
i

KWAME NKUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY, KUMASI-GHANA

A TOOL SELECTION FRAMEWORK FOR CROSS PLATFORM MOBILE

APP DEVELOPMENT

By:

FELIX APPIAH (B.Ed. Information Technology)

A Thesis Submitted to the Department of Computer Science, Kwame

Nkrumah University of Science and Technology in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY

Department of Computer Science, College of Science

NOVEMBER, 2015

ii

DECLARATION

This thesis is written towards the fulfillment of the requirements of the Master of Philosophy in

Information Technology Programme and I therefore declare that it is truly my own piece of

work.

I duly acknowledge that it contains no material which has been accepted for the award of any

other degree of this University or any other University. However, ideas and other information

used in this work, which have been previously published or submitted by me or another author

has received the needed acknowledgement.

All sources of data and/or information and other important materials obtained from institutions,

departments, agencies, and individuals to make this work a reality have been equally given the

necessary acknowledgement. However, it is likely for readers of this work to identify some

errors or omissions. In view of this, I duly accept being responsible in that regard.

Felix Appiah (PG8303812) ………………………….. …………………………

(Student Name & ID) Signature Date

Certified By:

Dr. Hayfron-Acquah J.B ………………………. ……………………………

(Supervisor) Signature Date

Certified By:

Dr. M. Asante ………………………. ……………………………

(Head of Department) Signature Date

iii

ABSTRACT

The mobile application development landscape is continuously getting more fragmented with the

emergence of an array of platforms with disparate operating systems and development

workflows. Mobile Application developers are compelled by virtue of this platform

fragmentation to design applications that targets more than one platform to ameliorate the market

reachability of their products. To help developers in the pursuit of this cross platform agenda,

diverse tools have been introduced by different vendors to provide support for cross platform

development. However, there is no acceptable metric to serve as a basis for evaluating these

cross platform tools. This thesis introduces a framework aimed at assisting application

developers in the selection of the requisite Cross Platform development tool which guarantees

the achievement of project requirement and specifications. . The framework design was guided

by the Design Science research methodology. Quantitative methods including descriptive

statistics, experiments and tests were used to provide data for the development and evaluation of

the framework. The framework was implemented on three (3) Cross Platform Tools; PhoneGap,

Titanium and Xamrin. Pairwise comparisons were made among these tools with capabilities,

Performance, Development Speed, Learning Curve, Native UI look, and Device Access as the

considered criteria. The Capability criteria emerged as the most important Criteria. PhoneGap

developed by Adobe also emerged as the preferred tool for Mobile Cross Platform Development.

Based on the framework, PhoneGap appears to be the Platform of choice in terms of Mobile

Cross Platform development.

Keywords: Cross Platform Development, Tool selection Framework, Mobile Application

Development, Fragmentation, Mobile Application Development Tools.

iv

DEDICATION

This thesis is dedicated to my dear mother Maame Afua Boatemaa, who never stepped foot in

any classroom but made an avowed commitment to ensure that, all her children enjoyed the best

of formal education no matter the cost. To her I say: “This is just the beginning”.

v

ACKNOWLEDGEMENT

“To know is to know that you know nothing. That is the meaning of true knowledge”

 (Socrates, 399BC)

It is with a heartfelt gratitude that I acknowledge the effort and support of my Supervisor, Dr J.B

Hayfron-Acquah whose patience and calmness made this thesis a reality. His timely advice and

recommendations was really on point.

This acknowledgement wouldn’t be fulfilling without commenting on the immense inspiration

and support from my family especially my father, Mr Ernest Appiah Kubi and my Siblings. To

my entire family, I say I am most grateful.

I would also wish to congratulate all research participants especially, Mr Elvis Agah and Mr

Solomon Osei-Acheampong for their assistance.

Finally, I express my sincere gratitude to my “special friend “, Miss Juliana Opoku Mensah for

seeing the vision much earlier and communicating, supporting and ensuring its realization.

Thank you for believing in me”.

vi

TABLE OF CONTENT

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1 Background ... 1

1.2 Motivation ... 3

1.3 Objective of the Study... 4

1.5 Thesis Contribution .. 5

1.6 Scope of the study ... 6

1.7 Limitations of the Study .. 6

1.8 Methodological Approach... 6

1.9 Organization of the Study .. 7

CHAPTER TWO .. 9

LITERATURE REVIEW ... 9

2.1 Introduction ... 9

2.2 Concept of Mobile Application Development and Relevance .. 9

2.3 Current State of Mobile Platform Landscape.. 12

2.4 Comparison of Mobile Platforms .. 14

2.5 Approaches to Mobile Application Development... 19

2.5.1. Native Code .. 20

2.5.2. HTML5 Code Mobile Application.. 21

2.5.3 Hybrid Code Mobile Application ... 24

2.5.4 Summary ... 25

2.6 Cross Platform Development .. 25

2.6.1 History of Cross platform Development ... 25

2.7 Cross Platform Mobile Development Tools ... 26

2.7.1 Mobile Web .. 28

2.7.2 Adobe PhoneGap .. 30

2.7.3 Appcelerator Titanium .. 33

2.7.4 Adobe Air .. 34

2.7.5 MoSync ... 35

2.7.6 Tool Analysis and Comparison ... 36

2.8 Evaluation Criteria for Cross Platform Development Tools ... 37

vii

2.9 Summary ... 41

CHAPTER THREE .. 42

METHODOLOGY AND FRAMEWORK DESIGN ... 42

3.1 Introduction ... 42

3.2 Research Design .. 42

3.2.1: Rationale for Design Science Research Methodology .. 44

3.3 An evaluation Framework for CPDTs .. 44

3.4 Analysis of Framework Design ... 46

3.4.1 Level 1: Decision to select CPDT .. 46

3.4.2 Level 2: Selection of Criteria for Evaluation .. 47

3.4.3 Level 3: Alternative CPDTs to be evaluated ... 55

3.4.4 Level 4: Evaluation Report ... 57

3.5 Summary ... 57

CHAPTER FOUR ... 58

IMPLEMENTATION OF THE FRAMEWORK ... 58

4.1 Introduction ... 58

4.2 Managing Stakeholders ... 58

4.3 Level 1: Decision of select CPDTs ... 59

4.4 Level 2: Selection and Evaluation Criteria ... 59

4.4.1 Weighting the Evaluation Criteria .. 60

4.4.2 Calculating the Priority Vector of the Criteria .. 61

4.4.3 Calculating the Lamdamax ... 62

4.4.4 Calculating the Consistency Index for the Criterion ... 62

4.4.5 Calculation of Consistency Ratio for the criterion .. 63

4.5 Level 3: Developing Ratings of each decision alternative .. 63

4.5.1 Weighted average rating of each decision alternative ... 65

4.6 Proof of Concept Application Development ... 65

4.6.1 Introduction ... 65

4.6.2 Features and Functionality of the Mobile Web Application ... 66

4.6.3 Structure of the Application .. 66

4.6.4 Technical Environment ... 67

4.6.5 Development Tools ... 67

viii

4.6.6 Application Design ... 67

4.6.7 Testing the Application ... 68

4.6.8 Test Results ... 68

4.7 Summary ... 69

CHAPTER FIVE .. 70

RESULT, DICUSSSION AND CONCLUSION .. 70

5.1 Introduction ... 70

5.2 Ranking of CPDT Evaluation Criteria .. 70

5.4 Rankings of CPDT based on Development Speed .. 72

5.5 Ranking of CPDTS based on Performance ... 73

5.6 Ranking of CPDTS based on Learning Curve .. 74

5.7 Ranking of CPDTS based on Device Access .. 75

5.8 Ranking of CPDTS based on Native UI Look and Feel ... 76

5.9 Ranking of CPDTs based on all criteria evaluated ... 77

5.9 Analysis of results ... 78

5.11 Conclusion .. 80

5.12 Future Work .. 82

REFERENCES ... 83

APPENDIX A: Source Code for Proof of Concept Application .. 92

APPENDIX B: Screen shot of sample Application in emulators and devices .. 99

APPENDIX C: Application Checklist for Evaluating Features of the Application 104

APPENDIX D: Test Results on Lenovo Phone Running Android 4.0 ... 105

APPENDIX E: Test Results on Nokia Lumia 520 Running Windows 8.0 .. 106

APPENDIX F: Test Results using W3C mobileOK Checker ... 107

ix

LIST OF TABLES

Table 2. 1: Global shipment of smartphone by operating system, 2011 and 2015 13

Table 2. 2: Smartphone OS Market Share ... 14

Table 2. 3: Mobile Platform Application Development comparison .. 17

Table 2. 4: Mobile Platform Breadth Comparison ... 18

Table 2. 5: Native Code Language Fragmentation 20

Table 2. 6: Tools for Cross platform Application Development ... 27

Table 2. 7: Features of Cross Platform Development Tools ... 28

Table 3. 1: Scale for Comparison and Explanation ……………………………………………………………………………….49

Table 3. 2: Pairwise Comparison for the criteria and consistency matrix .. 50

Table 3. 3: Pairwise Comparison Matrix using the Capability Criteria ... 55

Table 4. 1: Summary of the steps involved in solving the problem……………………………………..59

Table 4. 2: Scale for Comparison ... 60

Table 4. 3: Weight of Pair-Wise Comparison of Evaluation Criteria ... 61

Table 4. 4: Pairwise comparison matrix for set criteria ... 62

Table 4. 5: Computing of Lamdamax .. 62

Table 4. 6: Table of Random Index (ri) ... 63

Table 4. 7: Comparison Matrix of CPDT within the capability criteria ... 64

Table 4. 8: Comparison Matrix of CPDT within the performance criteria .. 64

Table 4. 9: Comparison Matricx of CPDT within the development speed criteria 64

Table 4. 10: Comparison Matrix of CPDT within the Native UI look and feel criteria 64

Table 4. 11: Comparison Matrix of CPDT within the Device Access Criteria .. 64

Table 4. 12: Comparison Matrix of CPDT within the learning curve criteria ... 65

x

Table 4. 13: Weighted Average rating of each alternative. .. 65

xi

LIST OF FIGURES

Figure 2. 1: Mobile Application Mediated Model ... 10

Figure 2. 2: Global Smartphone Sales Ranking of OS, Fourth Quarter 2011 12

Figure 2. 3: IBM Worklight Architecture .. 32

Figure 2. 4: Performance Characteristics of Various CPDTs .. 38

Figure 3.1: Design Science Research Process Model………………………………………….43

Figure 3. 2: CPDT Evaluation Model ... 45

Figure 5. 1: Ranking of CPDT Evaluation Criteria ……………………………………………71

Figure 5. 2: Chart Showing Rankings of CPDT Based on Capability .. 72

Figure 5. 3: Chart Showing Ranking of CPDTs based on Development Speed 73

Figure 5. 4: Chart showing ranking of CPDTs Based on Performance .. 74

Figure 5. 5: Chart Showing Ranking of CPDTs Based on Learning Curve 75

Figure 5. 6: Chart Showing Ranking of CPDTs based on Device Access 76

Figure 5. 7: Chart Showing ranking of CPDTs based on Native UI .. 77

Figure 5. 8: Chart showing ranking of CPDTs based on entire evaluation criteria 78

xii

LIST OF ABBREVIATIONS

ADT - Android Development Tool

API - Application Program Interface

APK - Android Application Package

APP - Application

BB - Black Berry

CPDT - Cross Platform Development Tools

CPU - Central Processing Unit

CSS - Cascading Style Sheet

HTML - Hypertext Mark-up Language

IBM - International Business Machines

IDC - International Data Corporation

IDE - Integrated Development Environment

OTA - Over-the-Air

OS - Operating System

SDK - Standard Development Kit

RIM - Research in Motion

RISC - Reduced Instruction Set Computing

UI - User Interface

W3C - World Wide Web Consortium

1

CHAPTER ONE

INTRODUCTION

1.1 Background

The Mobile Computing community has seen major changes with the introduction of powerful

devices and operating systems with enhanced capabilities and performance (Devitt et.al, 2010).

According to a report by International Data Corporation in 2014, Android and iOS led the mobile

operating system market share with sales of approximately 70% and 20% respectively. The

worldwide sale for 2014 was estimated to be a little over 1.3 billion mobile phones which

represented a 27.7% improvement on the 1 billion smartphone sales recorded in the year 2013

(IDC,2014). With these emerging trends, mobile devices have become more pervasive than ever

in our daily life and activities. Currently, mobile phones that utilize video or audio accelerometer

and Global Positioning Services have displaced others that only perform the calling and text

messaging functionalities. The existence of these enhanced embedded features coupled with

innovative applications; make mobile devices, such as smartphones very desirable and popular

among a large section of people across the world.

The popularity of mobile devices has motivated majority of vendors to get on board and

contribute to the provision of mobile operating systems as well as software that run on mobile

devices (Pastore, 2013). Different vendors have developed their own proprietary method of

developing applications for their devices using a variety of programming languages and

Development Kits. This means that an application developed for Google’s Android operating

system will not run on the RIMs blackberry platform. This had led to a challenge in the mobile

computing industry known as platform fragmentation. The issue of fragmentation becomes more

2

exacting for developers when applications built for a targeted platform are not able to run on

different versions of hardware devices (Dhillon, 2012). Apart from dissimilarities in software

platforms, variations in hardware devices also provide some level of difficulty in guarantee

commensurable user experience from device to device (Agarwal et.al, 2009).

 Mobile application developers are narrowed in their choice of platforms due to factors such as

cost and knowledge of several coding techniques that transcends platforms. Marketing products

designed for platforms with huge developer acceptability is also relatively less difficult.

Research in Motion (RIM) was confronted with tremendous difficulty when migrating to BB10

platforms after evolving from applications developed natively for Blackberry Operating System.

(RIM Inc. 2011).Considering the number of languages used in Mobile Application development,

developers must be very versatile and businesses need to invest significant resources to have

their software available on more than one platform.

This issue of fragmentation makes cross platform development very relevant and inevitable. A

survey by Appcelerator and IDC in August 2012 showed that companies continue to be very

interested in cross platforms regardless of the challenges and difficulties (Appcelerator Inc,

2012). In 2011, developers had shown interest in running on twice as many platforms as a similar

survey in the previous year had indicated a multi-platform patronage by developers averaging an

incredible four operating systems (Allen et.al, 2010). This trend continued to increase in 2012

(Appcelerator Inc. 2012).

 Adjudging the developer appetite for the availability of their applications on many platforms,

developers face an obvious problem. Developers lack the resources to develop natively for each

target platform. They are also confronted with the challenge of learning new lines of code

3

specific to selected platforms. The CEO of InRuntime made a comment that, the introduction of

CPDTs has shortened the time to market of mobile applications by 70% (Vision Mobile, 2012).

This emphasizes that; using cross-platform tools can be very helpful in many ways: firstly Cross

Platform development has the possibility of reducing the number of resources that would be

expended during software development and developers wouldn’t need to program in different

platform environments.

Despite the popularity and potential for developing for multiple platforms, there is no adequate

metric to measure the capability and performance of Cross Platform Development Tools (herein

after referred to as CPDTs). This makes it difficult for developers to identify tools that could be

used to create applications to match rival applications built for native platforms. Developers are

also uncertain which tool guarantees the greatest value and benefit for the time spent working on

their projects. This thesis therefore aims to create a framework to provide thorough comparison

of CPDTs to one another and determine how best they can be used in developing applications for

mobile devices. All this should be done conveniently and effectively without compromising on

quality, performance and user experience. Through the development an evaluation framework

based on acceptable metrics for CPDTs, developers will gain the knowledge needed to determine

which tool to use for their application.

1.2 Motivation

Mobile application developers are confronted with challenges as well as opportunities looking at

current trends in the market. An array of new devices ranging from smartphone to tablets is

redefining what users can do. On the other hand, application developers are saddled with the

question of what devices to develop for, how to create effective but simple apps and the number

of languages developers should learn to become robust developers. The potential reduction in

4

effort of developers during the application development process in terms of cost provides the

needed motivation to embark on this thesis.

The possibility that, application developers will comparatively spend less time in the selection of

the requisite tools for their projects or better-still eliminate the trial and error approach in tool

selection provides enough excitement to undertake this thesis.

1.3 Objective of the Study

This thesis aims to provide a tool selection framework to assist mobile application developers in

choosing the preferred CPDT for their projects with consideration on project outcomes. The

development of a selection framework for CPDTs would assist developers to gain the knowledge

needed to determine which tool to use for their application. The specific objectives of the study

are to:

i. Identify challenges and opportunities of existing tools used in designing cross platform

mobile applications.

ii. Identify priorities developers assign to specific criteria in tool selection.

iii. Access the feasibility of a Tool Selection Framework for Cross Platform Development.

iv. Provide an overall ranking of CPDTs based on pre-determined set of criteria.

5

1.4 Research Questions

The following relevant questions are needed to be answered in order to attain the objectives

outlined above:

i. What are the challenges and opportunities of existing cross platform development tools?

ii. Which criteria are mostly considered by developers during CPDT selection?

iii. How feasible or otherwise is a Tool Selection Framework for Cross Platform

Development.

iv. How feasible or otherwise is a ranking for CPDTs based on pre-determined set of

criteria?

1.5 Thesis Contribution

This thesis provides a tried and tested framework for evaluating CPDTs used in mobile

application development projects. This has been occasioned by the absence of a pragmatic

evaluation metrics specifically for CPDTs in Information Technology literature. Developers are

often compelled to rely on subjective product documentations of CPDTs vendors and make

decisions out of the information available to them.

The major contributions of this thesis are as follows:

i. Development of a merit-based tool selection framework to assist mobile application

developers in selecting the best CPDT for their projects.

ii. The results of the thesis will provide a ranking for the various criteria used in evaluating

CPDTs.

iii. The results of the thesis will also provide a ranking of CPDTs and reduce the burden of

developers in tool selection

6

iv. The work will serve as a body of knowledge on the subject and provide a sound basis for

future research in the area of Cross platform development.

1.6 Scope of the study

Since a complete analysis of several software platforms is not feasible under the timing

constraints that apply to this thesis, it is crucial to define the scope of the evaluation. The target

mobile operating systems were limited to Windows and Android OS. The tools and methods that

were evaluated were therefore limited to three approaches: PhoneGap, Titanium, and Xamarin.

The decision to choose Android and windows was based on the popularity of the two platforms

in the mobile operating system market worldwide. This thesis does not include the

compatibilities on any tablet of the platforms mentioned above.

Also the framework designed in this thesis would not serve as a basis for evaluating graphically

intensive applications. Game applications designed for mobile phones therefore falls outside the

scope of this thesis.

1.7 Limitations of the Study

Among the numerous CPDTs available, only the three mentioned above could be evaluated due

to time constraints. The proof of concept application designed to test the evaluation framework

could have been developed with several frameworks to compare with PhoneGap but the writer

did not have enough knowledge to develop applications for those platforms.

1.8 Methodological Approach

A quantitative research design which emanates from the positivist research paradigm was

adopted for this study. Quantitative research provides the methods and techniques that allow

information system researchers to answer questions related to the interaction of humans and

7

computers (Straub et.al, 2004). Group decision making techniques which involved six software

engineers was used to weight the criteria and the alternative tools considered in the framework.

The Six software engineers were briefed on the use of the framework and asked to make pairwise

comparison of the criteria and the tools to be compared. The Design Science research method

was adopted for this study. Microsoft Excel Software was used to facilitate the ease of

computations. A proof of concept application was developed to test the hypothesis which

emanated from the framework implementation: PhoneGap can be used to design Cross Platform

Applications comparable to native applications. Tests were run using the W3C mobile

OKchecker, Platform Emulators and live devices to prove or disprove the hypothesis.

1.9 Organization of the Study

The research work is divided into five 5 chapters. Chapter 1 covers the general introduction to

the study, and captures the background of the study, the statement of the problem, the objectives

of study, the research questions, significance of the study, the scope of study, limitations of the

study, and the organization of the study.

Chapter 2: Discusses the topic in more detail to provide necessary background information and

details on some selected CPDTs. It then discusses the limited prior work in this research area.

Chapter 3: Describes the proposed solution, a tool selection framework that can be used in

choosing a desirable CPDT for a project.

Chapter 4: Introduces an implementation of the framework in more detail and the procedures

used to test its viability.

Chapter 5: Presents the results of the implementation of various CPDTs using the evaluation

framework developed in this thesis. This chapter also describes the proof of concept application

8

designed with the CPDT that would be eventually selected. Concluding remarks and future work

which can be used to extend this framework are also discussed at this section.

9

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter focuses on providing relevant literature related to cross platform mobile application

development. It is important to understand each of the mobile platforms and development

languages before being able to understand the scope of the problem solved by CPDTs. This

chapter provides background information on the mobile landscape and an overview of various

CPDTs. This overview is necessary to understand which aspects are most important and should

be addressed in any evaluation framework. This will be followed by discussion of related work

for evaluating CPDTs.

2.2 Concept of Mobile Application Development and Relevance

Anderson and Gestwiki (2011) define mobile application development as the process by which

application software is developed for low-power device such as Personal Digital Assistant,

Enterprise Digital Assistant or Mobile Phones. Setting the distinction between mobile

applications and desktop applications, Pcgmedia (2004) argued that, mobile applications

developments are different from desktop applications development and it is worth noting what

makes mobile applications special. Pcgmedia went ahead to state that, a keen understanding of

what mobile devices actually are,32 and the variations between it and laptops as well as desktop

computers provides the pre requisites that determine the success in mobile application

development (Pcgmedia, 2004).

Other group of researchers also looked at mobile application development from the developer’s

perspective. They defined mobile application development as a process by which application is

developed, sent to the market, procured by customers and used on mobile devices (Ballon, 2009).

10

Looking at the definition above, constructs such as development, marketing, sale and usage were

incorporated into the application development process. The model in Figure 2.1 illustrates

components in the mobile development process.

 Figure 2. 1: Mobile Application Mediated Model (Ballon, 2009)

Significant attention has been devoted recently to the mobile computing by researchers and

various stakeholders including mobile application developers and consumers who benefit from

these applications. A report by the local and e-tailing group in the year 2012 made emphasis on

the fact that, 47% of consumers suggested they used their smartphones to perform several basic

operations such as locating a local sales outlet and finding relevant information on the internet.

Logically as usage of smartphones shoots up, the demand for mobile applications would

potentially also increase. Byrnes (2014) in his view points to the relevance of mobile application

development looking at the number of mobile application downloads between December 25
th

and December 31
st
 which was a holiday. The number of mobile apps downloaded within the

period was estimated to be 1.2 billion in the United States. This and many other achievements in

the industry open new opportunities for future mobile applications and development of mobile

related services. Adrian and Ondrus (2011) predicted the possibility of the mobile application

market reaching a staggering $9 million by 2011 according to compass intelligence. Another

research group Gartner Inc., agreed with Adrian and Ondrus and affirmed that, global mobile app

11

store downloads exceeded 45.6 billion in 2012, closely twice the 25 billion downloads in 2011

which by 2016 will likely reach 310 billion downloads and $74 billion in terms of revenue

(Gartner Inc., 2012). The vice president of Mobile and Wireless research at IDC Scott Ellison on

his part concentrated on developers and suggested that:

"Mobile app developers will 'appify' just about every interaction you can think of in your

physical and digital worlds. The extension of mobile apps to every aspect of our personal and

business lives will be one of the hallmarks of the new decade with enormous opportunities for

virtually every business." (IDC, 2010)

Similarly, Forrester Research in a survey conducted in the year 2010 came out with the report

that, 75% of companies attribute their increase in productivity to their workers through the usage

of mobile applications, aiding better consumer experience, quicker problem resolution and faster

decision making (Burns et.al, 2012).

This means that, mobile application development is assuming significance which was non-

existent in times past. Comparing the current trends to previous trends in terms of mobile

application development, Ballon (2009) stated that, traditionally in mobile application industry,

there were several factors providing different benefits along the entire value chain. The current

trend indicates that the structure of the mobile market and the value chain are really evolving.

According to Holzer (2011), the roles of several stakeholders had changed, exchanged or

combined. All these trends and facts lead to the conclusion that the mobile applications market is

a market of the future, and is already promising great opportunities for businesses and mobile

application developers and researchers.

12

2.3 Current State of Mobile Platform Landscape

Several mobile platforms and operating systems exist in the market but only three were

considered in this thesis. The three include: Android (by Google), iOS (by apple) and Windows

Phone (by Microsoft). Apart from these three notable platforms, other platforms on the market

that are worth mentioning include Symbian (by Nokia) and Blackberry (by RIM), as shown in

Figure 2.2. The strength of Symbian and Nokia had been dropping in terms of market share due

to strong sales and penetration for Android and iOS (Gartner, 2012).

Figure 2. 2: Global Smartphone Sales Ranking of OS, Fourth Quarter 2011 (Gartner, 2011)

Similarly, a report by Drake et al (2011), released in December 2011, indicated that the

competition in the mobile market was between five major companies rivaling each other with the

power of their mobile operating – Google, Apple, Nokia, Blackberry and Microsoft. Table 2.1

shows the share of shipment made by these companies in year 2011, as well as an estimate for

the year 2015.

13

Table 2. 1: Global shipment of smartphone by operating system, 2011 and 2015(Drake et.al

2011)

Operating System Mix 2011 Market Share 2015 Market Share

Android 49.0 46.5

Blackberry Os 11.1 10.0

iPhone Os 18.2 19.3

Symbian 16.4 0.1

Windows Phone 1.9 20.6

Others 3.3 3.5

A report by comScore on the major trends in the smartphone industry in U.S.A published in July

2014 had Google’s Android operating system securing the slot as the No. 1 smartphone platform

recording 51.5 percent platform market share. A report by the International Data Corporation

(IDC) from the year 2011 to the first quarter of 2014 also demonstrated an improvement of

Android’s dominance with a market share of 84.7% as at the second quarter of 2014. IOS,

Windows, Blackberry OS and others had 11.7%, 2.5%, 0.5% and 0.7% respectively. The data in

Figure 2.4 shows the reports by the International Data Corporation (IDC).

14

Table 2. 2: Smartphone OS Market Share (Source IDC 2014 Quarter 2)

In summary, the market of mobile operating systems globally is dominated by Google’s Android

operating system followed by Apple iOS. Windows is occupying the third slot now but is

predicted to overtake iOS by the end of 2015 as predicted by Drake et.al, (2011). However, the

other players are also doing very well and controlling a fraction of the market. Since mobile

application are designed to reach a wider audience for access and profitability, any approach that

seeks to include most of the platforms in terms of coverage will be a step in the right direction.

2.4 Comparison of Mobile Platforms

A direct comparison was made by Dhillon (2011) between Android, Apple iOS and Windows

Phone, to identify similarities and differences. By comparing the characteristics of each of these

platforms, the potential challenges in cross platform development for these platforms were

identified. The foundation of each of the three platforms was identified to be fundamentally

different. Whiles Android was based primarily on Java, Windows Phone was built with C# and

Apple iOS was developed with Objective-C (Dhillon, 2011). Both Android and Apple iOS

supports the same CPU-instruction set. They are both compactible with the ARM CPU

instructions. Windows Phone currently only supports 32bit CPU instructions but Microsoft

recently announced that Windows Phone 8 will provide support 64bit instructions as well. A

15

difference in application development on the platforms Android, Windows Phone and iPhone

includes learning curve of which the iOS platform has proved to be the most difficult to learn.

This is related to the fact that Objective-C uses a syntax that is not like any other syntax and that

one will have to implement his own memory management. The development environments of the

three compared platforms include debuggers and emulators. Development for Android is mostly

done using Eclipse, which can be used to develop Android applications using the Android

Development Tools (ADT) plugin. Developing applications for Windows Phone can be done

using Microsoft Visual Studio, which is one of the best IDEs available in industry containing an

extensive debugger and an emulator for Windows Phone applications. XCode is used to develop

iOS applications, which is bundled with an iPhone emulator and has a debugger integrated.

In terms of cross-platform development and application deployment, all of the compared

platforms can only be used to develop applications for that specific platform. Deploying

applications on the Android platform is achieved using the Android Market or distributed via

APK files. Apple iOS applications are deployed using the Apple AppStore. Windows Phone

applications can be deployed using XAP file deployment procedure, Over-The-Air deployment

technique, or the Windows Phone Market Place. Unlike Apple iOS, Windows and Android offer

the possibility to deploy applications using installation files, whereas iOS applications can only

be deployed using the AppStore. Development tools used when developing for Android are free

of charge, as Eclipse and the ADT plugin both do not attract any payment. Likewise, developing

applications for Windows Phone can be performed at no cost using the free Express edition of

Visual Studio 2010. However, more extended versions of Visual Studio are not free. XCode, the

IDE to develop iOS applications is also free of charge.

16

A comparison of the application development characteristics for the platforms Android, iOS and

Windows Phone is presented in Table 2.3. Considering the graphical interfaces among them, all

platforms support 2D and 3D graphics. When developing applications for Android or Windows

phone, the developer has full support for the device in terms of functionality. However, access

permissions have to be allowed in the application to permit the application to utilize those

functionalities (Dhillon, 2011). For Apple iOS, the functionalities they support are limited and

can only be available through APIs. The case with regards to functionality access is however

different for Android and Windows. The data access for the phone is not restricted for Android

and Windows Phone, meaning that data available on the device can be accessed

programmatically. This is different for Apple iOS, which offers limited access to the data on the

device. Bruning (2011) puts it that the runtime speed for Apple iOS can be labeled as best, as the

Objective-C code is compiled into CPU-instructions which can be executed on the CPU directly.

17

Table 2. 3: Mobile Platform Application Development comparison Table Bruning (2011)

Feature/Platform Android Windows Phone iOS

CPU instruction Set ARM X86 ARM

Foundation Java C# Objective C

Learning Curve Excellent Excellent Good

Deguggers available Good Excellent Good

Emulator Available Free Emulator Bundled with IDE Bundled with IDE

IDE Available Eclipse Visual Studio Xcode

Crossplatform Android Windows Phone Only iPhone iPod

Touchpad and iPad

Deployment Apk files or Android

Market

OTA deployment,

XAP files, market

place free

Appstore or Jailbreak

Development tool cost Free Free Free

The android platform upon its release targeted at making its architecture open to allow for

component reuse by applications. The reuse was aimed at services as well as data and UI

(Anvaari and Jansen, 2012). The Dalvik virtual machine used by Android, allows for application

to be initially interpreted into CPU-instructions before it could be executed. The runtime speed

of Android as a result is labeled as average. Windows Phone uses the Microsoft .NET Compact

Framework, in which applications are converted to an intermediate language, before it can be

executed on the underlying hardware. Therefore, the runtime speed of Windows Phone is also

labeled as average.

18

The developer community can be labeled as extensive for all of the compared platforms. The

comparison of the market penetration of the compared mobile platforms is convincing, Android

is the big market leader holding a share of almost half of the market sales (Gartner, 2012). Apple

iOS currently holds the third place in market sales with a percentage of 16.8%. Market

penetration for Windows Phone can be labeled as low with a market sales percentage of 3.6%.

Distribution and licensing for Apple iOS requires an Apple-issued certificate which costs $99 for

a Standard license and $299 for an Enterprise license. To distribute an application using the

Android Market, a fee of $25 is required. Distributing Windows Phone applications using the

Market Place is free of costs for paid applications. For non-paid applications, the first 100

submissions to the Market Place are free of costs each year.

Each of the major operating system platforms comes with its own challenges and prospects, and

the choice of which device and market to target can have significant impact for companies

wishing to deliver their content digitally.

A comparison of the breadth for the platforms Android, Apple iOS and Windows Phone is

presented in Table 2.4 as described by (Bruning, 2011)

Table 2. 4: Mobile Platform Breadth Comparison Table (Bruning, 2011)

Feature/Platform Android Windows Phone iOS

Developer Community and Support Extensive Extensive Extensive

Market Penetration Market Leader Low Average

Distribution and Licensing Unknown Unknown Apple issued

Ceriticate

19

Summary

The major platforms in the mobile application development market have been compared. Google

Android emerged as the leader in terms of market share and developer community followed by

Apples iOS. Windows has assumed the position of a third force in the market. Both Android and

iOS use the ARM architecture which is based on the RISC instruction set. Considering all the

three compared platforms, only windows is using the 32bit architecture but windows Phone 8

promises to also migrate into the ARM architecture. All the three platforms have an extensive

developer community with android emerging as the leader in terms of market penetration. iOS

applications can only be deployed using the Apple app store whereas windows and Android can

be installed by deploying the xap and apk files respectively on targeted devices. Android can as

well be deployed using the Google play store. This makes the deployment of Android Apps very

convenient as compared to the other windows and iOS.

2.5 Approaches to Mobile Application Development

Behrens (2010) defines mobile applications as an application developed to run on mobile devices

mostly a web-based application and a native. This thesis defines a mobile application as an

application developed to run on smartphones and is available via mobile stores or installed

directly on target devices.

Charland and LeRoux (2011) posited that, mobile applications can be developed using one of

the three main coding strategies. They are Native code, HTML5 code and hybrid code.

Developers who design apps for mobile phones confronted with the decision of choosing which

approach to implement in their projects. Developers may choose to go native; web or hybrid and

each of the approaches have their strengths and weaknesses.

20

2.5.1. Native Code

A native code mobile application uses the native code of the targeted mobile device operating

system platform for development. Table 2.5 shows a list of the native code languages for each

mobile operating system. Applications developed with native codes have the best look and

performance (Kim et.al ,2015). Native applications have the fastest graphics which is very

important when playing graphic intensive games. Hartman et.al, (2011) also highlighted some

benefits of developing an application with native code and posited that, native code provides a

developer with access to all the built-in features required to provide a user experience that meets

the expectation of users of that device. Additionally, native code-based mobile applications

require an IDE environment which provides the tools for debugging, managing the project etc. A

comprehensive knowledge of the native code language is very important when developing an

application. Hence, it is not uncommon for a developer to be limited to just one mobile device

platform (Korf and Oksman, 2013). An overview of the native language code fragmentation of

the various platforms is illustrated in table 2.5.

Table 2. 5: Native Code Language Fragmentation (Korf and Oksman, 2013).

Mobile OS Type Native Code Language

Apple IOS C, Objective C

Google Android Java

Rim Blackberry Java(J2ME flavoured)

Symbian C, C++, Python, HTML/CSS/JS

Windows Mobile .Net

Windows 7 Phone .Net

Hp Palm Web OS HTML/CSS/JS

Meego C,C++,HTML/CSS/JS

Samsung Bada C++

21

2.5.2. HTML5 Code Mobile Application

Korfs and Oksman (2011) define HTML5 applications as programs that use standard web

technologies- HTML, CSS and JavaScript. HTML5 uses the write-once-run-anywhere approach

to create mobile applications on multiple mobile platforms. Every web page that works on a tiny

screen is considered an HTML5 application.

The greatest advantage of an HTML5 based application is that it can easily be modified to fit

several mobile operating system platforms. Most developers are already familiar with using

JavaScript, HTML5, and CSS, thus, it is comparatively easier to use it to develop a mobile

application. The drawback of developing an application with pure HTML5 coding is that it

cannot access all the built in features that are available on a device which is one of key strength

of native applications developed with languages such as C. HTML5-coded mobile apps can be

developed on any of the cross-platform software development platform such as PhoneGap,

MoSync, Apcellerator etc.

One of the most important benefits that are derived from mobile applications having features in

common with web applications is that, the developers only need to develop one web page in

order to reach out to all of the major smartphone platforms. This is made possible because of the

platform independent nature of web pages. In the case where a company wishes to create an app

that runs on multiple platforms, creating a mobile web Application greatly helps to reduce the

time spent on the development of the app, thereby reducing the overall cost of creating the app.

Cantrell (2011) believes developing mobile applications with HTML5 helps the organizations in

getting their product ready for market in a relatively shorter time. This aspect can be very

important, if the company fancies its chances of gaining market shares in a competitive market.

22

Reducing time to market of applications helps companies to get advantage over their

competitors.

Kao et.al (2011) also analyzed the benefits of HTML5 applications by concentrating the speed of

the deployment process of mobile devices and testing on emulators. As mobile web applications

are normally not able to enter the native app stores, there exist special app stores where mobile

web applications are allowed to enter. These app stores have a fast deployment process since

there is no review and approval process whenever a new deployment needs to take place.

Compared to the “review and approval” process that Apple has on their App Store, this is a thing

to take into consideration if the app is required to be supported on Apples products. The process

on the Android Market is not as strict as the Apple App Store, but some work is still required in

order to make the app ready to enter the Android Market.

Regardless of the strengths of HTML5 applications, it has some draw backs as well compared to

native and hybrid applications. Heitkoter et.al (2012) asserts that, despite the fast deployment

that mobile web applications have when eluding the native app stores, it is still a big drawback

that they are not guaranteed to enter the native app stores, should they wish to. There are

examples of HTML5 apps being rejected from the entering the Apple App Store, but also there

are examples where they are allowed to enter. The most significant determining factor is the

individual evaluation of the app, and therefore the entrance of an app to an app store cannot be

guaranteed.

The approving policy of Apple is stricter than Google but even entrance to Goolge’s play store is

not automatic for every other application.

23

Dhillon (2011) on his part gave several reasons why developers are at a disadvantage not to enter

the official app stores. First of all, the number of users using these app stores is very high. Both

Android apps from Google Play, and apps from Apples App Store surpassed 10 billion

downloads going into 2012 (Steve, 2015). This means that developers would be missing a huge

prospect to reach customers who only uses native app stores to secure new apps.

Secondly, from a business point of view, Ross et.al (2014) made a comparison of cross platform

approaches and asserted that native stores has better business model, than the app stores for

mobile web applications. This means that, in native stores it is possible, and very normal, to

charge a fee each time a customer downloads the app. Steve (2014) also wrote that native app

stores have an advantage in that, customers consider it natural to pay for an application

downloaded from this store, where as they are much less likely to pay for a link to a mobile web

application. So in order to make profit of a mobile web application, the company who owns it,

will mostly have to rely on advertisement in the application, like the ones known from normal

websites.

Performance issues also arise when coding in HTML5. Mobile web applications as mentioned

earlier are created with the use of HTML5, CSS and JavaScript. All the logic is placed in the

JavaScript part where the background work is being processed. Therefore it is in this area, that

performance issues can arise. When a company decides to release a product that supports

different platforms, it is imperative to ensure a similar customer experience irrespective of device

choice. Ideally the performance should be uniform on all platforms. This can be difficult to

realize since different browsers are using different JavaScript engines. There exist a lot of

different JavaScript engines today. Due to differences in JavaScript engines, some browsers run

JavaScript code faster than others (Muchmore, 2013). Companies are therefore unable to provide

24

guarantees on how their programs are likely to perform on different browsers when the code is

written in HTML5.

Full accessibility of device features is another drawback of HTML5 developed applications.

Muchmore (2013) stated clearly that there are a lot of features that can only be used through

native API calls. Muchmore (2013) again posited that one of the areas where a mobile web

application meets its limits is when CPU intensive processes are needed and such areas include

hardware acceleration and multithreading. These processes do not run as good as on a native

application. Another area that HTML5 shows significant defect is the lack of native look and

feel. Users expect more from a smartphone app. Some native UI features are not accessible via

HTML5 apps. Mobile application developers are often compelled to mimic the native UI features

or totally ignore these features in their apps completely. The UI look and feel challenge has been

an issue for many users and developers of mobile web application ever since the release of

HTML5 (Charland and LeRoux 2011). New features keep getting supported by HTML5 based

apps, but naturally there will always be a certain timeframe, before brand new native features get

getting supported by HTML5 based apps. Charland and LeRoux (2011) made the conclusion that

native applications will always be one step ahead of their HTML5 competitors in terms of user

interface appeal.

2.5.3 Hybrid Code Mobile Application

A hybrid code mobile application is an application that is developed by combining native code

and HTML5 code. The purpose of integrating native codes with HTML codes is to leverage on

the best of both strategies of app development. Integrating native codes can be used to address

the limitations and defects of HTML5 applications. However, a developer would still require

native code language skills to successfully implement a hybrid code approach. Just like HTML5

25

code mobile apps, hybrid apps can be developed on any of the cross-platform SDK, such as

PhoneGap, MoSync and Apcellerator.

2.5.4 Summary

Native, HTML5 and Hybrid are approaches to Mobile Application development. Both native and

HTML5 approaches have their strength and challenges. Native code applications have access to

native API’s and provide native smartphone UI users. Likewise, HTML5 applications have their

strengths which include one codebase and fast deployment process. The Hybrid code application

combines native code and HTML5 code to leverage on both strategies of app development.

2.6 Cross Platform Development

Hietkotter et.al (2012) defined Cross-Platform Development as the process of writing

applications for multiple computing platforms. Designing applications for multiple platforms is

not a trivial task. Hietkotter et.al (2012) stated that, the earlier mobile application developers

adopted cross platform solutions, the more relevant they will be in the mobile application

spectrum. Charland and LeRoux (2011) agreed with Hietkotter et.al (2012) and also opined that

mobile developers must gravitate towards the development of applications with multi-platform

support to guarantee market reachability and organizational profitability (Charland and LeRoux,

2011). To that end it becomes necessary for any application developed for one platform to also

be made available to other existing platforms and also afford applications the options to be

ported to future platforms (Heitkotter et.al, 2012).

2.6.1 History of Cross platform Development

Java was believed to be marvelous for PC development for allowing a program to be written

once and translated into an intermediary language before being run on a Java Virtual Machine

26

(JVM) on a user’s system. This allowed a single program to be run on Windows, Mac and Linux

with no platform dependency. Java Micro Edition (Java ME) came to mobile device industry but

never went mainstream largely due to its limited capabilities, perceived performance issues, and

device fragmentation (Cornelius, 2001). Java was soon abandoned by some handset makers or

changed into customized versions with added functionality. Cross-platform tools that extended

the Java Mobile architecture had gained some ground with Bedrock, Celsius, NeoMAD and

alcheMo entering the market (Rajapakse, 2008). These tools allowed applications to run on a

significant number of devices that supported Java, but the tools were outpaced by significant

leaps in technology for native platform SDKs. These tools seemed to lose relevance with the

advent of the new era of highly versatile smartphones. Since 2011, a new set of CPDTs has been

coming to market with new features being added rapidly over time. This latest generation of

tools, will be discussed in the next section.

2.7 Cross Platform Mobile Development Tools

There are several tools for cross platform mobile application development available on the

market today with various levels of functionality and compatibility. This generation of CPDTs

allow more control, functionality and diversity than the previous generation of Java based tools

(Rajapakse, 2008). Five tools had been researched as shown in Table 2.5. These tools were

chosen based on their flexibility, feature support and popularity among developers.

27

Table 2. 6: Tools for Cross platform Application Development

CPDT Blackberry iOS Android Windows

Phone 7

Bada

Mobile Web

PhoneGap

Titanium

Adobe Air

MoSync

The CPDTs described in Table 2.6 vary greatly in capabilities, language and platform support.

The categories were based on the method used to compile and run applications built with the

tools. Some CPDTs utilize a web wrapper to aid the running of application in HTML5

compactible browser objects whereas others such as MoSync can cross compile the application

into native code. Traditional runtime and extensions such as those in Adobe Flash are

widespread on desktops and notebooks but have limited support on mobile platforms and are

becoming obsolete. The alternative is using similar approach to bridge the gap which is found in

Adobe Air (Winokur, 2011). Each of these methods have different advantage over purely web-

based applications adding possible performance, user interface and notification enhancement not

available to web developers. These added capabilities can quickly become an interesting

proposition for a developer wishing to have more fully featured applications.

NBC Universal, New York Times and eBay are already developing applications with varied

cross platform tools and the development is aimed at reaching a wider market at a relatively

reduced cost (Appcelerator Inc., 2012).

28

Table 2. 7: Features of Cross Platform Development Tools

CPDT Development

Language

Compilation

Type

Native UI

Elements

Assess to

Sensors*

App store

support

Mobile Web HTML5 + Javasript Runs in

browser

 Limited

PhoneGap HTML5+ Javascript Native

Webapp

Titanium HTML5+Javascript+

Python/Ruby/PHP

Native code

and Runtime

Adobe Air ActionScript/HTML/

Ajax/C/C++/

HTML5+Javascript

Runtime

MoSync C/C++/

HTML5+Javascript

Native Code

The tools presented in table 2.7 uses different scripting language and provide various features

that are not only compactible across all mobile platforms. Table 2.7 again shows many features

provided by each tool, including the development language of choice.

2.7.1 Mobile Web

The promise of the mobile web as a standard based architecture is that it displays applications

similarly despite being on different platforms and devices. Rich web applications are written

using HTML5 and JavaScript. These provide a high degree of functionality like in Google’s

Gmail web application. This idea is not a new approach and although it does solve many issues

29

for developers, it does add a few new concerns. Mobile web applications that run through a

phone’s browser often do not match the phones native UI which can be quite confusing.

However, these applications can leverage JavaScript and CSS (Cascading Style Sheets)

frameworks such as JQuery Mobile (jQuery Foundation, 2012), Zepto (Fuchs, 2012), and Sencha

Touch (Sencha Inc,2012) to provide much needed UI enhancement with little work on the

developer’s part. Many such frameworks exist to enhance the web development experience and

these are only three of them that have been optimized for mobile handsets.

Browser security historically has not allowed storage of local data or access to device sensors

such as an accelerometer. The Webinos framework proposed by webinos.org provides an

alternative to allow more functionality but does not have widespread adoption. Additionally, the

browsers themselves have been fragmented with different implementations of JavaScript and

rendering engines which can make functionality and interface behave inconsistently on different

devices (Baxter, 2014). The largest concern is often offline access where there cannot be any

access to the application when there is no connectivity.

Are these problems a deal breaker in using this as a development environment? The answer is

quite subjective but the downsides are growing to be less and less as the technology progresses.

HTML5 has allowed for deeper integration with the handset and with WebKit being nearly

ubiquitous across handsets, the rendering issues of the past are becoming less of a major

consideration (Charland & LeRoux, 2011). Unfortunately, living in the browser still blocks these

programs from the application markets which are useful in helping end users find the developers

work.

30

While mobile widgets add some features, it is still largely limited to the browser (Paananen,

2011). An approach taken by many CPDT developers is taking the concept and ideals of widgets

and the mobile web and enhancing it with the features that were missing. The next sections will

discuss tools that take an integrated approach to cross-platform development.

2.7.2 Adobe PhoneGap

Adobe PhoneGap could be described as an open source framework used in developing native

applications with tools such as JavaScript HTML and CSS. PhoneGap was introduced by Nitobi

Software Inc. in the year 2008, and its freely accessible under an MIT license (Allen et.al, 2010).

PhoneGap makes it possible to develop applications for several platforms including iPhone,

Android, WebOS, Symbian WRT and Blackberry (Allen et al, 2010). Support for Windows

Phone 7 is planned (Get Started, 2011). PhoneGap is at its best for transforming a mobile web

application into native application. It is an advantage to web developers since all the application

code can be HTML, CSS and JavaScript. (Allen et al, 2010).

PhoneGap operates with a principle which allows client-side JavaScript APIs to have a method

for hosting web applications. Basically a PhoneGap application is native application with a

fullscreen browser. PhoneGap cannot entirely match the capabilities of native applications in the

sense that, there are some capabilities such as geolocation, camera, accelerometer etc. which

cannot be accessed using PhoneGap’s JavaScript API.

Developing with PhoneGap starts by writing a mobile web application using HTML, CSS and

JavaScript. The content of the application does not have to be in any particular structure.

Developers have much choice how to form the mobile web application layout and structure.

PhoneGap is at its best on platforms that include the WebKit browser with the advanced

31

JavaScript and CSS of HTML5, such as iPhone and Android. PhoneGap’s goal is to use

advanced features of HTML 5 and to implement standards such as W3C Device API Group that

defines standards for JavaScript APIs for mobile phone features, such as contacts and camera.

Since the W3C Device API standards are not fully developed, PhoneGap contains APIs that

diverge from the standard in order to build real, native applications.

Like any other cross-platform frameworks that use the browser for UI, PhoneGap is not well

suited for applications that require intense math calculations, 3D animations or data-driven

applications, like most enterprise applications that must work offline and synchronize local data.

There is no support for database on PhoneGap, instead it relies on HTML5 database APIs that is

unavailable for some devices.

In Table 2.6 and Table 2.7 there were illustrations for the wide support for devices and features

with PhoneGap. Through an API, developers make use of various JavaScript function underlying

native device capabilities. Most notably missing is native UI elements; however this trade-off

was made in order for the ability of having it available on so many platforms.

Many 3rd party tools are available to be used with PhoneGap, along with the already mentioned

JavaScript libraries; the AppMobi XDK for PhoneGap (appMobi, 2012) provides an IDE and

testing environment to aid developers significantly. This comes with tools to emulate the look of

the mobile application on a variety of devices. AppMobi additionally provides an analytics

platform and its’ own build service similar to that provided by PhoneGap directly (AppMobi,

2012). This service allows compilation of applications without the need to install an SDK for

each mobile platform. With the addition of this SDK, the PhoneGap development lifecycle

begins to resemble that of native applications much more closely.

32

Another tool that enhances PhoneGap is IBM Worklight (IBM, 2012). It provides additional

APIs and server side integration frameworks for enterprise level applications. The architecture of

Worklight, shown in Figure 2.3, makes heavy use of PhoneGap to bridge the JavaScript code to

the native device. It adds the Worklight API to enhance security, add analytics and access to their

middleware, Worklight Server. This server provides the connection to the enterprise backend

systems for the mobile application (IBM, 2012).

Figure 2. 3: IBM Worklight Architecture (IBM, 2012)

Rather than using the Chrome browser frame based approach as in the appMobi XDK, Worklight

has an IDE called Worklight Studio that is based on Eclipse. Once applications are deployed, all

analytics and push notifications are handled through the Worklight console (IBM, 2012).

33

Whether using the PhoneGap directly, appMobi XDK or the suite of Worklight tools, PhoneGap

provides an incredibly flexible approach for mobile application development. For small scale

applications that need to be completed quickly to large enterprise level applications, there is a

variant of this tool suitable for many use cases.

2.7.3 Appcelerator Titanium

Appcelerator Titanium according to Appcelerator Inc, (2012) shares many traits with PhoneGap

and the mobile web. Development for all three use standard web development languages,

however Titanium differs in some important areas.

Running on an open source core, Appcelerator products allow for applications to run natively on

devices without embedding a browser object as can be seen in PhoneGap. Instead, their approach

uses a runtime object and compilation method to optimize and compile code. Options are

provided to compile and run using a runtime; build into a web application, or a hybrid

application similar to PhoneGap. The claim is that performance levels are increased to match

those of native applications when using the runtime based approach (Appcelerator Inc, 2012).

This assertion by the vendor requires independent analysis through a standard benchmarking

architecture to determine accuracy. The UI approach also differs greatly with the use of native UI

elements rather than focusing on a purely web-like interface. This is seen as a major advantage

by many people as the application will not cause confusion by having a different look and feel

than those built using native tools. Others, especially those transitioning mobile web

applications, may find this as a negative and find these as constraints to the customizability of

the interface (Appcelerator Inc, 2012).

34

Like the IBM Worklight extension to the PhoneGap core, Titanium provides a host of services

for analytics and server side hosting. Similar to Worklight, server side features such as data

storage and push notifications are available. The Appcelerator team does not provide the

application the same level of end to end security guarantees found with Worklight and is more of

a consumer, rather than enterprise focused architecture (IBM Inc, 2012). Titanium includes

Titanium Studio, an Eclipse based IDE and a set of testing tools and emulators.

Appcelerator Titanium lacks in platform support with only iOS and Android being fully

supported with BlackBerry OS support being put into beta release a year before 2010

(Appcelerator Inc, 2010). This beta was discontinued and replaced with an upcoming BlackBerry

10 OS beta. Supporting only two of the major mobile platforms provides only the minimum

required for being called cross-platform and large segments of the market are left out when

developing applications using this tool.

2.7.4 Adobe Air

Adobe Air is aimed at building rich internet applications that can be run on many platforms. It

uses Adobe Flash, Adobe Flex, HTML, ActionScript and Ajax for development scripting. Flash

skills are easily found in the industry and that is perceived as a major advantage for Adobe Air.

Existing Flash applications can often be translated to run as native applications using Air instead

of being run through a browser extension. Air applications, unlike Flash, require installation of

the runtime as well as each application. Mobile support on Android and iOS is present with an

independent runtime available on Android and necessary elements being packaged with the

application in iOS. As of version 2.6, most features are at par with the Android and iOS versions

of the platform. It is suggested that runtimes like these can be an effective way of battling the

35

cross-platform question however; there has been a mixed reception from device manufacturers

(Cantrell, 2011)

Air developer tools are some of the most robust and supported in the industry. Since the tool

stems from the popular Flash tool, the same tools used like Flash Builder and Dreamweaver can

be used for development. When combined with Adobe Flex technologies, enterprise applications

are possible with rich UI capabilities that may surpass those of other platforms. Adobe does not

provide the integrated experience and the end to end functionality, tools and services provided by

some CPDTs previously discussed.

These runtime based approaches found in Appcelerator Titanium, Rhomobile Rhodes and Adobe

Air do have significant drawbacks in some areas. The main drawback is the dependence on the

runtime environment itself. The mobile OS makers may at some point block these from their

stores and the included runtime can cause larger file size. The features may also lag behind what

is released natively as it is integrated into the runtime. As execution often uses just in time

compilation, performance may be impacted when using any of these runtimes (Macadamian,

2011).

2.7.5 MoSync

MoSync is much like Air, however, the major differentiator with MoSync to other CPDTs is that

it uses cross-compilation where the code is translated into native Objective C and Java code

depending on the platform. The C++ compiler used in MoSync outputs an intermediary language

that is then optimized and outputted as a binary for the desired platform. This is a different

approach that may lead to increased performance of applications. MoSync also offers MoSync

Wormhole a PhoneGap like CPDT that uses a browser object to display the application. C and

36

C++ code can be translated using their wormhole technology to be used in these web based

applications.

MoSync offers compatibility with OpenGL ES, which allows 3D graphics for game development

therefore unlike many other CPDTs, this is suitable for cross-platform gaming (Vision Mobile,

2012). It is additionally quite extensible allowing the addition of C and C++ libraries to your

applications. Cross-compilation can be a very useful technique allowing the ability to deal with

compiled native code in the end for increased optimization.

2.7.6 Tool Analysis and Comparison

Choosing one CPDT over another can be a daunting task. Available skills and project

requirements will often dictate which tool to use in project execution. The choices are

significantly narrowed when special features such as native UI’s and the ability for 3D graphics

are needed in a CPDT.

Dhillon (2011) came out with the following analysis. According to Dhillon (2011), the results of

the evaluation of 4 CPDTs and corresponding native tools provided an assortment of winners and

losers. Cross-platform tools performed much better in some situations in the controlled

experiments than the native. In other instances, the performance was worse compared to native.

According to Dhillon (2011), PhoneGap performed the worst on average and iOS Native was the

best on its platform.

The runtime based CPDTs, must include the runtime with the application and in many instances

create larger file sizes (Hu & Gadapa, 2005). Cross compilation may be an effective way of

completing the task; however, these approaches discussed still have limited APIs. Web based

CPDTs like Appcelerator Titanium and PhoneGap offer many features however have limited

37

platform support in some cases. The lack of native UI elements can be problematic but also

provides freedom for custom designed layouts. With all of the tools studied, compatibility to use

device functions such as the accelerometer, camera and notifications were present. These

provided a much more integrated experience as opposed to mobile web apps where there is still

little in the way of integration, particularly with notifications to users.

These CPDTs come with a variety of costs and licenses involved that are rapidly being adjusted.

Some such as PhoneGap are free and open source and others like Appcelerator have free and

paid tiers. The tiered model with support options in higher tiers is typical and also used by

PhoneGap. As the tools have evolved, so have these pricing models which are a moving target.

With each of the cross-platform methods, adequate debugging functionality and documentation

were still seen to be lacking or outdated (Paananen, 2011). Currently, many resources are

restricted to documentation provided by the tool makers themselves. As result, a full objective

comparison is difficult to establish in these early days and requires personal experience with each

CPDT.

2.8 Evaluation Criteria for Cross Platform Development Tools

Research available on the comparison of CPDTs is very scanty. Hartmann et.al (2011) and

Vision Mobile (2012) performed some comparison on the features of CPDTs. although they

lacked greater depth. A 13 item chart was used in Hartmann et.al (2011) to allow comparison of

tool features. Storage and camera access among other important features were covered in the

survey. However, neither of the reports included performance evaluation or discussion of

development practices and detailed costs.

38

Many CPDTs were discussed in Ohrt and Tarau (2012) but just partial comparison was provided.

Their work compared native and web-based user interface elements as well as the importance of

well performing applications. However, the authors stated that they were not concerned with the

internal workings of the tools and were only concerned with the approval of the application for

mobile stores. Ohrt and Tarau (2012) further discussed the lack of debugging tools in many

CPDTs in the system currently and provided an 8 point scale to compare features. The authors

developed a simple application that provides a screen with a text label and measured the start

time and the RAM usage for nine CPDTs. The results were provided as illustrated in Figure 2.4.

Figure 2. 4: Performance Characteristics of Various CPDTs (Ohrt and Tarau, 2012)

Different approaches have lately been used in the benchmarking of mobile applications.

Benchmarking has been in existence for some time now and can be applied to many forms of

39

computational tasks where the overall capability of a processor or system is calculated and

compared using complex benchmarking tools. These consist of a series of intensive tasks that

measure the completion time. Currently, the PCMark suite is the most prominent desktop PC

benchmarking software and uses several open source and commercial applications (Sibai, 2008).

Using the contained test suites allow CPU, memory, graphics and hard disk performance

analysis. There had not been any equivalent gold standard among these test suites in the mobile

community (Uti and Fox, 2010), although work is in progress on native benchmarks for different

platforms. Some currently available benchmarks are Quadrant proposed in Aurora Softworks

(2012) and (Antutu, 2012). Published work on mobile benchmarking is very limited. Performing

a simple test on Android has been the basis for some time now in terms comparing CPDTs to

native tools.

Unlike Quadrant Proposed by Softworks (2012) which works by running through pre-selected

algorithms, the TMAPP project running on a netbook based on Meebo OS used Firefox and

Open Office to run through scripts. The authors suggested that this method is superior to

preselected algorithms as these are real world used cases (Issa, 2011). However, this may be

difficult to replicate with the security models on some mobile platforms. Many benchmarks

available for PCs cannot be translated over to mobile devices due to restrictions from the

operating system, such as running a script of opening and closing multiple applications as done

in TMAPP (Issa et.al, 2011).

Bull et.al (2001) also used a benchmarking approach similar to Issa et.al (2011) to compare

algorithms written. They used various programming languages. Each language builds a

benchmark using standard algorithms that were implemented independently in each language.

The resulting tests showed language and compiler efficiencies similar to the way one seeks to

40

verify CPDT application performance. In Bull et.al (2001) the author used the Linpack

benchmark suite as a guideline for the algorithms due to their long study over decades. Various

sorting and complex scientific calculations were used in each of these papers to test each

language and provide a common line of comparison.

A positive UX is important for all applications. Creating a consistent UX when using cross-

platform development can be difficult. In Waljas and Mattila (2009), metrics for strong cross-

platform UX were discussed. The authors found that the common themes of usability,

performance, social integration and context-aware services were important for users when they

are using a similar service on both mobile and desktop terminals. A CPDT that wishes to work

across device categories should ensure they have this functionality built in.

The Swerve Studio and X-forge CPDTs were discussed in (Xin, 2009). These tools were focused

on cross-platform game development which was shown to have its own set of requirements that

differ from those discussed in previous papers.

Finally Dhillon (2011) proposed a cross platform evaluation framework which was based on

high level capabilities using criteria such as capabilities, performance and development

experience. Based on the framework proposed in Dhillon (2011), the results of the evaluation of

4 CPDTs and corresponding native tools provided winners and losers in separate categories.

What this thesis proposes which is different from that of Dhillon (2011) and other researchers is

that, mobile software developers will be able to make a situational comparison of platforms

based on requirements of specific projects.

Generally, current researches in benchmarking CPDTs have particular limitations. When

comparing CPDTs, research has narrowly focused on scales that only incorporate very few

41

features and does not provide the required scope necessary for decision making. Furthermore,

current performance benchmarks are limited to opening an application and do not provide further

processing. These evaluation benchmarks are inappropriate in arriving at conclusions on whether

there are differences in performance depending on which tool is used by mobile application

developers. A more advanced testing and benchmarking framework is necessary to answer the

greater questions of which tool could be used to achieve project specifications before the

commencement of mobile application development projects.

2.9 Summary

In this chapter many mobile platforms that currently exist in the marketplace and the limitations

and challenges over their implementation have been discussed. A new generation of CPDTs has

been outlined with some comparison provided.

Benchmarking procedures for mobile devices and applications are still in their infancy; however,

some work has been done in Issa et.al (2011) as well as some generally available applications.

Investigation of several programming languages and how to adequately compare them are found

in literature in Bull et.al (2001) and (Hoste et.al, 2006).

It can be seen from an overview of previous work in this area that only surface evaluation of

comparing CPDTs is available. As these tools are fairly new, benchmarks comparing them are

not available at this time; however, comparable benchmarking procedures used for other

purposes have similarity and can be adapted for this purpose.

In the next chapter an evaluation framework for CPDTs would be presented. The phases of

evaluation and components of the framework will be outlined at a high level.

42

CHAPTER THREE

METHODOLOGY AND FRAMEWORK DESIGN

3.1 Introduction

This chapter considers the methodology employed in this study. Strauss and Corbin (2008)

describe a research methodology as a way of studying and pondering over a social reality. It

describes the systematic way to solve the research problem (Creswell, 2009). Research

Methodology should not be mistaken for research methods since there is a striking difference.

According to Creswell (2009), research methods encompass all the techniques used by the

researcher in executing research operations including methods of data collection, statistical

techniques for analysis as well as the methods used to assess the validity of results obtained.

Quantitative and Qualitative approaches are the two main methodologies. Both approaches

should not be viewed as opposites; instead they represent different ends on a continuum

(Newman and Benz, 1998).

3.2 Research Design

This study employed the descriptive quantitative research design. Quantitative research provides

a means of explaining phenomenon by collecting numerical data that are analyzed using methods

that are mathematically based (statistics) (Aliaga and Gunderson, 2000). Research is influenced

by philosophical worldviews though these worldviews are not explicitly seen in most research

works. Underlying paradigms or philosophical assumptions of researchers are necessary and

need to be identified in any research work (Slife and Williams, 1995). The underlying

epistemology adopted in this study is the positivist pragmatic worldview. The pragmatist

approach is flexible and adopts different methods at different stages depending on the research

43

question under consideration and research objectives (Creswell, 2009). Quantitative research

provides a means of testing objective theories by examining causal relationship among variables.

These variables can be measured typically on instruments so that numbered data can be analyzed

using statistical procedures (Creswell, 2009). The quantitative research methodology was

appropriate for this study because the types of data generated from this research were

predominantly numbers emanating from experiments which were quantitative in nature.

According Sjoberg et.al, (2007) Quantitative methods encompass techniques and designs that

produce distinct values or discrete data. Methods that fall into this category include surveys,

experiments, case study, grounded theory, action research and design science. Among the

various quantitative methods, the Design Science method was adopted due to its appropriateness

for the achievement of the research objectives. The processes involved in a Design Science

research are illustrated in Figure 3.1.

Figure 3. 1: Design Science Research Process Model (Vaishnavi and Kuechler, 2004)

44

3.2.1: Rationale for Design Science Research Methodology

The original research method considered for this research was case study. However, due to the

limitations concerning the generalizations of case study research, the Design Science research

methodology which allows for communication of knowledge to both technical and non-technical

audience was adopted (Vaishnavi and Kuechler, 2004). The Design Science method fitted into

the pragmatic research epistemology adopted for this study (Henver et.al, 2004). This means that

the Design Science researcher is considered as a pragmatist. The flexibility of the design science

research method, allowing the utilization of diverse methods at certain stages of the research

process afforded the inclusion of other relevant methods as and when needed. For Example, the

experimental method was used at the evaluation stage to test the hypothesis that emanated from

the implementation of the development phase.

3.3 An evaluation Framework for CPDTs

Evaluating CPDTs must be done using a variety of methods. Since there is currently little

research available for comparing the capabilities of CPDTs to one another and against native

platforms, this framework uses standard practices adapted from other frameworks in similar

domains to solve this problem.

This framework aims to ensure a scientific basis for cross platform tool selection. The scope of

the framework does not extend to mobile applications that are graphically intensive. The

framework will therefore not be ideal for evaluating tools used for game development which

would require different evaluation methods. Gaming uses different engines and 3D graphics

where frame rates are an important factor rather than the items discussed in this framework.

Similarly, this research focuses on the smartphone but is extensible to tablets in future work.

45

Figure 3. 2: CPDT Evaluation Model

1. L. Curve = Learning Curve

2. Dev.speed = Development speed

3. Native UI = Native User Interface

4. DAccess = Device Access

Decision to select CPDT

Evaluation

Report

PhoneGap Xamarin Titanium

Capabilities Performance Dev.Speed Native UI L. Curve DAccess

46

3.4 Analysis of Framework Design

The evaluation framework consists of four phases as shown in Figure 3.1. The first phase focuses

on the problem which is the decision to choose a cross platform tool to implement in a given

project. The second phase provides a set of criteria that must be considered in selecting a

particular CPDT adapted from the selection criteria suggested by Vision Mobile (2013) in their

second quarter report. This is followed by the third phase where various CPDTs are

benchmarked in terms of how best they satisfy the criteria outlined in phase 2. In the final phase,

more subjective development experience items are discussed based on the criteria in phase 2 in

order to provide context and additional information to understand the result. Completing each of

these phases provides a firm idea of the capabilities of the studied tool and the outcome

summarized in an evaluation report. The following list provides a brief summary of processes

involved in the framework:

i. Formulate a decision hierarchy by specifying a hierarchy of interrelated decision

elements.

ii. Collect input data by performing a pairwise comparison of each decision element.

iii. Estimate the relative weight of decision elements by using the eigenvalue method.

iv. Aggregate the relative weights up the hierarchy to obtain a composite weight which

represents the decision maker's opinion of the relative importance of each decision

alternative.

3.4.1 Level 1: Decision to select CPDT

A decision is a result of a comparison of one or more alternatives with respect to one or more

criteria that is considered relevant for the decision. Among these relevant criteria, some are

considered more and some as less important, a process that involves assigning weights to the

47

criteria according to their relative importance. For the majority of our everyday decisions which

usually have an impact only on us and our immediate future, weights are assigned intuitively

based on relevant decision criteria.

Mobile application developers find it difficult reaching a larger market considering the

fragmentation of the mobile market. Cross platform development has become the way forward.

With cross platform development, there is an array of tools available at the disposal of

developers and each of these tools offers different set of functionalities. Developers are

confronted with the choice and decision of which platform serves their interest better and

satisfies the requirements of the application that they intend to develop.

3.4.2 Level 2: Selection of Criteria for Evaluation

In arriving at the criterion to be included in the framework, relevant data had to be collected from

varied sources including primary and secondary sources. The sources including documentation

from tool vendors as well as experts in the field of software development helped to gather

relevant facts to arrive at the appropriate criteria to include in the framework. Procedures

embarked upon to obtain the data are explained in the next section.

3.4.2.1 Sources of Primary Data

The main sources of primary data were eight (8) Software Engineers who were considered as

experts in the field of software development. Instruments used in the collection and validation of

primary data included focused group interviews and observation using contextual enquiry.

Preece et.al (2007) described observation as an effective technique for gathering data and

forming requirement definitions at any stage of a research or during a system development.

Although the criterion to be determined did not necessarily form requirement, they served as a

48

basis for inclusion or exclusion. Dix, et al, (1993) argued that observation, whether formal or

informal, is indispensable if a researcher is to get an understanding of the research situation.

3.4.2.2 Secondary Sources of Data

In the case of secondary data, a desk study was used to gather relevant data from both local and

foreign sources such as books, journal articles and conference papers. Also, platform

documentations from tool vendors such as PhoneGap, Appcelerator and Xamarin were also

explored.

3.4.2.3 Comparison of Criteria

The relative preferences among the various criteria are measured by comparing individual factors

against each other in a pairwise comparison matrix. Numerical values expressing a judgement of

the relative importance (or preference) of one factor against another had to be assigned to each

factor. A comparison scale suggested by Saaty and Vargas (2001) was used to make comparison

between factors (criteria). The scale for comparison consisted of values ranging from 1 to 9

which describe the intensity of importance, whereby a value of 1 expresses ‘‘equal importance’’

and a value of 9 is given to those factors having an ‘‘extreme importance’’ over another factor as

shown in table 3.1.

49

Table 3. 1: Scale for Comparison and Explanation (Saaty and Vargas, 2001)

Intensity Definition Explanation

1 Equal preferred Two elements contribute equally to the objective

2 Between Equal and Moderate

3 Moderate preferred One element is slightly more relevant than

another

4 Between moderate and Strong

5 Strong One element is strongly more relevant than

another

6 Between Strong and Very

Strong

7 Very Strong One element is very strongly more relevant than

another

8 Between Very Strong and

Extremely Strong

9 Extreme One element is extremely more relevant than

another

The scale indicated how many times an alternative is more relevant than another one, with

respect to a specific criterion. The relevance is established according to either subjective or

objective statements.

A matrix at this stage will collect the pairwise comparison of the criteria by the decision maker

as illustrated in Table 3.2.

50

Table 3. 2: Pairwise Comparison for the criteria and consistency matrix

 Capability Performance Dev.speed Native UI L.Curve DAccess

Capability

Performance

Dev.Speed

Native UI

L. Curve

DAccess

Saaty and Vargas (2001) argue that it is easier and more accurate to express one’s opinion on

only two alternatives than concurrently on all likely alternatives. It also ensures consistency and

cross checking among the pairwise comparisons. This model uses a ratio scale, which, contrary

to methods using interval scales. Shizaka & Ashraf (2009) indicated that, no units are required in

the pairwise comparison. The judgement is a quotient c / d of two quantities c and d having the

same units (grams, meters, utility, etc). A relative verbal appraisal between pairs, similar to what

happens in daily conversations is adequate on the part of decision makers during comparison.

For the benefit of this thesis, the criteria compared were CPDTs capabilities, performance,

developer experience, Native UI look and feel, learning curve and Access to native APIs.

The various criterion used in the framework which provided a basis for comparison is explained

in the next section.

51

3.4.2.3.1 CPDTs Capabilities

Capabilities of CPDT were narrowed down to the features that particular tools can support. The

evaluation required the evaluator to go through the documentation and SDK of the CPDT to

verify if the features are supported, not supported or partially supported. Within an evaluation of

capability, the features to be considered included Availability across platforms, Basic Elements,

Security, Notifications and Monetization.

3.4.2.3.1.1 Availability Across Platforms

Several CPDTs including PhoneGap, Appcelerator, Xamarin are available in the market for the

design of mobile applications. All these tools are intended at developing multi-platform apps to

neutralize the effects of mobile platform fragmentation. Availability across platform considers

the capacity of applications to run on different platforms using different operating systems. The

wide platform support of an application makes it more marketable.

3.4.2.3.1.2 Basic Elements

The utilization of major cross platform development tools brings some common basic questions

such as which mobile platforms are supported and what license the particular CPDT is under.

Issues such as initial cost of purchase and ongoing cost during development are considered. Time

span for the development processes are also considered since a delay in development affects the

time to market of an application.

3.4.2.3.1.3 Security

Security is of concern for most developers to ensure the user data is not compromised and the

application is not made available to unauthorized users. Cross Platform Development Tools must

52

posses methods to securely and safely store information and be retrieved via network

connections. Additionally; the CPDT should ensure that when deployed, users do not have the

ability to read application source code.

3.4.2.3.1.4 Notification

A notification is a message that can be displayed to the user outside the application’s normal UI.

These messages are normally sent from a device from external services in order to notify the

application or the user of some information or to perform an action. The availability of a method

to perform these actions with reliability is necessary for many applications. Platform vendors

may provide their own method of sending device notifications and integration with these or the

ability to use a 3rd party solution should be specified.

3.4.2.3.1.5 Monetization

In order to enable monetary returns from applications developed, the CPDT must support a

variety of features to give developers the flexibility to choose the pricing scheme they consider

beneficial. Many free applications may want to use an advertisement platform, as a way of

generating revenue either from platform vendors or 3
rd

 party organizations. Paid developers

might opt for an outright app purchase. Other monetization models may become common and

could be further included. The ability to get the application in users’ hands with high visibility

through various outlets such as application stores should be included in evaluating platforms on

grounds of monetization.

53

3.4.2.3.2 CPDTS Performance

In testing the ability of Cross Platform Development tools, performance metrics form a

significant part in terms of task execution. For this phase the areas that were considered included

benchmarks that were Processor Intensive, Data Driven benchmarks and Device Access

benchmarks. Pairwise Comparison was done on the alternative CPDTs at level 3 using these

benchmarks to evaluate the performance of various platforms against the others.

3.4.2.3.2.1 Processor Intensive Bench Marks

This refers to how CPDTs are able to assist in the implementation of processor intensive

applications. An example of a processor intensive application is SunSpider Javascript

Benchmark. The aim of using any of these well-studied tests is to stress test the CPU to see if

code from cross-platform tools is as efficient to produce required outcomes.

3.4.2.3.2.2 Data Driven Benchmarks

Mobile applications make use of varied data sources, and mostly combine them into reasonable

forms for users. At this stage, CPDTs were compared based on how many data sources they

supported and the kind of result they produced.

3.4.2.3.2.3 Device Access Benchmarks

Mobile applications possess the ability to capture data from different sensors and store the result.

The data can subsequently be used in the application. Comparisons had to be made on the

number of devices that the compared platforms are able to support as against the others.

54

3.4.2.3.3 Development speed

With the goal to become competitive in the market, developers are harnessing efforts to deliver

applications to customers within a shorter time. However, developers encounter tough times

when it comes to matching with the speed of their competitors predominantly native developers.

One of the major advantages CPDTs have over their native counterparts is speed of development

in relation the varied platforms they support. Development speed refers to the time taken to

complete a particular project with the use of a particular CPDT.

3.4.2.3.4 Native UI look and feel

Various Mobile operating systems such as Android, iOS and Windows come with their native

look and feel which mobile application users are already familiar and accustomed to. The

alternative platforms comprising PhoneGap, Adobe Air and Titanium are compared to evaluate

the extent at which the applications developed from them are closer to native. Features that were

compared with regards to native look and feel include UI styles, interactivity, smooth

performance and fast response time.

3.4.2.3.5 Learning Curve

Application developers often face the challenge of learning to use new tools at various stages

especially when old tools had proved not to be effective or efficient. As technology changes,

learning curve has a bigger impact. Every new combination of technology creates a new

learning curve and the same applies to CPDTs. Comparison was made on CPDTs to determine

how fast a developer can get conversant with the techniques needed develop applications for

different platforms.

55

3.4.2.3.6 Device Access

Mobile devices provide support for different sensors that can gather data to feed into applications

as input. New sensors are quickly being added which are quickly adopted by native software

development kits such as Android. However CPDTs may not have access to each of these. This

section compared what sensors are available in the CPDTs listed in level 3.

3.4.3 Level 3: Alternative CPDTs to be evaluated

In phase III, the thesis compared the CPDTs using all the criteria mentioned in level II. The

comparison was done using a criteria matrix with the rows and columns having the names of the

CPDTs to be compared. This resulted in 6 different matrices with each matrix representing

separate criteria. Table 3.1 shows an example of the matrices used at this stage using the

capability criteria.

Table 3. 3: Pairwise Comparison Matrix using the Capability Criteria

Capability PhoneGap Titanium Xamarin Priority Geometric

Mean

Lamdamax ci ri cr

PhoneGap

Titanium

Xamarin

The priority for the various criteria was calculated out of each matrix. The Geometric mean,

Lamdamax and Consistency ratio (cr) were all reckoned.

The Priority (a.k.a. normalized, principal eigenvector) column is the relative ranking of the

criteria produced by finding the quotient of each element of the matrix and sum of its column.

56

The average across the rows was also computed. The sum of priority criteria vector was found to

be 1. The largest value in the priority weight is the most desirable in terms of the criteria

selected.

The Geometric Mean is an alternative measure of the Priority and was found by taking the nth

root of the product matrix of row elements divided by the column sum of row geometric means.

The Geometric Mean agrees closely with the Priority.

Lambdamax is an eigenvalue scalar that solved the characteristic equation of the input

comparison matrix. Ideally, the Lambdamax value should equal the number of factors in the

comparison (n=6) for criteria and (n=3) for alternatives in order ensure total consistency.

The consistency index (ci) measures the degree of logical consistency among pair-wise

comparisons. The random index (ri) is the average ci value of randomly-generated comparison

matrices using Saaty’s preference scale (Table 3.1) sorted by the number of options being

considered.

Consistency ratio (cr) according to Saaty and Vargas(2001) indicates the amount of allowed

inconsistency (0.10 or 10%) . Higher numbers mean the comparisons are less consistent. Smaller

numbers mean comparisons are more consistent. Consistency ratio above 0.1 means the pair-

wise comparison should be revisited or revised.

57

3.4.4 Level 4: Evaluation Report

At level 4, the results of the individual matrices were interpreted and rankings of the compared

platforms made based on the criteria selected. The platform with the highest standardized weight

was chosen as the ideal platform for cross platform development.

3.5 Summary

This chapter clearly outlined the methodology and data collection methods adopted for this

study. The various stages and levels involved in the development of the proposed framework

were clearly spelt out in detail. This included the six (6) criteria considered as basis for the

evaluation of the compared tools.

In the next chapter, the framework was implemented to create specific tests that were relevant to

three CPDTs on the market today. The experiments that were conducted were outlined and

discussed.

58

CHAPTER FOUR

IMPLEMENTATION OF THE FRAMEWORK

4.1 Introduction

This chapter goes through the detailed explanation and description of how the framework

proposed in chapter 3 was implemented in selecting one CPDT among three alternatives namely;

PhoneGap, Appcelerator Titanium and Xamarin. The criteria used in the selection included

capabilities, performance, Development speed, Native UI look and feel, Learning Curve and

Device Access to native APIs such as sensors and cameras.

4.2 Managing Stakeholders

Deciding on how to weight the criteria was important. Many stakeholders involved at various

stages in a project cycle might have very different opinions about the importance of a particular

criterion. A range of people involved in the project represented such stakeholders; they were

mainly Software Engineers. Eight (8) senior developers played the role of stakeholders for the

study. The personal experience of the author of this thesis was additionally used to assign

weights that were acceptable to all parties. The various stages involved in the implementation of

the Framework is illustrated in table 4.1.

59

Table 4. 1: Summary of the steps involved in the implementation of the framework.

PROBLEM (Level 1)

To find the most optimal alternative in the development of cross platform mobile applications

CRITERIA (Level 2)

Capabilities Performance

Native UI look and Feel Learning curve

Device Access Development Speed

ALTERNATIVES(Level 3)

PhoneGap Titanium Xamarin

PROOF OF CONCEPT

EVALUATION REPORT (Level 4)

4.3 Level 1: Decision of select CPDTs

The main aim of the thesis was to provide a framework to assist mobile application developers in

selecting a suitable CPDT for their projects. The first stage of the model stems from the main

objective of the study which is the decision to make a selection among different tools in cross

platform development. One CPDT needed to be selected among PhoneGap, Appcelerator

Titanium and Xamarin.

4.4 Level 2: Selection and Evaluation Criteria

The selection of a suitable CPDT was based on a set of criteria. The set of criteria used at this

stage included Capabilities, performance, development speed, Native UI look and feel, Learning

Curve and Device Access to native APIs.

60

After the problem was set up, the relative weight of each of the attributes were determined in

order to make a ranking of the criterion in terms of priority.

4.4.1 Weighting the Evaluation Criteria

Table 4.2 shows the relative comparison of the criteria. The relative importance of the elements

with respect to project goals was evaluated. The aim was to find the optimal alternative approach

for the development of cross-platform mobile applications. The weighing was done using the

scale in Table 4.2.

Table 4. 2: Scale for Comparison (Saaty and Vargas, 2001)

Intensity Definition

1 Equal preferred

2 Between Equal and Moderate

3 Moderately preferred

4 Between moderate and Strong

5 Strong

6 Between Strong and Very Strong

7 Very Strong

8 Between Very Strong and Extremely Strong

9 Extremely preferred

61

Table 4. 3: Weight of Pair-Wise Comparison of Evaluation Criteria

As shown in Table 4.3, all elements that formed part of the main diagonal (from the upper-left

cell to finishing at the lower right cell) were assigned the value 1 since each attribute was

relatively compared to itself. By definition, the values of cells above the main diagonal in the

table were mathematical inverses of cells that lied below the main diagonal. As an example,

because capability was strongly more important than learning curve, the value of 5 was assigned.

The relative importance of learning curve got 1/5 which is the mathematical inverse of 5.

4.4.2 Calculating the Priority Vector of the Criteria

The next step was to calculate the priority vector by summing each column and then dividing the

relative importance value by the sum of the column. The relative importance value was obtained

by computing the nth root of the product of all numbers in a given row. In the last step the

average for each row was calculated. Table 4.4 shows the first step of calculating the priority

vector. Table 4.5 displays the results after the second step where each entry of the table had been

divided by its column sum. This generated the priority vector that was summed up for each top-

level attribute also shown in Table 4.5. In relation to the calculation, each value of the priority

vector generated results between 0 and 1. Likewise, the sum of all values in any priority vector

was equals to 1.

62

Table 4. 4: Pairwise comparison matrix for set criteria

4.4.3 Calculating the Lamdamax

The next stage was to calculate the lamdamax. This was computed by summing all the figures in

the columns and multiplying the sum by the priority for each criterion. Example, the sum of all

the figures in the capability column was 2.08. The priority vector for the capability row was

0.457376. The product of the two figures gave the lamda values for that criterion. A summation

of all the lamda figures gave the lamdamax. Figure 4.4 shows a table illustrating the computation

of lamdamax.

Table 4. 5: Computing of Lamdamax.

4.4.4 Calculating the Consistency Index for the Criterion

The consistency index (ci) was computed using the formula 𝑐𝑖 =
𝑙𝑎𝑚𝑑𝑎𝑚𝑎𝑥−𝑛

𝑛−1
 where n = number

of criteria to be compared. With respect to this problem, the number of criterion is equal to 6,

therefore n is equal to 6. 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥 = 6.325962 − 6
5⁄ = 0.0651924 .

63

4.4.5 Calculation of Consistency Ratio for the criterion

The consistency ratio was also arrived at using the formula 𝑐𝑟 =
𝑐𝑖

𝑟𝑖
 where cr = consistency ratio,

ci = consistency index and ri = random index. The rational index is obtained using the rational

index table as illustrated in Table 4.6.

Table 4. 6: Table of Random Index (ri) (Saaty and Vargas,2001)

n Random Index(ri)

1 0.00

2 0.00

3 0.58

4 0.90

5 0.12

6 1.24

7 1.32

8 1.41

9 1.45

Looking at table 4.6, the corresponding value for the random index was 1.24 considering the

number of criteria compared which was equal to 6.Therefore, consistency ratio was computed as

𝑐𝑟 =
0.0651924

1.24
= 0.052575

4.5 Level 3: Developing Ratings of each decision alternative

At this stage, the individual criteria were used to develop matrix to determine the ranking of the

three alternatives namely; PhoneGap, Titanum and Xamarin. With this, 6 different 3×3 matrix

were developed which are illustrated in the Tables 4.7 to 4.12.

64

Table 4. 7: Comparison Matrix of CPDT within the capability criteria

Table 4. 8: Comparison Matrix of CPDT within the performance criteria

Table 4. 9: Comparison Matricx of CPDT within the development speed criteria

Table 4. 10: Comparison Matrix of CPDT within the Native UI look and feel criteria

Table 4. 11: Comparison Matrix of CPDT within the Device Access Criteria

65

Table 4. 12: Comparison Matrix of CPDT within the learning curve criteria

4.5.1 Weighted average rating of each decision alternative

The weighted average rating of each decision alternative was achieved by first multiplying the

criteria weights from level 2 by the rating of the decision alternatives of each criteria and finally

summing up the respective products as shown in Table 4.13

Table 4. 13: Weighted Average rating of each alternative.

4.6 Proof of Concept Application Development

4.6.1 Introduction

Based on the outcome of the evaluation which had PhoneGap emerging as the overall winner

among the CPDTs compared, the researcher decided to develop an application using PhoneGap

to verify whether it provides the features as described in chapter 4 and 5. The application which

is a multiple choice application deployed on mobile platforms was named “EDU GLOBAL

QUIZ”.

66

4.6.2 Features and Functionality of the Mobile Web Application

The application designed as a proof of concept app was a multiple choice quiz application which

allowed users to select answers from a list of options. The app provides scores to users after

completing all questions. The features that were implemented included the following:

1. Starting the application

2. Reading instructions for the quiz

3. Selecting answers from a list of options

4. Navigating to the next question using buttons

5. Viewing scores after completing the quiz

Functionality was kept as easy as possible, since the application was also targeted for

smartphones that did not have a large screen space. Only one button was implemented to allow

users navigate from one question to the other.

4.6.3 Structure of the Application

The structure of the application focused on the implementation requirements that were required

by the PhoneGap framework that was used to develop the application. The framework consisted

of the following file structures which was customized in order to cater for the Mobile Quiz app:

 CSS – a folder used to store the framework for CSS and images

 JS - a folder used to store javascript files including jQuery libraries.

 index.Html – an index page which loads when the application runs

 logo.gif - an application logo displayed at the top of the page when the application loads

67

4.6.4 Technical Environment

The application developed will be deployed on Android and Windows platforms. These two

platforms were chosen because of its popularity and availability. The cost of deploying to app

stores for these two platforms was also free.

4.6.5 Development Tools

No special tools were needed to develop the multi-platform mobile application. In fact the only

tools that were used to develop the application were a webkit browser name Chrome and a text

editor called Notepad++. The benefits of using the Chrome browser were that its default

debugging tools were enough to test and analyze the application code. Also, the Chrome browser

supported WebSQL that was used as a persistent storage for the mobile web application created.

The notepad++ tool due to its syntax highlighting feature helped to highlight various codes such

as HTML, JavaScript or CSS which facilitated the development of the Mobile Web Application.

4.6.6 Application Design

PhoneGap was used to make the transition from the native mobile languages to web-based

programming languages in both Operating Systems. The backend code of every platform was

written in native language. As seen in figure 2.3, the PhoneGap framework bridges the gap

between the native language and HTML by working as a wrapper for the app and generating

Javascripts used in the app for accessing the native API. Due to jQuery and jQuery Mobile the

application is written in one HTML file thus allowing every page to be within a div tag and

identifying them with different ID’s when used to navigate through the app.

68

4.6.7 Testing the Application

During the process of developing the application, the functionality and operation of the app was

tested in two ways. One way was to use simulators integrated into the IDEs of native platforms.

Another way was to use real mobile devices. However both methods were usually combined at

various stages of the development. The reason for using the simulators were because of the issue

of cost (in most cases completely free) and they could sometimes be used to test when devices

are not available. Another benefit of simulators was that it was easy to get started with the testing

process, by just downloading the simulator. The main drawback of simulators was the fact that

the testing was not performed on the real platform, and it did not provide a guarantee that the app

would actually work on the target devices. There were also some performance differences

between the simulators (considering the hardware of the computer) and the physical mobile

devices. The app most likely performs differently in a simulator, on a computer with more CPU

power and more memory, than on a smartphone. The advantage of testing on real mobile devices

is of course that the testing is done on the devices the app is supposed to run on.

4.6.8 Test Results

The test results showed that the current state of PhoneGap compiled applications developed with

HTML5, CSS3 and JavaScript on mobile devices is getting better and better. From the Checklists

designed for each device that was tested, it was evident that majority of the tests were passed.

For the Lenovo Phone running the android operating system, the application passed 9 out of the

10 tests representing 90% whereas the Nokia Lumia 520 phone running the windows 8 operating

system also passed 8 out of the 10 tests representing 80%. The mobile OK Checker also recorded

87% which equally gave ample evidence to the seeming readiness of PhoneGap aided by

69

HTML5, CSS3 and JavaScript in cross platform development. The results of the various tests

that were conducted and UI on the various platforms can be found in the Appendix.

4.7 Summary

This chapter described in detail the processes that were followed to implement the framework

proposed in chapter 3. It outlined the ranking of the criterion used in evaluating CPDTs and also

provided figures to support the ranking of the three CPDTs compared in this thesis.

While the framework allows the criterion to change over time according to requirements of

specific mobile application development projects, the selected parameters in this chapter were

used to conduct the testing of the outlined tools, of which the results were found in this following

chapter.

70

CHAPTER FIVE

RESULT, DICUSSSION AND CONCLUSION

5.1 Introduction

By implementing the individual stages in the CPDT evaluation framework, each phase of

evaluation provides significant information regarding the tools strengths and weaknesses. These

results are presented in this chapter. The results show the relative importance of each of the

criterion and their subsequent ranking derived using the framework.

The alternative tools compared; namely PhoneGap, Titanium and Xamarin had to be ranked

based on the results derived from chapter 4 during the implementation of the evaluation

framework.

5.2 Ranking of CPDT Evaluation Criteria

The result for the ranking of criteria used in the study was given as illustrated in Table 4.5. In the

table, it is evident that, the capability criteria received the priority vector of 0.457376 which

meant that, capability is the best ranked criteria with respect to the choice of CPDT. In terms of

percentage, the capability criteria recorded 46% which meant it was just 4% shy of getting a 50%

mark. Development speed was the next criterion in terms of ranking based on priority figures. It

recorded 0.195449 with a percentage of 20%. Performance, Learning curve and Device access

also recorded 0.126945, 0.098781 and 0.074745 respectively. The least recorded criteria in terms

of ranking was Native UI which had a figure of 0.046705 representing 5%. The significance of

this ranking is that, mobile applications developers should consider the capabilities of the

application and make it a priority during development before any other consideration. If there

should be some tradeoffs, the criteria to be sacrificed should be the least in the ranking which in

71

this case should be native UI look and feel. Figure 5.1 illustrates the priority and percentages of

the various criterion extracted from Fig 4.3.

Figure 5. 1: Ranking of CPDT Evaluation Criteria

5.3 Ranking of CPDTS based on Capability

The result from the ranking based on capabilities was listed in Table 4.7. It was evident that

PhoneGap received the best result with a ranking vector of 0.581554 representing fifty eight

percent whiles Xamarin came second in terms of the capability criteria with a ranking vector of

0.308997 representing thirty one percent. The last CPDT in terms of capabilities was Titanium

with a ranking vector of 0.109449 representing the least percentage of eleven percent. Figure 5.2

shows the ranking of the three (3) tools compare based on capability.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50% Ranking of Criterion

72

Figure 5. 2: Chart Showing Rankings of CPDT Based on Capability

5.4 Rankings of CPDT based on Development Speed

The result from the ranking based on development speed was listed in Figure 5.3. Once again,

PhoneGap received the best result with a ranking vector of 0.648329 representing sixty five

percent whiles Titanium came second in terms of the development speed criteria with a ranking

vector of 0.22965 representing twenty three percent. The last CPDT in terms of development

speed was Xamarin with a ranking vector of 0.122020 with the least percentage of twelve

percent.

0%

10%

20%

30%

40%

50%

60%

PhoneGap Titanium Xamarin

Ranking based on Capabilities

73

Figure 5. 3: Chart Showing Ranking of CPDTs based on Development Speed

5.5 Ranking of CPDTS based on Performance

The result from the ranking based on performance was illustrated in Figure 5.4. Titanium this

time around gained a highest priority vector of 0.58177 representing fifty eight percent. Xamarin

came second in terms of the performance criteria with a ranking vector of 0.309109 representing

thirty one percent. The last CPDT in terms of performance was PhoneGap which ironically

attracted the highest priority vector in terms of capability and development speed. PhoneGap

gained the least priority vector of 0.109126 representing eleven percent. The lower priority of

PhoneGap in relation to performance might be attributed to the lack of native capabilities such as

UI elements as suggested by (Dhillon, 2011).

0%

20%

40%

60%

80%

PhoneGap Titanium Xamarin

Ranking based on Development
Speed

74

 Figure 5. 4: Chart showing ranking of CPDTs Based on Performance

5.6 Ranking of CPDTS based on Learning Curve

The result from the ranking based on learning curve was illustrated in Figure 5.5. PhoneGap for

the third time out of four criterions presented so far gained a highest priority vector of 0.739594

representing Seventy four percent. Titanium came second in terms of the learning curve criteria

with a ranking vector of 0.16659 representing seventeen percent. The last CPDT in terms of

learning curve was Xamarin which gained the least priority vector of 0.093813 representing nine

percent. This results further confirm the ease of use of Javascript and HTML in development; the

development platform for PhoneGap which most developers are already familiar with. This

result agrees with the results of (Paananen, 2011).

0%

10%

20%

30%

40%

50%

60%

PhoneGap Titanium Xamarin

Ranking based on performance

Percentage

75

Figure 5. 5: Chart Showing Ranking of CPDTs Based on Learning Curve

5.7 Ranking of CPDTS based on Device Access

The result from the ranking based on device access was illustrated in Figure 5.6. Titanium gained

a highest priority vector of 0.65481 representing Sixty five percent. Xamarin came second in

terms of the learning curve criteria with a ranking vector of 0.249856 representing twenty five

percent. The last CPDT in terms of device access was PhoneGap which gained the least priority

vector of 0.095338 representing ten percent.

0%

10%

20%

30%

40%

50%

60%

70%

80%

PhoneGap Titanium Xamarin

Ranking based on Learning Curve

76

Figure 5. 6: Chart Showing Ranking of CPDTs based on Device Access

5.8 Ranking of CPDTS based on Native UI Look and Feel

The results from the ranking based on Native UI look and feel were listed in Figure 5.7. It was

evident that Titanium received the best result with a ranking vector of 0.58763 representing fifty

nine percent whiles Xamarin came second in terms of the native look and feel criteria with a

ranking vector of 0.323386 representing thirty two percent. The last CPDT in terms of

capabilities was PhoneGaP with a ranking vector of 0.088983 and the least percentage of nine

percent. This means that, if look and feel is the mean reason for developing an app, then

PhoneGap will not be the platform of choice but Titanium should be the most preferred among

the three compared platforms.

0%

10%

20%

30%

40%

50%

60%

70%

PhoneGap Titanium Xamarin

Ranking based on Device Access

77

Figure 5. 7: Chart showing ranking of CPDTs based on Native UI

5.9 Ranking of CPDTs based on all criteria evaluated

Considering the entire six selected criteria for the three platforms compared, PhoneGap emerged

as the overall winner with the highest weighted average rating of 0.629798 representing Sixty

three percent (63%) whereas Titanium placed second with a weighted average rating of 0.213457

representing twenty one percent(21%). Xamarin recorded the least weighted average rating of

0.156746 representing sixteen percent (16%). Unlike Dhillon (2011) which could not pronounce

a clear winner after the evaluation, this thesis uses the weighted average ratings of each CPDT to

declare PhoneGap as the winner among the three compared platforms. This is illustrated in

Figure 5.8.

0%

10%

20%

30%

40%

50%

60%

PhoneGap Titanium Xamarin

Ranking based on Native UI

Percentage

78

Figure 5. 8: Chart showing ranking of CPDTs based on entire evaluation criteria

5.9 Analysis of results

The results of evaluation of CPDTs provided winners and losers based on different evaluation

criterion. In some instances, some CPDT performed much better relative to specific criteria than

others. PhoneGap for instance recorded highest ranking vector in terms of capability, learning

curve and development speed. However, it recorded the least ranking in terms of performance,

device access and native UI look and feel. The high scores might be attributed to the fact that,

PhoneGap uses purely HTML and Javascript code in its implementation which gives it enormous

advantage over others in areas such as number of platforms it is available to, familiarity of most

developers with HTML/Javascript and most browsers recognizing the HTML format. The low

mark of PhoneGap in device access, performance and native UI was also due the closeness of the

two other platforms namely Titanium and Xamarin to native SDKs.

The most important criterion was shown to be capability followed by development speed.

Learning curve, Performance, Device Access and Native UI look and feel also followed

0%

10%

20%

30%

40%

50%

60%

70%

PhoneGap Titanium Xamarin

Final Ratings of CPDTs

79

respectively. This means that, the most important factor to consider in selecting a CPDT for a

project is capability which has many important elements such as availability across platforms

which is the essence of cross platform application development. Native UI look and feel is least

considered since it has no effect on portability.

PhoneGap was shown to be the most capable cross platform development tool. It was also the

easiest to learn and the fastest platform that can shorten the time to market of applications.

However, it has some downsides in terms of performance, device access and Native UI look and

feel as discussed earlier. Titanium also required modification as the UI must be independently

developed for both Android and iOS. This however, was seen to provide better performance in

comparison to PhoneGap which provided the most portable code.

UI intensive tasked favours Titanium since it provided the best native look and feel. It is also

good for applications with complex computation and calculation since it provided the best

performance. However, the downside of Titanium is its inability to reach a wider audience as

compared to PhoneGap.

Xamarin fell short in terms of most the criterion evaluated. Xamarin therefore might not be the

preferred tool for developing applications to target many audience since PhoneGap does that

well. It also does not match up with the robustness of Titanium in developing complex, high

performing application for smaller audience although this may change as the tool matures.

Finally, the results of this evaluation have shown that, the preferred CPDT for mobile application

development is PhoneGap considering the criterion indicated in this thesis.

80

5.11 Conclusion

Mobile application development is recently considered as fast growing field due to the

pervasiveness and ubiquitous nature of mobile devices. Developers in this area are however

confronted with the challenge of operating system fragmentation. A life line seems to have

emerged with fingers pointing to the direction of cross platform development. Cross platform

mobile application development looks promising with several prospects including the ability to

write once and run anywhere, reduction in learning curve and reduction in development cost

among others.

Despite the prospects of cross platform development, developers are confronted daily with the

decision of which cross platform tool to choose in the implementation of their projects while

keeping a certain level of performance and functionality. Through development of a framework

to facilitate the selection CPDTs in this thesis, a solution to this pertinent tool selection dilemma

is not farfetched. The framework was subsequently implemented on three (3) different tools. The

result had shown that the framework provides the details needed to answer this question through

its benchmarking and evaluation processes.

The result of the thesis has shown that tool selection can have a causal effect on development of

a mobile application. Some CPDTs were shown to have performance issues while others

provided too little capability. The most attractive part of this framework is its ability and

flexibility to extend to include new criterion brought by future releases of CPDTs with the core

concepts remaining. It has become evident that it is important for developers to choose the right

tool for application development and this framework provides enough detail on the CPDTs

tested. This affords developers ample resource to choose which tool best fits the purpose they

intend to achieve and which criteria to use in evaluation these tools.

81

The contributions of the thesis are:

i. A high level extensible framework for evaluating CPDTs

ii. An implementation guideline of the framework with specific criterion that can be used

for various CPDTs.

iii. A ranking of various criteria for evaluating CPDTs

iv. A ranking of CPDTs based on six major criteria

v. Provision of an independent evaluation of CPDTs with emphasis on their strengths and

weaknesses

Through the implementation of the cross platform evaluation framework developed in this thesis,

it was evident that some features provided by CPDTs are more significant than others. And they

are the most likely to appear in requirement definitions of mobile application development

projects. Among the features evaluated which were presented in this thesis as criteria, the most

significant was the capability of the tool. Also it became evident that various CPDTs have their

strengths and weaknesses. For example, PhoneGap is strong in terms of capability, learning

curve and development speed whereas Titanium and to some extent Xamarin provides better

performance, device access and native UI look and feel. Putting all the criteria together, the

platform of choice with respect to the three compared alternatives was PhoneGap. The

development process was considered to be very fluid for mobile application development and it

seems that will continue to be true over the next few years.

Using this framework and consistently updating criteria in accordance with current trends and

market demands will help developers overcome the decision problem of choosing a CPDT. With

the number of platforms available, developers must be very versatile and businesses need to

82

commit significant resources to have their applications and make them available on more than

one device. Interest in the usage of cross platform tools is only set to grow making this

framework necessary and timely.

5.12 Future Work

This thesis has been successful in providing a pragmatic selection framework to evaluate cross-

platform tools from many angles, but there is room for evolution. The number of criteria used in

the evaluation can be broadened to involve several aspects of a CPDT such as user experience,

and extent of platform documentation which in this thesis to some extent was captured under

capability. The alternatives can be extended to include more than three CPDTs. Sub criteria

under the main criteria can also be considered and treated as a different level. The framework

can be revised to test other uses such as game development which was out of scope of thesis.

83

REFERENCES

Adrian, H. and Ondrus, J. (2011) “Mobile application market: A mobile network operator’s

perspective”.

Agarwal, V., Goyal, S., mital, S. and Nukherjea, S. (2009) “A Middleware Layer to Gandle

Fragmentation of Platform Interfaces for Mobile Applications," in Middleware '09: Proceedings

of the 10th ACM/IFIP/USENIX International Conference on Middleware.

Allen, S., Vidal, G., Lee, L. (2010) “Phonegap. Pro Smartphone Cross-Platform Development:

iPhone, Blackberry, Windows Mobile and Android Development and Distribution” (1:Ed)

Berkely, CA, USA: .(pp21-36) Apress.

Anderson, R. and Gestwicki, P. (2011) “Hello, worlds: an introduction to mobile application

development for IOS and Android” Journal of Computer Science.

Aliaga, M. and Gunderson, B. (2000). “Interactive Statistics” Saddle River, p3-15

Antutu Hong Kong (2012): Antutu Benchmark: “ know your Android better” [Online].Available from:

http://www.antutu.com. [Acessed: 27
th

 November 2014].

Anvaari, M. And Jansen, S. (2010) “Evaluating architectural openness in mobile software

platforms”. In Proc. ECSA, 10 (pp. 85-92). ACM.

Appcelerator Inc. (2012) Appcelerator research [Online] Available from

http://www.appcelerator.com. [Accessed: 29
th

 June 2014]

http://www.antutu.com/
http://www.appcelerator.com/

84

Aurora Softworks. (2012): “Aurora Softworks Home: [Online] Available from

http://www.aurorasoftworks.com [Accessed 29
th

 July 2014]

Appmobi. (2012). HTML5 App school Webinar: Track your app’s usage using appMobi’s stat

Mobi analytics [Online] Webinar Available from http:// www.youtube

.com/watch?v=IU&NJY^RYQE.[Accessed: 16
th

 September 2014]

Ballon, P (2009) “Mobile application development: a developer’s perspective” [online] available

from http://www.janondrus.com/wp-content/uploads/2008/05/telematics2011.pdf.[Accessed:

29
th

June 2014].

Baxter, R (2014) “The Basics of Javascript Framework SEO in Angular JS” [Online] Available

from http:// www.builtvisible.com [Accessed 10
th

 March 2014]

Behrens, H (2010) “Crossplatform App Development for iPhone, Android and Co: A comparison

in MobileTechCo”, Mainz.

Bryman, A. and Bell, E. (2007) “Business Research Methods” (2nd ed), Oxford University

PressInc., New York

Brunning, M (2011) “ Native Cross platform Mobile Application Development using Voind”. pp

15-25

Brynes, S (2011). 1.2 billion Mobile apps were downloaded over the holidays. [Online]

Available from: http://techcrunch.com/2012/01/02/1-2-billion-apps-holidays/ [Accessed: 19
th

May 2014]

http://www.aurorasoftworks.com/
http://www.youtube/
http://www.janondrus.com/wp-content/uploads/2008/05/telematics2011.pdf.%5bAccessed
http://www.builtvisible.com/
http://techcrunch.com/2012/01/02/1-2-billion-apps-holidays/

85

Bull, J, M, Smith L, A. Pottage, L. and Freeman, R. (2001): "Benchmarking Java against C and

Fortran for scientific applications," in Proceedings of the 2001 joint ACM-ISCOPE conference

on Java Grande, 2001, pp. 97-105.

 Burnette, E. (2009) “Hello, Android: Introducing Google's Mobile Development Plat- form”

(2nd ed) Pragmatic Bookshelf (pp 19-27)

Burns, M., Boelin, E. and Peterson, J (2012) “Customer Experience Index” [Online] Available

from http:// http://www.forrester.com [Accessed 12
th

 June 2014]

Byrnes, S (2014) “Mobile Metrics, like the web but a lot harder: Challenges of Mobile

analytics” [online] Available from radar.Oreilly.com [Accessed: 10
th

 March 2014]

Cantrell, C. (2011): “iOS features in Adobe Air” [online] Available from

http://www.adobe.com/devnet/air/articles/ios_features_in_air26.html.[Accessed: 5
th

 March 2015]

Charland, A. and LeRoux, B. (2011): “Mobile application development: Web vs Native” Queue

vol 9. Pp 21-30

Chudnov, D. (2010): ”A mobile strategy web developers will love. Computers in Libraries”,

30(4):24–26.

Cornelius, B. (2001) “Understanding Java”. Harlow, England: Addison-Wesley

Creswel, J.W.(2009). Research Design: Qualitative, quantitative and mixed method approaches.

Sage publications (3
rd

 Ed) pp 3-44

http://www.forrester.com/
http://www.adobe.com/devnet/air/articles/ios_features_in_air26.html.%5bAccessed

86

Devitt, S., Meeker, M. and Wu, L. (2010) “Internet Trends”. Morgan Stanley Research. [Online]

available from: http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_0

41210.pdf. [Accessed: 18th June 2014].

Dhillon, S. (2012) “An Evaluation Framework for cross platform Development”. University of

Guelph, Ontario Canada.

Dix, A., Finley, G. And Beale R(1993) “Human Computer interaction” 2
nd

 Edtion: Prentice Hall

Drake, S., Stofega, W., Llamas, R. T. and Crook, S. K., (2011). Worldwide Smartphone Mobile

OS 2011-2015 Forecast and Analysis,: IDC.

E-Tailing Group (2012): e-tailing group proprietary research findings [Online] Available from:

http://e-tailing.com/technologymarketing/index.html [Accessed: 3
rd

 January 2014]

Fuchs, T (2014) “Zepto.JS: the aerogel-weight jQuery-compactible javascript library”[online]

Available from http://Zeptojs.com [Accessed: 4
th

 June 2014]

Gartner INC. (2012) “Information Technology predictions and trends” [Online] Available from:

http://horizonwatching.typepad.com/horizonwatching/2011/12/gartner-2012-information-

technology-predictions-and-trends.html [Accessed: 19
th

 May 2014]

G. Hartmann, G. Stead, and A. DeGani (2011): "Cross-platform mobile development," Tribal,

Lincoln House, The Paddocks, Tech. Rep. March 2011.[Online].http://www.mole-

project.net/images/documents/deliverables/WP4_crossplatform_mobile_development_March201

1.pdf. [Accessed 19
th

 May, 2014]

Heitkotter, H., Hanschke, S. and Majchrzak, T. A (2012) “Comparing Cross Platform

Development approaches for mobile applications” in WEBIST, SciTepress pp 299-311

http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_0%2041210.pdf
http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_0%2041210.pdf
http://e-tailing.com/technologymarketing/index.html
http://zeptojs.com/
http://horizonwatching.typepad.com/horizonwatching/2011/12/gartner-2012-information-technology-predictions-and-trends.html
http://horizonwatching.typepad.com/horizonwatching/2011/12/gartner-2012-information-technology-predictions-and-trends.html
http://www.mole-/

87

Henver, A.R., Salvatore, T.M, Park, J. and Sudha, R(2004). Design Science in Information

System research. MIS Quarterly vol 28 No 1 pp 75-105.

Holzer, A. (2011) “Trends in Mobile Application Development”. Springer Berlin Heidelberg.

Hu, G. and Gadap, A (2005) “Compiling C++ programs to java bytecode” in SNPD-SAWN iOS:

proceedings of the sixth international conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing and first ACIS international

workshop on Self-Assembling Wireless Networks pp 56-61.

International Data Corporation: (2014), smartphone market share Q4 [online] available from:

http://www.idc.com/prodserv/smartphone-os-market-share.jsp. [Accessed: 20th June 2014]

Ishizaka A. and Labib, A. (2009) “Analytic Hierarchy Process and Expert Choice: Benefits and

Limitations” ORInsight.

Issa, J (2011) "TMAPP – Typical Mobile Applications Benchmark," in MoBS7 '11: Seventh

Annual Workshop on Modeling, Benchmarking and Simulation.

International Busines Machines (2012) “IBM Worklight Station” [online] Available from http://

www.worklight.com [Accessed: 10
th

 November 2014].

Kim, H, J., Sudara, K., Holger, R. and Warren, I (2015) “Evaluation of Cross platform Toolsfor

Patient Self-Reporting on Mobile Devices” pp 55-60.

Kaltofen, S,. Milrad, M,. and Kurti, A. (2010) “A Cross Platform Software System to Create and

Deploy mobile mashups” in ICWE’10: Proceedings of the 10
th

 international conference on Web

Engineering Berlin, Heidelberg p. 518-521.

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.worklight.com/

88

Kao, Y., Lin, C,. Yang, K. and S. Yuan. (2011) "A Cross-Platform Runtime Environment for

Mobile Widget-Based Application," in CYBERC '11: Proceedings of the 2011 International

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,

Korf, M. and Oksman, E. (2011) “Understanding your mobile application development

options”[online] [Availabefrom:https://developer.salesforce.com/page/Native,_HTML5,_or_Hyn

rid:] [Accessed:20
th

 March 2014]

Michaels, R. and Cole, R. (2014) “Native Mobile apps the wrong choice for business” pp 2-10

Macademian (2011). “Building Cross platform Mobile Apps- when to build a native

app”[online] Available from: http://www.macadamian.com/2011/03/ [Accessed: 9
th

 November

2014]

Muchmore, M (2013) By numbers: the fastest Browser [Online] Available from

http://PCmag.com [Accessed 10
th

 May 2014]

Newman, I and Benz, C.R (1998). Qualitative-quantitative research methodology: Exploring the

interactive continuum. Carbondale and Edwardsville: Southern Illinois University Press.

Ohrt, J. and Tarau, V. (2012): “Cross Platform Development Tools for Smartphone

Applications”, Computer Vol.45 No. pp 72-79.

Paananen, T (2011) “ Smartphone Cross Platform Framworks: Jank University of applied

Sceinces Thesis” [online] Available from http:// publication.theseus.fi/bitstream [Accessed: 10
th

May 2014]

http://www.macadamian.com/2011/03/
http://pcmag.com/

89

Pastore, S. (2013) “Mobile operating system and app development strategies”: International

Conference on Systems, Control and Informatics.

PCGMEDIA (2004) “Characteristics of mobile applications” [online] Available from

http://ptgmedia.pearsoncmg.com/images/0321269314/samplechapter/salmre_ch02.pdf [Accessed

14th July 2014].

Preece, J., Helen, S. And Yvonne, R.(2007): “Interaction Design: Beyond Human computer

interaction”, Wiley publication.

Rajapakse, D. C (2008) “Techniques for De-fragmenting Applications: A Taxonomy”. In SEKE.

Knowledge Systems Institute Graduate School.

RIM Inc. (2011) “RIM Unveils BlackBerry BBX - Combines the Best of BlackBerry and QNX

to Provide a Next Generation Platform for BlackBerry Smartphones and Tablets. Press Release,

[Online] available from: http://press.rim.com/release.jsp?id=5230. [Accessed: 20
th

 June 2014]

Saaty and Vargas (2001): “Decision making with the analytic hierarchy process”, Int. J. Services

Sciences, Vol. 1, No. 1, pp.83–98.

Sencha Inc. (2014) “est JS Version S” [online] Available from

http://www.sencha.com/product[Accessed: 19
th

 January 2014]

Sibai, F (2008): "Evaluating the Performance of Single and Multiple Core Processors with

PCMARK 05 and Benchmark Analysis," SIGMETRICS Perform. Eval. Rev., vol. 35, pp. 62-71.

Sjøberg, D. I. K., Dybǻ T. and Jørgensen, M. (2007). “The future of Empirical Methods in

Software Engineering Research”: Future of Software Engineering, IEEE-CS Press

http://ptgmedia.pearsoncmg.com/images/0321269314/samplechapter/salmre_ch02.pdf
http://www.sencha.com/product%5bAccessed

90

Slife, B.D and Williams, R.N (1995). What’s behind the research? Discovering hidden

assumptions in the behavioural sciences. Thousand Oaks, CA. Sage

Steve, R. P. And Mac, F. (2001): “A Practical Guide to Feature-Driven Development” (1
st
 Ed).

Straub, D, Marie-Claude, B and Gefen, D. (2004) “Validation Guidelines for IS Positivist

Research” CAIS. [Online]: available from http://www.researchgate.net/publication. [Accessed:

19
th

 June 2014]

Strauss, A.L and Corbin, J.M (2008). Basics of qualitative research: Techniques and procedures

for developing grounded theory. Sage publication Inc.

Steve, R. (2004) “iOS versus Android” [Online] Available from http:// zdnet.com [Accessed:

10
th

 January 2014]

 Uti, N and Fox, R (2010): "Testing the Computational Capabilities of Mobile Device

Processors: Some Interesting Benchmark Results," in 2010 IEEE/ACIS 9th International

Conference on Computer and Information Science (ICIS), Washington, DC, USA, 2010, pp.

477-481.

Vaishnavi, V. and Kuechler, B (2004). “Design Science Research in Information Systems” pp 7-

25

Vision Mobile (2012): “Cross-Platform Developer Tools: Bridging the worlds of mobile apps

and the web”. [Online] available from http://www.slideshare.net/andreasc/vision-mobile-

crossplatformdevelopertools2012 [Accessed: 21
st
 June 2014].

http://www.researchgate.net/publication
http://www.slideshare.net/andreasc/vision-mobile-crossplatformdevelopertools2012
http://www.slideshare.net/andreasc/vision-mobile-crossplatformdevelopertools2012

91

Vision Mobile (2013): “Developer Economics 2013- Developer Tools: the foundations of app

economy” pp 1-61

Winokur, D. (2011): “Flasht to Focus on PC Browsing and Mobile Apps: Adobe to more

Aggressively Contribute to HTML5” [online] Available from: http://

blogs.adobe.com/conversation/2011/11/flash-focus.html [Accessed: 25
th

 September 2014]

Wotaka, F, Bloice, M.D and Holzinger, A (2009) “Java’s alternatives and the limitations of java

when writing cross-platform applications for mobile devices in the medical domain” in ITI 09.

Proceedings of the 2001 joint ACM-ISCOPE conference on Java Grande.

Xin, C. (2009). "Cross-Platform Mobile Phone Game Development Environment," in IIS '09:

Proceedings of the 2009 International Conference on Industrial and Information Systems.

92

APPENDIX A: Source Code for Proof of Concept Application

The following is a sample of the programming source code of multi-platform mobile application

designed.

HTML Code:

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

</head>

<body>

<div id="logo"></div>

<h2 id="test_status"></h2>

<div id="test"></div>

</body>

</html>

93

CSS Code:

div#test{ border:#000 1px solid; padding:10px 40px 40px 40px; }

#test {

 left: 0px;

 right: 0px;

}

#logo {

 background-image:url(applogo.png);

 background-repeat:no-repeat;

 width:100%;

 height:70px;

 max-width:450px;

 max-height:70px;

}

body {

 background-color: #002974;

 color: #FFFFFF;

94

 font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;

}

95

JavaScript Code:

<script>

var pos = 0, test, test_status, question, choice, choices, chA, chB, chC, correct = 0;

var questions = [

 ["The technologies that communicate information are reffered to as?", "ITC", "ICTs", "ICT",

"B"],

 ["Data that is obtained from outside an organisation is termed as", "Organised",

"Internal", "External", "C"],

 ["The raw and unorganised facts and figures are known as?", "Data", "Information",

"Knowledge", "A"],

 ["A term used for the face to face teaching and enhanced learning is termed as?", "E-

learning", "E-commerce", "blended learning", "A"],

 ["In a computer system, what is the screen used for?", "Input", "Output", "Storage", "B"

],

 ["Which of the following is not an output device?", "Microphone", "Speaker", "Plotter",

"A"],

 ["A device that accepts data, process it and gives information is called....?", "analyzer",

"Computer", "Processor", "B"],

96

 ["Which of the following is the odd one out?", "printer", "Microphone", "Keyboard",

"A"],

 ["A physical component of a computer that can be seen and touched is termed as ...?",

"Hardware", "Software", "Hardcopy", "A"],

 ["The network within an organization is termed as?", "Extranet", "Interent", "Intranet",

"C"],

 ["Which of the following is a type of monitor?", "Crystal liquid Display", "Liquid

Cathod Display","Light Display", "B"],

 ["Which of the following is not a basic part of a desktop computer?", "Printer", "Mouse",

"Keyboard", "A"],

 ["The ability to manipulate both hardware and software is referred to as?",

"Technology", "Computer competency", "Computer literacy", "C"]

];

function _(x){

 return document.getElementById(x);

}

function renderQuestion(){

 test = _("test");

97

 if(pos >= questions.length){

 test.innerHTML = "<h2>You got "+correct+" of "+questions.length+" questions

correct</h2>";

 _("test_status").innerHTML = "Test Completed";

 pos = 0;

 correct = 0;

 test.innerHTML += "<button onclick='retry()'> RETRY </button>";

 return false;

 }

 _("test_status").innerHTML = "Question "+(pos+1)+" of "+questions.length;

 question = questions[pos][0];

 chA = questions[pos][1];

 chB = questions[pos][2];

 chC = questions[pos][3];

 test.innerHTML = "<h3>"+question+"</h3>";

 test.innerHTML += "<input type='radio' name='choices' value='A'> "+chA+"
";

 test.innerHTML += "<input type='radio' name='choices' value='B'> "+chB+"
";

98

 test.innerHTML += "<input type='radio' name='choices' value='C'> "+chC+"

";

 test.innerHTML += "<button onclick='checkAnswer()'> NEXT </button>";

}

function checkAnswer(){

 choices = document.getElementsByName("choices")

 for(var i=0; i<choices.length; i++){

 if(choices[i].checked){

 choice = choices[i].value;

 }

 }

 if(choice == questions[pos][4]){

 correct++;

 }

 pos++;

 renderQuestion();

}window.addEventListener("load", renderQuestion, false);

</script>

99

APPENDIX B: Screen shot of sample Application in emulators and devices

Screen shot in Android Virtual Device (AVD)

100

Portrait view of Test Scores screen on Nokia Lumia phone running windows operating system

101

Landscape view of question screen on Nokia Lumia phone running windows operating system

102

Portrait view of Start Screen on Lenovo phone running Android operating system

103

Landscape view of Question Screen on Lenovo Phone running Android operating system

104

APPENDIX C: Application Checklist for Evaluating Features of the Application

MULTIPLATFORM MOBILE APPLICATION CHECKLIST

NO VARIABLE ANSWER

1 Mobile application loads without errors

2 Mobile application fits within the device screen resolutions

3 Designs displays correctly in the main device browser

4 Application displays correctly in both orientations

5 Buttons are clickable and redirects correctly

6 Users are able to choose answers successfully

7 Next question loads successfully

8 Mobile application calculates correct answers successfully

9 Mobile application looks and feel like other native applications

10 Passes usability test?

105

APPENDIX D: Test Results on Lenovo Phone Running Android 4.0

MULTIPLATFORM MOBILE APPLICATION CHECKLIST

NO VARIABLE ANSWER

1 Mobile application loads without errors

2 Mobile application fits within the device screen resolutions

3 Designs displays correctly in the main device browser

4 Application displays correctly in both orientations

5 Buttons are clickable and redirects correctly

6 Users are able to choose answers successfully

7 Next question loads successfully

8 Mobile application works in both online and offline mode

9 Mobile application looks and feel like other native applications

10 Passes usability test?

106

APPENDIX E: Test Results on Nokia Lumia 520 Running Windows 8.0

MULTIPLATFORM MOBILE APPLICATION CHECKLIST

NO VARIABLE ANSWER

1 Mobile application loads without errors

2 Mobile application fits within the device screen resolutions

3 Designs displays correctly in the main device browser

4 Application displays correctly in both orientations

5 Buttons are clickable and redirects correctly

6 Users are able to choose answers successfully

7 Next question loads successfully

8 Mobile application works in both online and offline mode

9 Mobile application looks and feel like other native applications

10 Passes usability test?

107

APPENDIX F: Test Results using W3C mobileOK Checker

