, U(x,∞)=0, Ux(0, t) = −qwf(t), Ut(x, 0) = 0, qwf(t) = u(t)− u(t−

ts).

Applying the operator ∂1−β

∂t1−β
, GCEI (4.1) is discretized below.

∂1−β

∂t1−β

(
∂βU(x, t)

∂t
+ τ

∂2βU(x, t)

∂tβ

)
= D

∂1−β

∂t1−β
∂2U(x, t)

∂x2

(
U j+1
i − U j

i

)
+ c10

j+1∑
k=0

w1+β
k

(
U j+1−k
i − p0 − kδtp1

)
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= r10

j+1∑
k=0

w1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)
(3.118)

where,

c10 = τ(δt)β, r10 = D(δt)β

(δx)2
p0 = 0, p1 = 0, m10 = c10w

1+β
0 + 1 + 2w1−β

0 r10

Re-writing the above equation yields

−m10U
j+1
i + r10

(
U j+1
i+1 + U j+1

i−1

)
= −U j

i + c10

j+1∑
k=1

w1+β
k

(
U j+1−k
i − p0 − kδtp1

)

−r10

j+1∑
k=1

w1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)
Below are few lines of the scheme for this example

For j = 0

−m10U
1
i +r10

(
U1
i+1 + U1

i−1

)
= −U0

i +c10w
1+β
1

(
U0
i

)
−r10w

1−β
1

(
U0
i+1 − 2U0

i + U0
i−1

)
For j = 1

−m10U
2
i + r10

(
U2
i+1 + U2

i−1

)
= −U1

i + c10

(
w1+β

1 U1
i + w1+β

2 U0
i

)

−r10

(
w1−β

1

(
U1
i+1 − 2U1

i + U1
i−1

)
+ w1−β

2

(
U0
i+1 − 2U0

i + U0
i−1

))
For j = 2

−m10U
3
i + r10

(
U3
i+1 + U3

i−1

)
= −U2

i + c10

(
w1+β

1 U2
i + w1+β

2 U1
i + w1+β

3 U0
i

)

−r10

(
w1−β

1

(
U2
i+1 − 2U2

i + U2
i−1

)
+ w1−β

2

(
U1
i+1 − 2U1

i + U1
i−1

)
+ w1−β

3

(
U0
i+1 − 2U0

i + U0
i−1

))
:

:
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:

:

:

For j = n-1

−m10U
n
i + r10

(
Un
i+1 + Un

i−1

)
=

−Un−1
i +c10

(
w1+β

1 Un−1
i + · · ·+ w1+β

n−1U
1
i + w1+β

n U0
i

)
−r10

(
w1−β

1

(
Un−1
i+1 − 2Un−1

i + Un−1
i−1

))
− · · · − r10

(
w1−β
n−1

(
U1
i+1 − 2U1

i + U1
i−1

)
+ w1−β

n

(
U0
i+1 − 2U0

i + U0
i−1

))
From the above a tridiagonal matrix is established below

A0.U
j+1 = B(i)

Where,

A0 =



−m10 2r10 0 0 · · · · · · 0

r10 −m10 r10 0 · · · · · · 0

0 r10 −m10 r10 · · · · · · 0

: :
. . . . . . :

0 0 r10 −m10 r10

0 0 0 r10 −m10


, U j+1 =



U j+1
1

U j+1
2

:

U j+1
n+1



(3.119)

B(i) = −U j
i + c10

j+1∑
k=1

w1+β
k U j+1−k

i − r10

j+1∑
k=1

w1−β
k

(
U j+1−k
i+1 − 2U j+1

i + U j+1
i−1

)
U j+1 = A0\B(i)

3.5.5 Discretization for Example 3

The GCEIII (4.3) is used to examine the temperature distribution.

∂γt U(x, t) + τ∂1+γ
t U(x, t) = D∂xxU(x, t) (GCEIII)

α = 1 + γ, where β = γ, β ∈ [0, 1]

The initial and boundary conditions include:

U(x, 0) = 0, U(x,∞)=0, Ux(0, t) = −qwf(t), Ut(x, 0) = 0,

qwf(t) = exp(−µt)− exp(−υt)
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3.5.6 Example 3.1: Discretization of boundary tempera-

ture gradient,f(t)

Apply the differential operator, ∂1−β

∂t1−β
to GCEIII(4.3) produces:

∂1−β

∂t1−β

(
∂βt U(x, t) + τ∂1+β

t U(x, t) = D∂xxU(x, t)
)

(3.120)

∂U(x, t)

∂t
+
∂2U(x, t)

∂t2
=

∂1−β

∂t1−β

(
∂2U(x, t)

∂x2

)
(3.121)

1

δt

(
U j+1
i − U j

i

)
+

τ

(δt)2

(
U j+1
i − 2U j

i + U j−1
i

)
= (δt)−(1−β) D

(δx)2

t/δt∑
k=0

w1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)
(δt)

τ

(
U j+1
i − U j

i

)
+
(
U j+1
i − 2U j

i + U j−1
i

)
=
D(δt)1+β

τ(δx)2

t/δt∑
k=0

w1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)

k0

(
U j+1
i − U j

i

)
+
(
U j+1
i − 2U j

i + U j−1
i

)
= r20

j+1∑
k=0

w1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)
Where,

k0 =
(δt)

τ
, r20 =

D(δt)1+β

τ(δx)2

At the boundary, x0

k0

(
U j+1

0 − U j
0

)
+
(
U j+1

0 − 2U j
0 + U j−1

0

)
= r20

j+1∑
k=0

w1−β
k

(
U j+1−k

1 − 2U j+1−k
0 + U j+1−k

−1

)

Using the Neumann boundary condition,
Uj+1
1 −Uj+1

−1

2δx
= −qwf(t)

U j+1
1 = 1/(2r20w

1−β
0 )

(
(k0 + 1 + 2r20w

1−β
0 )U j+1

0 − (k0 + 2)U j
0 + U j−1

0 − 2r20δxqw(t)
)

−1/2

j+1∑
k=1

w1−β
k

(
U j+1−k

1 − 2U j+1−k
0 + U j+1−k

−1

)
(3.122)
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Example 3.2: Discretization of boundary surface Temperature,T(0,t)

With the boundary surface temperature, (3.122) above is used. The boundary

temperature for this example is given by

U(0, t) =
√
Dt

β
2

∞∑
k=0

(
1
2

)
k

(
−τtβ−α

)k
k!
(
k(|β − α|) + β

2
+ 1
)

U j+1
1 = 1/(2r20w

1−β
0 )

(
m20U

j+1
0 − (k0 + 2)U j

0 + U j−1
0 − 2r20δxqw(t)

)
−1/2

j+1∑
k=1

w1−β
k

(
U j+1−k

1 − 2U j+1−k
0 + U j+1−k

−1

)
(3.123)

where, m20 = (k0 + 1 + 2r20w
1−β
0 )

A few lines of the finite difference scheme for this example are written below.

For j =0

U1
1 = 1/(2r20w

1−β
0 )

(
m20U

1
0 − (k0 + 2)U0

0 + U−1
0 − 2r20δxqw(t)

)
−1/2w1−β

1

(
U0

1 − 2U0
0 + U0

−1

)
For j =1

U2
1 = 1/(2r20w

1−β
0 )

(
m20U

2
0 − (k0 + 2)U1

0 + U0
0 − 2r20δxqw(t)

)
−1/2

(
w1−β

1

(
U1

1 − 2U1
0 + U1

−1

)
+ w1−β

2

(
U0

1 − 2U0
0 + U0

−1

))
For j =2

U3
1 = 1/(2r20w

1−β
0 )

(
m20U

3
0 − (k0 + 2)U2

0 + U1
0 − 2r20δxqw(t)

)
−1/2

(
w1−β

1

(
U2

1 − 2U2
0 + U2

−1

)
+ w1−β

2

(
U1

1 − 2U1
0 + U1

−1

)
+ w1−β

3

(
U0

1 − 2U0
0 + U0

−1

))
:

:

:
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For j = n-1

Un
1 = 1/(2r20w

1−β
0 )

(
m20U

n
0 − (k0 + 2)Un−1

0 + Un−2
0 − 2r20δxqw(t)

)
−1/2

(
w1−β

1

(
Un−1

1 − 2U2
0 + Un−1

−1

)
+ w1−β

2

(
Un−2

1 − 2Un−2
0 + Un−2

−1

))
− · · · − 1/2

(
w1−β
n−1

(
U1

1 − 2U1
0 + U1

−1

)
+ w1−β

n

(
U0

1 − 2U0
0 + U0

−1

))
Example 3.3: Discretization scheme for temperature distribution inside

the medium,T(x,t)

Applying the differential operator ∂1−β

∂t1−β
to GCEIII produces

∂U(x, t)

∂t
+
∂2U(x, t)

∂t2
=

∂1−β

∂t1−β

(
∂2U(x, t)

∂x2

)
(3.124)

Discretizing the differential equation above produces:

k0

(
U j+1
i − U j

i

)
+
(
U j+1
i − 2U j

i + U j−1
i

)
= r20

j+1∑
k=0

w1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)

k0

(
U j+1
i − U j

i

)
+
(
U j+1
i − 2U j

i + U j−1
i

)
=

r20w
1−β
0

((
U j+1
i+1 − 2U j+1

i + U j+1
i−1

))
+ r20

j+1∑
k=1

w1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)
(3.125)

Re-arranging the above equation produces

−m20U
j+1
i + r20w

1−β
0

(
U j+1
i+1 + U j+1

i−1

)
=

U j−1
i − (k0 + 2)U j

i − r20

j+1∑
k=1

w1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)
where, m20 = k0 + 1 + 2r20w

1−β
0 ,

For the matlab implementation of this example, here are few lines of the scheme.
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For j = 0

−m20U
1
i +r20w

1−β
0

(
U1
i+1 + U1

i−1

)
= U−1

i −(k0+2)U0
i −r20w

1−β
1

(
U0
i+1 − 2U0

i + U0
i−1

)
For j = 1

−m20U
2
i +r20w

1−β
0

(
U2
i+1 + U2

i−1

)
= U0

i −(k0+2)U1
i −r20w

1−β
1

(
U1
i+1 − 2U1

i + U1
i−1

)
−r20w

1−β
2

(
U0
i+1 − 2U0

i + U0
i−1

)
:

:

For j = n-1

−m20U
n
i +r20w

1−β
0

(
Un
i+1 + Un

i−1

)
= Un−2

i −(k0+2)Un−1
i −r20w

1−β
1

(
Un−1
i+1 − 2Un−1

i + Un−1
i−1

)
−r20w

1−β
2

(
Un−2
i+1 − 2Un−2

i + Un−2
i−1

)
− · · · − r20w

1−β
n−1

(
U1
i+1 − 2U1

i + U1
i−1

)
−r20w

1−β
n

(
U0
i+1 − 2U0

i + U0
i−1

)
A tridiagonal matrix system is established below:

A20.U
j+1 = d(i)

where,

A20 =



−m20 2r20 0 0 · · · · · · 0

r20 −m20 r20 0 · · · · · · 0

0 r20 −m20 r20 · · · · · · 0

: :
. . . . . . :

0 0 r20 −m20 r20

0 0 0 r20 −m20


, U j+1 =



U j+1
1

U j+1
2

:

U j+1
n+1



(3.126)

d(i) = U j−1
i − (k0 + 2)U j

i − r20

∑j+1
k=1w

1−β
k

(
U j+1−k
i+1 − 2U j+1−k

i + U j+1−k
i−1

)
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3.5.7 Conclusion

In this chapter, the exact solutions of the fractional Cattaneo heat equation in a

semi-infinite medium have been established properly . It has also Provided the

discretization schemes for the three generalized fractional Cattaneo heat equa-

tions(GCEs). The next chapter will make use of the various discretized examples

in this chapter to provide graphical solutions of the three GCEs as examples.
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Chapter 4

ANALYSIS AND DISCUSSION OF RESULTS

4.0.8 INTRODUCTION

In this chapter, graphical results of the analytical solutions and numerical scheme

solutions are presented, compared and discussed. The implicit finite difference

schemes for all the numerical examples in chapter 3 are implemented using Matlab

software. The three Generalized Cattaneo heat equations (GCE’s) discretized

in chapter 3 are used to plot the finite difference graphs in this chapter. The

steps used in solving the generalized Cattaneo heat equation(3.19) are followed

in establishing the analytical solutions of each of these three generalized Cattaneo

heat equations.

∂γt U(x, t) + τ γ∂2γ
t U(x, t) = D∂xxU(x, t) (GCEI) (4.1)

∂2−γ
t U(x, t) + τ γ∂2

tU(x, t) = D∂xxU(x, t) (GCEII) (4.2)

∂γt U(x, t) + τ∂1+γ
t U(x, t) = D∂xxU(x, t) (GCEIII) (4.3)

4.0.9 Comparison of results of the analytical solution and

finite difference solution of Example 1(GCEII)

The effects of the α-order derivative on temperature distribution for a short pe-

riod of time is shown in this example. Figure 4.1(a) and (b) respectively show the

analytical and finite difference graphs for temperature distribution profile inside

the semi-infinite medium for different values of fractional orders β at a fixed time.
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(a) analytical graph (b) finite difference graph

Figure 4.1: Example 1a :Graphs of T (x, t) versus x. The arrows in the graphs
(a) and (b) indicate increasing order of, β=[1.0, 1.2, 1.4, 1.6, 1.8, 2.0]

Though the temperature values decreases in both the finite difference and ana-

lytical graphs as β increase, the temperature values in the finite difference graph(

i.e 4.1(b)) are slightly lower than the temperature values in the analytical graph

(4.1(a)). According to Qi et al. (2013) the temperature values of GCEII falls

between those of the wave equation, (β = 2),and the Cattaneo equation (β = 1).

The propagation speeds of thermal disturbances corresponding to the Cattaneo

equation and the wave equation are, ct =
√
D/τ and, cw =

√
D/(1 + τ), re-

spectively(Qi et al. (2013)). When the GCEII (4.2) is used, the speed for heat

Figure 4.2: Example 1b: Analytical graph showing T (x, t) versus x at different
times, t for β = 1.2 (dashed lines) and β = 1.8 (continuous line)
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propagation is between , ct and cw. The thermal speed attains lower values as the

values of β increases. This is consistent with the intermediate processes between

Cattaneo equation and the wave equation (Qi et al. (2013)). Figure 4.2 shows

the analytical graph for temperature profile for a range of time t as a function of

variable x for β = 1.2 and β = 1.8 inside the medium. The temperature values

inside the medium decreases with increasing β, for small time t, whereas increas-

ing β, raises the temperature for large t. Figure 4.3(a) and (b) respectively show

the temperature profile at the boundary using the analytical solution and finite

difference method. From both the analytic graph and finite difference graph

(a) analytical graph (b) finite difference graph

Figure 4.3: Example 1c: Graph of T (0, t) versus t. The arrows in the graphs (a)
and (b) indicate increasing order of, β=[1.0 ,1.2 ,1.4, 1.6 ,1.8 ,2.0]

(figure 4.3), the boundary temperature at the early heating period increase with

decreasing β while the boundary surface temperature decreases with increasing β

at the later stage of the heating process at the boundary. Comparing the results

from this example, the temperature values from the finite difference graphs tend

to approach the temperature values corresponding to that of the exact solution

as depicted in the analytical graphs.
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4.0.10 Comparison of finite difference and analytic solu-

tions of example 2(GCEI)

Figure 4.4(a) and (b) respectively show the analytic and finite difference graphs

of the temporal variation of the temperature distribution at different locations

inside the medium for, β = 0.9. From the graphs (4.4(a) and (b)), it can be seen

(a) analytical graph (b) finite difference graph

Figure 4.4: Example 2a: Graph of T (x, t) versus t.

that the temperature rises sharply in the early heating period because of internal

energy gains from the source. As the heating continues, the temperature rise

become gradual due to the enhancement of heat transfer from the surface region

to the medium. The the heating process starts at time t = 0 and ends at t = 3.

When t > 3, the temperature reduces rapidly and then decays gradually with

time as shown in both the analytic graph and finite difference graph ( i.e 4.4(a)

and (b) ) for different locations inside the medium. Comparing figure 4.4(a) and

(b) during the cooling process, the temperature decay in the analytical graph

( i.e fig.4.4(a)) is sharper than that in the finite difference graph (fig. 4.4(b)).

By comparison, both the analytical solution and finite difference ( i.e fig.4.4(a)

and (b)) graphs produced similar trends of temperature distribution during the

heating and the cooling periods.

Figure 4.5 shows the heating and cooling process at the boundary of the medium
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Figure 4.5: Example 2b(analytical graph): T (0, t) versus x at different times, t.
The arrow in the graph shows increasing order of β = 0.5, 0.6, 0.7, 0.8, 0.9

using GCEI. The heating process at the boundary for different values of β in figure

4.5 (example 2b) is similar to the heating process of figure 4.3 (example 1c). Both

figure 4.5 and figure 4.3 showed similar temperature rise at the boundary from

time t = 0 to time t = 3s. For a long time period of temperature distribution at

different locations inside the medium, the β-order derivative is demonstrated in

this example.

4.0.11 Comparison of finite difference solution to the an-

alytic solution for example 3(GCEIII)

Figure 4.6 (a) and (b) respectively show the analytic and finite difference graphs

for the temporal variation of exponential function f(t) and their corresponding

temperature rise at the boundary surface. The finite difference graph(4.6(b))

temperature values are almost the same as that of the analytic graph(4.6(a)).

Figure 4.7 (a) and (b) also show analytic and finite difference graphs of the

boundary surface temperature for the classical Cattaneo model (β = 1) and the

fractional Cattaneo model (β = 0.8). In the early heating period the rise of

boundary temperature for classical Cattaneo model (β = 1) and the fractional
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(a) analytical graph (b) finite difference graph

Figure 4.6: Example 3a: Graph of f(t) versus t.

(a) analytical graph (b) finite difference graph

Figure 4.7: Example 3b: Graph of T (0, t) versus t for µ = 1/2, υ = 1 (continuous
line), µ = 2/3, υ = 2 (dashed line) and µ = 5/6, υ = 5 (dotted line).

Cattaneo model (β = 0.8), is almost the same. However, the boundary temper-

ature reaches higher values for the classical Cattaneo model than the fractional

Cattaneo model in both the analytic and finite difference graphs. It is also noted

that the temporal variation of temperature (4.7 (a) and (b)) does not follow ex-

actly the temporal variation of f(t) (i.e fig. 4.6 (a) and fig. 4.6(b) ) because of

the energy transfer from the surface region to the medium. Figure 4.8(a) and
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(a) analytical graph (b) finite difference graph

Figure 4.8: Example 3c: Graph of T (x, t) versus x for three exponential pulses
at time t = 1 when α = 1.8 and β = 0.8

(b) respectively show the analytic and finite difference graphs of the temperature

distribution inside the medium at a constant time t = 1. The boundary gradient

distribution with time has a significant influence on the temperature distribution

inside the medium(4.8(a) and (b)). By comparison from all the graphs in this ex-

ample, the finite difference approach and the analytical solution produced almost

similar results.
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Chapter 5

Conclusions

1. A detailed proof of the exact solutions (in Qi et al. (2013)) of the fractional

Cattaneo heat equation in a semi-infinite medium have been established.

2. A comparison between the analytic and Implicit finite difference solution

of the fractional Cattaneo heat equation in a semi-infinite medium using

graphical representations have been made in this work.

3. The implicit finite difference method of solving the fractional Cattaneo heat

equation in the semi-infinite medium produced results which are very close

to the temperature values obtained using the exact solutions established by

(Qi et al. (2013)).

4. The numerical examples of the fractional cattaneo heat equation using the

finite difference scheme showed similar trend of influence of the fractional

derivatives of orders, α and β, on the temperature distribution just as in

the case of the analytical graphs.

5.1 RECOMMENDATIONS

1. Since this study did not examine the stability of the exact solutions or

numerical scheme used for the fractional Cattaneo heat equations in this

study, further research work on stability analysis of the exact solutions of

the fractional Cattaneo heat equation in a semi-infinite medium is needed.

2. For easier but reliable results, engineers and scientists can use the implicit

finite difference scheme since it gives very good approximations to the tem-

perature values of the exact solutions of the fractional Cattaneo heat equa-
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tion and saves the user the complexity and time consuming nature of using

special functions such as the H-function to establish exact solutions.
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