
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI

COLLEGE OF SCIENCE

FACULTY OF PHYSICAL SCIENCES

DEPARTMENT OF MATHEMATICS

USING MAX-MIN ANT SYSTEM (MMAS) ,

TO MODEL THE INSPECTIONAL TOUR OF MAIN SALES POINTS OF GHACEM,

GHANA

A CASE STUDY OF GHACEM, GHANA

BY

GYEBIL JULIUS FRANCIS

SEPTEMBER, 2012

ii

USING MAX-MIN ANT SYSTEM (MMAS) ,

TO MODEL THE INSPECTIONAL TOUR OF MAIN SALES POINTS OF GHACEM,

GHANA

A CASE STUDY OF GHACEM, GHANA

A THESIS SUBMITTED TO THE FACULTY OF DEPARTMENT OF MATHEMATICS

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

KUMASI, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE A WARD

OF

MASTER OF PHILOSOPHY DEGREE IN MATHEMATICS

COLLEGE OF PHYSICS SCIENCES

BY

GYEBIL JULIUS FRANCIS

SEPTEMBER, 2012.

iii

DECLARATION

I hereby declare that this submission is my own work is towards the award of the MPIL

(Mathematics) .degree and that to the best of my knowledge, it contains no material

previously published by another person nor material which had been accepted for the

award of any other degree of the university, except where due acknowledgement had been

made in the text

Francis Julius Gyebil (3941909) … ……………………….. ……………...…….…..

 (Student/ID) (Signature) (Date)

Certified by:

Mr. F. K. Darkwa …………………….……… ……………………….

(Supervisor) (Signature) (Date)

Certified by:

Mr. F.K.Darkwa ……………………………... ……………………...

(Head, Department of Mathematics) (Signature) (Date)

iv

ABSTRACT

This research presents Max-Min Ants System (MMAS) under an Ant Colony Optimization

(ACO) to solve a company‘s problem of checking the main sales points of Ghacem, Ghana

starting from Tema (initial city).

This problem is formulated as a travelling salesman problem (TSP).TSP involves finding

an optimal route for visiting cities and returning to point of origin. The problem

formulation of the TSP in this work is based on symmetric TSP.

This work presents the solution based on Max-Min Ants System (MMAS) approach.

The MMAS algorithm proposed by Stuutzle and Hoos (2000) was coded in the matlab

language in solving the problem of Ghacem, Ghana inspectional team tour of the main

sales points of the company, in the country.

The result that came out the work showed that the optimal route that can be considered by

the company in order to maximize profit is

lg

Ho Accra Tema Koforidua Takoradi Cape Coast

Obuasi Kumasi Sunyani Temale Bo a Wa

     

     

 The total cost distance of their usual tour is 2319km .

v

DEDICATION

This work is dedicated to the Almighty Lord for wonderful things He has done in my life.

vi

ACKNOWLEDGEMENT

My most sincere gratitude goes to Mr Francis Kwaku Darkwa (Head of Department,

Maths) and Dr. S.K. Amponsah for their guidance and assistance in the preparation of this

work. I would like to register my sincerest gratitude to the of entire teaching staff

mathematics department of KNUST.

I would like to commend the Head and staff of marketing department of Ghacem, Ghana,

Tema metropolis for their willingness in releasing the required data for this work.

This work will also be uncompleted without my colleagues and family especially my wife

Miss Hannah Herzuah,my mum Madam Abena Boah and my lovely Kids for their care,

understanding and patience.

Thank you all.

vii

TABLE OF CONTENT

DECLARATION ... iii

ABSTRACT .. iv

DEDICATION ... v

ACKNOWLEDGEMENT ... vi

TABLE OF CONTENT .. vii

LIST OF TABLE .. xi

LIST OF FIGURES ... xii

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1 History of Cement .. 1

1.2 Background of the Study ... 3

1.3 Statement of the Problem ... 5

1.4 Objective of the Study ... 5

1.5 Methodology .. 6

1.6 Justification of the Study ... 6

1.7 Structure of the thesis .. 7

CHAPTER TWO ... 8

LITERATURE REVIEW ... 8

2.0 INTRODUCTION ... 8

2.1 Applications on ACO ... 8

2.2 Travelling Salesman Problem .. 19

2.2.1 Variants of Travelling Salesman Problem .. 25

viii

CHAPTER THREE ... 33

METHODOLOGY .. 33

3.1 Introduction .. 33

3.2 Formulation of TSP Model .. 33

3.2.1 Formulation of the Asymmetric TSP .. 34

3.2.2 The symmetric TSP Model ... 35

3.3 Methods of Solving TSP .. 36

3.3.1 Cutting Plane Method ... 36

3.3.1.1 Using the fractional algorithm of cutting plane ... 37

3.3.1.2 Procedure for cutting plane algorithm ... 38

3.1.3 The construction of the secondary constraints: ... 38

3.3.1.4 Choice of the cut .. 41

3.3.1.5 Prototype Example ... 42

3.4.1 Branch and Bound Algorithm 49

3.4.1.1 Prototype Example ... 52

3.6 Heuristic Approaches to Solving TSP ... 57

3.6.1 Sub-Tour Reversal Algorithm .. 58

3.7.1 The tabu search Algorithm ... 63

3.6.1.1 Prototype Example ... 66

3.8 Simulated Annealing .. 69

3.8.1 Using simulated Annealing to solve TSP ... 70

3.8.1.1 General schema for a simulated annealing algorithm .. 71

3.8.1.2 Prototype Example ... 72

ix

3.9 The Ant Colony Optimization ... 74

3.9.1 Variations of ACO .. 74

3.9.2 ANT SYSTEM (AS) ... 74

3.9.3 Algorithm 1. Ants System Algorithm ... 76

3.9,4 IMPROVEMENT OF ANT SYSTEM ... 77

3.9.5 ELITIST ANT SYSTEM (EAS) ... 77

3.9.6 RANK BASED ANT SYSTEM (Rank AS) ... 78

3.9.7 ANT COLONY SYSTEM (ACS) .. 78

3.9.8 Max-Min Ant System (MMAS): .. 79

3.9.9 Mathematical Formulation Of STSP Model ... 80

3.10 ACO ALGORITHM FOR OUR PROPOSED WORK ... 81

3.10.1. HEURISTIC INFORMATION .. 83

3.10.2. INITIAL PHEROMONE TRIALS .. 83

3.10.3 ROUTE CONSTRUCTION PROCESS ... 84

3.10.4 PHEROMONE UPDATE ... 84

3.11.1 Distance Matrix for the five cities in Kilometers (km) ... 85

CHAPTER FOUR ... 97

DATA COLLECTION AND ANALYSIS ... 97

4.0 Introduction .. 97

4.1 Data Collection .. 97

4.2 Data Analysis ... 97

4.3: Connectivity matrix for the twelve major sales points cities of Ghacem in

Kilometers (Km) .. 100

x

4.5 Heuristic value ((η) between nodes of the twelve major Sales of points of Ghacem in

Ghana in table .. 102

4.5 Mathematical Formulation Of TSP Model .. 104

Algorithm ... 105

4.6 .Computational Method ... 107

4.7 Results .. 107

4.8. Discussions ... 108

CHAPTER FIVE ... 109

CONCLUSION AND RECOMMENDATION ... 109

5.0 Introduction .. 109

5.1. Conclusion. ... 109

5.2 Recommendation ... 109

REFFERENCE .. 111

APPENDIX .. 111

Matlab Programme .. 116

xi

LIST OF TABLE

Table 3.1: Showing the variables to be considered in the Cutting Plane Method. 39

Table 3.2: Final Tableau for first iteration .. 42

Table 3.3: Final Tableau for the second iteration .. 45

Table 3.4: Final tableau for the last iteration ... 48

Table 3.5: Connectivity matrix of TSP in Figure 3.6. ... 86

Table 3.6: Heuristic value ((η) for each edge in Figure 3.6. ... 87

Table 3.7 Shows the neighboring cities left for the Ant 1 to select from. 88

Table 3.9 Shows the neighboring cities left for the Ant 1 to select from 90

Table 3.10 : Shows the Solutions built by all ants in the first iteration 91

Table 3.11: Pheromone values for each edge after iteration 1. ... 93

Table 3.12: Solutions built by the ant in the second iteration. .. 94

Table 3.13 Shows the Pheromone values for each edge after iteration 2. 94

Table 4.1: Twelve major sales points of Ghacem in Ghana and their numerical 97

Table 4.2: Data from the Ghana Highways Authority indicating the matrix for the

weighted graph of the major roads linking twelve major Sales of points of Ghacem in

Ghana in Kilometers .. 99

Table 4.3: Connectivity matrix for the twelve major sales points cities of Ghacem in

Kilometers (Km) (All pair shortest path from table 4.2 by Floyd Warshall‘s Algorithm) 100

Table 4.4 shows the heuristic value (η) for each edge in Figure 4.1 102

Table 4.5: Initial pheromone value 0() for each edge is as shown in Figure 4.1. 103

Table 4.7 Shows both the tour of an individual Ant and their various distance covered .. 108

xii

LIST OF FIGURES

Figure 3.1: Solution tree for Dakin‘s algorithm. ... 53

Figure 3.2 : The complete solution tree for Daskin‘s algorithm. .. 55

Figure 3.3: Travel Salesman Problem ... 59

Figure 3.4: A sub-tour reversal that replaces the tour on the left (the initial trial solution)

by the tour on the right (the new trial solution) ... 60

Figure 3.5: The sub-tour reversal of 3-5-6 that leads from the trial solution on the left to an

improved trial solution on the right. .. 62

Figure 3.6: Tabu Search algorithm. ... 66

Figure 3.7: Road Network of the Five (5) Cities ... 85

Figure 3.7 (a) shows the visualization of pheromone values on the edges. 95

Figure 4.1 Road Network of the twelve (12) major sales points of Ghacem 98

1

CHAPTER ONE

INTRODUCTION

1.1 History of Cement

Throughout history, cementing materials have played a vital role. They were used widely

in the ancient world. The Egyptians used calcined gypsum as a cement. The Greeks and

Romans used lime made by heating limestone and added sand to make mortar, with

coarser stones for concrete. (Vitruvius, "The Ten Books of Architecture," Dover

Publications, 1960.)

The Romans found that cement could be made which set under water and this was used for

the construction of harbours. The cement was made by adding crushed volcanic ash to lime

and was later called a "pozzolanic" cement, named after the village of Pozzuoli near

Vesuvius. (Vitruvius, "The Ten Books of Architecture," Dover Publications, 1960.)

In places such as Britain, where volcanic ash was scarce, crushed brick or tile was used

instead. The Romans were therefore probably the first to manipulate the properties of

cementations materials for specific applications and situations. (Vitruvius, "The Ten Books

of Architecture," Dover Publications, 1960.)

 In 300BC, the Egyptians began to use mud mixed with straw to bind dried bricks. They

also used gypsum mortars and mortars of lime in the building of the pyramids. The

Chinese used cementitious materials in the construction of the Great Wall.

The Greeks in 800BC, used lime mortars that were much harder than later Roman mortars.

This material was also in evidence in Crete and Cyprus at this time. The Babylonians and

Assyrians in 300BC, used bitumen to bind stones and bricks together.

2

 The Ancient Romans frequently used broken brick aggregate embedded in a mixture of

lime putty with brick dust or volcanic ash. They built a wide variety of structures that

incorporated stone and concrete, including roads, aqueducts, temples and palaces.

Between 1200BC to 1500BC, the quality of cementing materials deteriorated and even the

use of concrete died out during The Middle Ages as the art of using burning lime and

pozzolan (admixture) was lost, but it was later reintroduced in the 1300s. After the

Romans, there was a general loss in building skills in Europe, particularly with regard to

cement. Mortars hardened mainly by carbonation of lime, a slow process. The use of

pozzolana was rediscovered in the late Middle Ages.

The great mediaeval cathedrals, such as Durham, Lincoln and Rochester in England and

Chartres and Rheims in France, were clearly built by highly skilled masons. Despite this, it

would probably be fair to say they did not have the technology to manipulate the properties

of cementitious materials in the way the Romans had done a thousand years earlier.

The Renaissance and Age of Enlightenment brought new ways of thinking, which for led

to the industrial revolution. The interests of industry and empire coincided, with the need

to build lighthouses on exposed rocks to prevent shipping losses.

Smeaton, building the third Eddystone lighthouse (1759) off the coast of Cornwall in

Southwestern England, found that a mix of lime, clay and crushed slag from iron-making

produced a mortar which hardened under water. Joseph Aspdin took out a patent in 1824

for "Portland Cement," a material he produced by firing finely-ground clay and limestone

until the limestone was calcined. He called it Portland Cement because the concrete made

from it looked like Portland stone, a widely-used building stone in England.

3

A few years later, in 1845, Isaac Johnson made the first modern Portland Cement by firing

a mixture of chalk and clay at much higher temperatures, similar to those used today. At

these temperatures (1400C-1500C), clinkering occurs and minerals form which are very

reactive and more strongly cementitious.

While Johnson used the same materials to make Portland cement as we use now, three

important developments in the manufacturing process lead to modern Portland cement.

Rotary kilns heat the clinker mainly by radiative heat transfer and this is more efficient at

higher temperatures, enabling higher burning temperatures to be achieved. Also, because

the clinker is constantly moving within the kiln, a fairly uniform clinkering temperature is

achieved in the hottest part of the kiln, the burning zone.

In 1414, the manuscripts of the Roman Pollio Vitruvius are discovered in a Swiss

monastery reviving general interest in concrete.

John Smeaton (1774) found that combining quicklime with other materials created an

extremely hard material that could be used to bind together other materials. He used this

knowledge to build the first concrete structure since the Ancient Romans.

The Panama Canal (1914) was opened after decades of construction. It features three pairs

of concrete locks with floors as thick as 20 feet, and walls as much as 60 feet thick at the

bottom.

1.2 Background of the Study

Ghacem was founded by the Government of Ghana in collaboration with Norcem AS of

Norway on August 30, 1967. In 1993, the Ghana Government sold 35 % of its shares to

Scancem (formerly Norcem). Scancem as a result had 59.5 %, leaving Government with

40 % and 0.5 % going to a local investor. In 1997, the Ghana Government sold 5 % of its

4

40 % shareholding to the workers of the company. The remaining 35 % shares of the

Ghana Government was sold to Scancem in 1999 and at present Scancem has 93.1 %

shares in the company, workers have 5 % shares with 1.9 % owned by a local investor. In

1999, Heidelberg Cement took over Scancem, thus making it a subsidiary. Ghacem Ghana

is located at both Takoradi and Tema which are coastal cities in the country. Ghacem

cement has been used for construction of big and small projects, such as:

Tema Harbour, Takoradi Harbour, Akosombo Dam, Adomi Bridge, Tema Motorway,

Kotoka International Airport, Aboadze Thermal Plant and West African Gas concrete

piping

Construction of new stadia at Takoradi and Tamale, and the rehabilitation of Accra,

Kumasi and Tema Stadia .Construction of Presidential Palace Construction of Government

affordable houses for workers

The factories in Tema and Takoradi, have produced over 30 million tonnes of cement

since inception in 1967. Several millions of dollars have lately been invested in expansion

at both factories. These expansion works have improved the quality of Ghacem cement,

reduced energy consumption at the plants, ensured efficient production and reduced

environmental impact of the plants operations. Currently, Ghacem has a number of

accredited distributors through-out the country. Periodic meetings are held with these

distributors to reinforce partnership. An awards ceremony is held at the end of the year to

honour distributors who have sold the most number of bags.

Goods from the company are transported to the regional capitals. They are then kept in the

warehouses owned by key distributors in the various regional capitals. The key distributors

then transport these goods to a specified area that has been allocated to them by the

5

company to sell. The storeowners purchase the goods from the distributors and the goods

are later sold to consumers.

1.3 Statement of the Problem

The Directors of the company are tasked in every two months period to embark on tour in

order to check the sales of the company‘s goods. They usually use the following route;

lg

Tema Accra Cape Coast Takoradi Obuasi

Kumasi Sunyani Wa Bo a Temale Ho Tema

     

     

Their choice of the routes for the visit was done without considering any Mathematical

model. This research aims at using Min-Max Ant System (MMAS) algorithm with respect

to a Symmetric Traveling Salesman Problem(STSP) model to check whether the tour is

optimal.

1.4 Objective of the Study

The objectives of this research are;

1. To use a Max-Min Ant System (MMAS), which belongs to Ants Colony

Optimization (ACO) to model the tour distance of the inspectional team of

Ghacem, as a travelling salesman problem.

2. To provide an optimal tour distance of the inspectional team of Ghacem, as they

go on to check on the sales performance of the twelve main sales points in Ghana.

6

1.5 Methodology

The tour of Directors of Ghacem to the major sales points to inspect sales will be modeled

as Symmetric Travelling Salesman Problem. The Min-Max Ant System (MMAS)

algorithm, which belongs Ants Colony Optimization (ACO) family, will be used as a

method of solving the Symmetric TSP model.

 In this work, a biologically inspired heuristic (ant colony) is used to solve such problem.

The ant colony implemented is closely rooted at the biological and behavioral model of the

real social insects. It is a non-deterministic heuristic and could be used as both constructive

and iterative. The solution uses many ants of simple nature and limited memory

requirements. The intelligence of this heuristic is not portrayed by individual ants, but

rather is expressed by the colony as a whole. Careful presentation of the problem to the ant

colony model facilitates the close biological solution derivation.

Ghana High Ways Authority will be consulted for information on the distance of the

network routes from one major sales point to the other.

A matlab and Genta programs that uses the ACO algorithm will be employed to solve the

TSP model. The internet, KNUST Library and Mathematics journals will be used to obtain

the related literature

1.6 Justification of the Study

Ghacem Ghana is a state own company which contribute to the government revenue. It

therefore prudent to minimize its operational cost so as to maximize its profit. The profit

margin the company will go along way to increase the revenue of the government. In this

light the fitted model will help the company to minimize its operational cost in order

maximize its profit.

7

1.7 Structure of the thesis

Chapter one deals with the historical background of the study, the statement of the

problem, the objective of the study, significant of the study and the limitation of study.

 Chapter two deals with Review of relevant literature on the topic of study

 Chapter three covers the Mathematical tools that will be used in analyze the data in

order to establish the appropriate model

 Chapter four talks about data collection as well as its analyses.

 Chapter five discuss findings, conclusion, summary and recommendation of the

study.

8

CHAPTER TWO

LITERATURE REVIEW

2.0 INTRODUCTION

This chapter will review the relevant literature and applications on Ants Colony

Optimization (ACO) and Travel Salesman Problem (TSP) .In computer science and

operations research, the ant colony optimization algorithm (ACO) is a probabilistic

technique for solving computational problems which can be reduced to finding good paths

through graphs

This algorithm is a member of ant colony algorithms family, in swarm intelligence

methods, and it constitutes some metaheuristic optimizations. Initially proposed by Dorigo

(1992) in his PhD thesis, the first algorithm was aiming to search for an optimal path in a

graph, based on the behavior of ants seeking a path between their colony and a source of

food. The original idea has since diversified to solve a wider class of numerical problems,

and as a result, several problems have emerged, drawing on various aspects of the behavior

of ants.

2.1 Applications on ACO

Ant colony optimization (ACO) has widely been applied to solve combinatorial

optimization problems in recent years. There are few studies, however, on its convergence

time, which reflects how many iteration times ACO algorithms spend in converging to the

optimal solution. Based on the absorbing Markov chain model, they analyzed the ACO

convergence time.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Ants
http://en.wikipedia.org/wiki/Ant_colony

9

 Huanq et al, (2008), presented a general result for the estimation of convergence time to

reveal the relationship between convergence time and pheromone rate. This general result

was then extended to a two-step analysis of the convergence time, which included the

following:

(1) the iteration time that the pheromone rate spends on reaching the objective value and

(2) the convergence time that was calculated with the objective pheromone rate in

expectation. Furthermore, four brief ACO algorithms were investigated by using the

proposed theoretical results as case studies. Finally, the conclusions of the case studies that

the pheromone rate and its deviation determine the expected convergence time were

numerically verified with the experiment results of four one-ant ACO algorithms and four

ten-ant ACO algorithms.

ACO has been proved to be one of the best performing algorithms for NP-hard problems

as TSP. Many strategies for ACO have been studied, but little theoretical work has been

done on ACO‘s parameters α and β, which control the relative weight of pheromone trail

and heuristic value. Yang et al, (2011), described the importance and functioning of α and

β, and drawn a conclusion that a fixed β may not enable ACO to use both heuristic and

pheromone information for solution when α= 1. Later, following the analysis, an adaptive

β strategy was designed for improvement. Finally, a new ACO called adaptive weight ant

colony system (AWACS) with the adaptive β and α= 1 was introduced, and proved to be

more effective and steady than traditional ACS through the experiment based on TSPLIB

test.

Khader et al,(2008), proposed an ant colony optimization (ACO) algorithm together with

traveling salesman problem (TSP) approach to investigate the clustering problem in

10

protein interaction networks (PIN). They named this combination as ACOPIN. The

purpose of that work was two-fold. First, to test the efficacy of ACO in clustering PIN and

second, to propose the simple generalization of the ACO algorithm that might allow its

application in clustering proteins in PIN. They split that paper to three main sections. First,

they described the PIN and clustering proteins in PIN. Second, They discussed the steps

involved in each phase of ACO algorithm. Finally, presented some results of the

investigation with the clustering patterns.

Stitizle et al, (1999), gave an overview on the available ACO algorithms for the TSP. they

first introduced the TSP. they outlined how ACO algorithms can be applied to that

problem and present the available ACO algorithms for the TSP. They also discussed local

search for the TSP, while presented experimental results which have been obtained with

MAX --MIN Ant System, one of the improved versions of Ant System. Since the first

application of ACO algorithms to the TSP, which had been applied to several other

combinatorial optimization problems? On many important problems ACO algorithms have

proved to be among the best available algorithms. They gave a concise overview of these

other applications of ACO algorithms. On The Traveling Salesman Problem

Beam-ACO algorithms are hybrid methods that combine the metaheuristic ant colony

optimization with beam search. Christian Blum et al..,(2005) heavily relied on accurate

and computationally inexpensive bounding information for choosing between different

partial solutions during the solution construction process. In this work they presented the

use of stochastic sampling as a useful alternative to bounding information in cases were

computing accurate bounding information was too expensive. As a case study they chose

the well-known travelling salesman problem with time windows. their results clearly

11

demonstrated that Beam-ACO, even when bounding information was replaced by

stochastic sampling, may have important advantages over standard ACO algorithm

 Dorigo et al,(2005), researched on a new metaheuristic that focused on proof-of-concept

applications. It was only after experimental work had shown the practical interest of the

method that researchers tried to deepen their understanding of the method‘s functioning not

only through more and more sophisticated equations such as ―how and why the method

works‘ ‘is important, because finding an answer may help in improving its applicability.

Ant colony optimization, which was introduced in theearly1990s as a novel technique for

solving hard combinatorial optimization problems, finds itself currently at this point of its

life cycle. With this article they provided a survey on theoretical results on ant colony

optimization. First, were view some convergence results. Then they discussed relations

between ant colony optimization algorithms and other approximate methods for

optimization. Finally, they focused on some research efforts directed at gaining a deeper

understanding of the behavior of ant colony optimization algorithms. Throughout the paper

they identified some open questions with a certain interest of being solved in the near

future

Shan et al, (2010), addressed an integrated model that schedules multi-item replenishment

with uncertain demand to determine delivery routes and truck loads, where the actual

replenishment quantity only becomes known upon arrival at a demand location. The paper

departed from the conventional ant colony optimization (ACO) algorithm, which

minimizes total travel length, and incorporates the attraction of pheromone values that

indicate the stock out costs on nodes. The contributions of the paper to the literature were

made both in terms of modeling this combined multi-item inventory management with the

12

vehicle-routing problem and in introducing a modified ACO for the inventory routing

problem.

 Ant colony optimization (ACO) is a metaheuristic for solving combinatorial optimization

problems that is based on the foraging behavior of biological ant colonies. Starting with

the 1996 seminal paper by Dorigo, Maniezzo and Colorni, ACO techniques have been

used to solve the traveling salesperson problem (TSP). Maniezzo et al, (1996), focused on

a particular type of the ACO algorithm, namely, the rank-based ACO algorithm for the

TSP. In particular, that paper identifies an optimal set of key parameters by statistical

analysis applied to results of the rank-based ACO for the TSP. Specifically, for six

frequently used TSPs available on the World Wide Web.

Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior of

ant colonies that had been successful in the resolution of hard combinatorial optimization

problems like the Traveling Salesman Problem (TSP). Osvaldo et al, (2000), proposed the

Omicron ACO (OA), a novel population-based ACO alternative originally designed as an

analytical tool. To experimentally prove OA advantages, that work compared the behavior

between the OA and the MMAS as a function of time in two well-known TSP problems. A

simple study of the behavior of OA as a function of its parameters showed its robustness.

Yuren et al, (2006), presented the first rigorous analysis of a simple ACO algorithm called

(1 + 1) MMAA (Max-Min ant algorithm) on the TSP. The expected runtime bounds for (1

+ 1) MMAA on two TSP instances of complete and non-complete graphs are obtained.

The influence of the parameters controlling the relative importance of pheromone trail

versus visibility was also analyzed, and their choice was shown to have an impact on the

expected runtime.

13

Amirahmad et al, (2005), estimation of sediment concentration in rivers was very

important for water resource projects planning and managements. The sediment

concentration was generally determined from the direct measurement of sediment

concentration of river or from sediment transport equations. Direct measurement was

very expensive and cannot be conducted for all river gauge stations. However, sediment

transport equations do not agree with each other and require many detailed data on the

flow and sediment characteristics. Various models have been developed so far to identify

the relation between discharge and sediment load. Most of the models based on

regression method have some restrictive assumptions. Ant colony optimization (ACO) is

now being used more frequently to solve optimization problems other than those for

which they were originally developed. The main purpose of that paper was literature

review of Ant Colony Optimization for suspended sediment estimation.

Ant colony optimization (ACO) has been proved to be one of the best performing

algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of

the main parameters in ACO algorithms. It is usually set experimentally in the literatures

for the application of ACO. Yong et al, (2006), presented a paper that proposed an

adaptive strategy for the volatility rate of pheromone trail according to the quality of the

solutions found by artificial ants. The strategy was combined with the setting of other

parameters to form a new ACO algorithm. Finally, the experimental results of computing

traveling salesman problems indicated that the proposed algorithm was more effective than

other ant methods.

 White et al, (2008), proposed the addition of Genetic Algorithms to Ant Colony System

(ACS) applied to improve performance. Two modifications were proposed and tested. The

first algorithm was a hybrid between ACS-TSP and a Genetic Algorithm that encodes

experimental variables in ants. The algorithm does not yield improved results but offered

14

concepts that could be used to improve the ACO algorithm. The second algorithm used a

Genetic Algorithm to evolve experimental variable values used in ACSTSP. They found

that the performance of ACS-TSP could be improved by using the suggested values.

ACO is a metaheuristic inspired in the behavior of natural ant colonies to solve

combinatorial optimization problems, based on simple agents that work cooperatively

communicating by artificial pheromone trails.

Eduardo et al, (2009), used a model to solve the municipal waste collection problem by

containers was presented, which applies a concept of partial collection sequences that must

be joined to minimize the total collection distance. The problem to join the partial

collection sequences was represented as a TSP, which is solved by an ACO algorithm.

Based on the literature, algorithm parameters are experimentally calibrated and range of

variations that represents good average solutions are recommended. The model was

applied to a waste collection sector of the San Pedro de la Paz commune in Chile,

obtaining recollection routes with less total distance with respect to the actual route

utilized and to the solution obtained by a previously developed approach.

 Beam-ACO algorithms are hybrid methods that combine the metaheuristic ant colony

optimization with beam search.

 Lopez et al, (2005), heavily relied on accurate and computationally inexpensive bounding

information for choosing between different partial solutions during the solution

construction process. In that work they presented the use of stochastic sampling as a useful

alternative to bounding information in cases were computing accurate bounding

information is too expensive. As a case study they choose the well-known travelling

salesman problem with time windows. Their results clearly demonstrated that Beam-ACO,

15

even when bounding information was replaced by stochastic sampling, may have

important advantages over standard ACO algorithms.

Yunmming et al, (2010), combined with the idea of the Bean Optimization algorithm

(BOA), the ant colony optimization (ACO) algorithm was presented to solve the well

known traveling salesman problem (TSP). The core of that algorithm was using BOA to

optimize the control parameters of ACO which consist of heuristic factor, pheromone

evaporation factor and random selection threshold, and applying ant colony system to

solve two typical TSP. The new algorithm effectively overcame the influence of control

parameters of ACO and decreased the numbers of experiments. The novel hybrid

algorithm ACOBOA found the balance between exploiting the optimal solution and

enlarging the search space. The results of the experiments showed that ACOBOA had

better optimization performance and efficiency than the general ant colony optimization

algorithm and genetic algorithm. The new algorithm could also be generalized to solve

other NP problems.

Recently, researchers have been dealing with the relation of ACO algorithms to the other

methods for learning and optimization. One example is the work presented in

Birattari, et al, (2002), presented work that relates ACO to the fields of optimal control and

reinforcement learning. A more prominent example is the work that aim at finding

similarities between ACO algorithms and other probalistic learning algorithms such as

stochastic gradient ascent (SGA), and the cross-entropy (CE) method.

Meuleau et al, (2002), shown that the pheromone update as outline in the proof-of-concept

application to the TSP (Dorigo et al. 1991, 1996) is very similar to a stochastic gradient

ascent in the space of pheromone values.

16

 Blum, (2004), proposed the first implementation of SGA-based ACO algorithms where it

was shown that SGA-based pheromone updates avoid certain types of search bias.

 Zlochin et al, (2004), proposed a unifying framework from so-called model-based search

(MBS) algorithms. An MBS algorithm is characterized by the used of a (parameterized)

probabilistic. The class of MBS algorithm can be divided into two subclasses with respect

to the way the probabilistic model is used. The algorithm in the first subclass use a given

probabilistic model without changing the model structure at run-time, whereas the

algorithms of the second subclass use and change the probabilistic model in alternating

phases.

ACO algorithms are examples of algorithms from the first subclass. While convergence

proofs can provide insight into the working of an algorithm, they usually not very useful to

the practitioner that wants to implement efficient algorithms. This is because, generally,

either infinite time or infinite spaces are required for a stochastic optimization algorithm to

converge to an optimal solution (or to the optimal solution value). The existing

convergence proofs for particular ACO algorithms are no exception.

Blum et al, (2005, 2004), adopted the term deception for the field of ant colony

optimization , similarly to what had previously been done in evolutionary computation. It

was shown that ant colony optimization algorithms in general suffer from first order

deception in the same way as Gas suffer from deception. they further introduce the concept

of second order deception, which is caused by a bias that leads to decreasing algorithm

performance over time.

Recently Montgomery et al,(2004), recently made an attempt to extend the work by Blum

and Sampels, (2002), to assignment problems, and to attribute search bias to different

algorithmic components.

17

Merkle et al, (2002), were the first to study the behavior of a simple ACO algorithm by

analyzing the dynamics of its model, which is obtained by applying the expected

pheromone update. Their work deals with the application of ACO to idealized permutation

problems. When applied to constrained problems such as permutation problems, the

solution construction process of ACO algorithms consist of a sequence of random

decisions in which later decisions depend on earlier ones. Therefore, the later decisions of

the construction process are inherently biased by the earlier ones. The work of Merkle and

Middendorf shows that this leads to a bias which they call selection bias. Furthermore, the

competition between the ants was identified as the main driving force of the algorithm.

ACO is a metaheuristic inspired in the behavior of natural ant colonies to solve

combinatorial optimization problems, based on simple agents that work cooperatively

communicating by artificial pheromone trails.

Nelson et al, (2009), generated a model to solve the municipal waste collection problem by

containers was presented, which applied a concept of partial collection sequences that must

be joined to minimize the total collection distance. The problem to join the partial

collection sequences is represented as a TSP, which was solved by an ACO algorithm.

Based on the literature, algorithm parameters were experimentally calibrated and range of

variations that represents good average solutions are recommended. The model was

applied to a waste collection sector of the San Pedro de la Paz commune in Chile,

obtaining recollection routes with less total distance with respect to the actual route

utilized and to the solution obtained by a previously developed approach.

Ant colony optimization (ACO) has been proved to be one of the best performing

algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of

the main parameters in ACO algorithms. It is usually set experimentally in the literatures

18

for the application of ACO. Shanker et al, (2008), presented a paper that proposed an

adaptive strategy for the volatility rate of pheromone trail according to the quality of the

solutions found by artificial ants. The strategy was combined with the setting of other

parameters to form a new ACO algorithm. Finally, the experimental results of computing

traveling salesman problems indicated that the proposed algorithm was more effective than

other ant methods

The behavior of a (1+1)-ES process on Rudolph's binary long k paths was investigated

extensively in the asymptotic framework with respect to string length l. First, the case of

k=l
α
 was addressed.

Kallel et al, (2002), proved that the long k path was a long path for the (1+1)-ES in the

sense that the process follows the entire path with no shortcuts, resulting in an exponential

expected convergence time. For α<1/2, the expected convergence time is also exponential,

but some shortcuts occur in the meantime that speed up the process. Next, in the case of

constant k, the statistical distribution of convergence time was calculated, and the

influence of population size was investigated for different (μ+λ)-ES. The histogram of the

first hitting time of the solution shows an anomalous peak closed to zero, which

corresponds to an exceptional set of events that speed up the expected convergence time

with a factor of l
2
. A direct consequence of this exceptional set is that performing

independent (1+1)-ES processes proves to be more advantageous than any population-

based (μ+λ)-ES

Chun et al, (2004), put forward a brief runtime analysis of an evolutionary programming

(EP) which is one of the most important continuous optimization evolutionary algorithms.

A theoretical framework of runtime analysis was proposed by modeling EP as an

absorbing Markov process. The framework was used to study the runtime of a classical EP

19

algorithm named as EP with Cauchy mutation (FEP). It was proved that the runtime of

FEP could be less than a polynomial of n if the Lebesgue measure of optimal solution set

was more than an exponential form of 2. Moreover, the runtime analysis result could be

used to explain the performance of EP based on Cauchy mutation.

Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its

theoretical research contains convergence proof and runtime analysis. The convergence of

ACO has been proved since several years ago, but there are less results of runtime analysis

of ACO algorithm except for some special and simple cases. Yang et al, (2010), presented

a paper that proposed a theoretical framework of a class of ACO algorithms. The ACO

algorithm was modeled as an absorbing Markov chain. Afterward its convergence could be

analyzed based on the model, and the runtime of ACO algorithm was evaluated with the

convergence time which reflects how many iteration times ACO algorithms spend in

converging to the optimal solution. Moreover, the runtime analysis result was advanced as

an estimation method, which was used to study a binary ACO algorithm as a case study.

2.2 Travelling Salesman Problem

The Travelling Salesman problem is one of the most popular problems from the NP set; it

is also one of the hardest too.

The solution to this problem enjoys wide applicability in a variety of practical fields. Thus,

it highly raises the need for an efficient solution for this NP Hard problem.

According to Schrijver, (2005), the general form of the TSP appears to have been first

studied during the 1930s in Vienna and at Harvard, notably by Karl Menger, who defined

the problem, considered the obvious brute-force algorithm, and observed the non-

optimality of the nearest neighbour heuristic; i.e. the rule that one should first go from the

starting point to the closest point, then to the point closest to this, etc., in general does not

20

yield the shortest route.

Hassler, (2006), introduced the name travelling salesman problem soon after (Schrijver,

2005). In the 1950s and 1960s, the travelling Salesman problem became increasingly

popular in scientific circles in Europe and the USA.

Dantzig et al, (1954), at the RAND Corporation in Santa Monica, made notable

contribution who expressed the problem as an integer linear program and developed the

cutting plane method for its solution. A problem instance with 49 cities was then solved to

optimality with these new methods by constructing a tour and proving that no other tour

could be shorter.

In the years that followed, the problem was studied by many researchers from

mathematics, computer science, chemistry, physics, and other sciences.

Karp et al, (1970), explored new approaches to the TSP in which 1-trees, which are a

variant of spanning trees, play essential role. They observed that a tour is a 1-tree in which

each vertex has degree 2.

Karp et al, (1971), described Dynamic programming algorithm for solving small instances

and for finding approximate solutions to larger instances. The exact algorithm was used to

solve 13-city instance on an IBM 7090 computer. The approximation algorithm (also

programmed for the IBM 7090) found the optimal solution to the 42-city Dantzig-

Fulkerson-Johnson example on two out of five trials, and was also tested on a new 48-city

instance.

Karp, (1972), showed that the Hamiltonian cycle problem was NP-complete, which

implies the NP-hardness of TSP. This supplied a mathematical explanation for the

apparent computational difficulty of finding optimal tours.

21

The Christofides, (1976), algorithm, one of the first approximation algorithms, combines

the minimum spanning tree with a solution of another problem, minimum-weight perfect

matching. This gives a TSP tour which is at most 1.5 times the optimal. The Christofides

algorithm was, in part, responsible for drawing attention to approximation algorithms as a

practical approach to intractable problems. The term "algorithm" was not commonly

extended to approximation algorithms until later; the Christofides algorithm was initially

referred to as the Christofides heuristic (Schrijver, 2005).

Land, (1979), described a cutting-plane algorithm for the TSP. She solved linear-

programming relaxations in integer arithmetic, thus avoiding rounding errors in the

computations. The separation algorithms included a shrinking heuristic for identifying

subtour inequalities and a heuristic for identifying blossom inequalities. If no subtours or

blossoms were found, a Gomory-cut was added to the relaxation. She used column

generation to handle the great number of edges present in larger instances.

Padberg et al, (1980), described a cutting-plane algorithm which makes use of new

separation routines for comb inequalities. Like Land (1979), the linear programming

computations were carried out using integer arithmetic to "avoid any problems connected

with round-off errors." In their computational study, the authors solved 54 out of total of

74 instances by linear programming relaxation. For the 318-city example of Lin and

Kernighan (1973), the bound obtained via the relaxation was within a factor of 0.96 of the

best tour that was found.

Padberg et al, (1980), solved the 318-city instance, described in Lin and Kernighan (1973),

which remained until 1987 as the largest TSP solved. In their work, the authors made

further rounds of cutting planes and IBM MPSX-MIP/370 interger-programming solver

22

was used to carry out a branch and bound search on the final linear programming

relaxation.

Grötschel et al, (1984), managed to exactly solve instances with up to 2392 cities, using

cutting planes and branch-and-bound.

Hopfield, (1986), explored an innovative method to solve combinatorial optimization

problems and implemented a neural network of the Hopfield Model (HM) into an electric

circuit that produces approximate solutions to the TSP quite efficiently.

Walshaw, (2002), derived, and implemented a multilevel approach to

the travelling

salesman problem. The resulting algorithm progressively

coarsens the problem, initialises a

tour, and then employs either

the Lin-Kernighan (LK) or the Chained Lin-Kernighan

(CLK) algorithm

to refine the solution on each of the coarsened problems in

reverse order.

In experiments on a well-established test suite

of 80 problem instances.

Walshaw, (2002), found multilevel configurations that

either improved the tour quality by

over 25% as compared to

the standard CLK algorithm using the same amount of execution

time, or that achieved approximately the same tour quality over

seven times more rapidly.

According to Walshaw, (2002), the multilevel variants

seemed to optimise far better the

more clustered instances with

which the LK and CLK algorithms have the most

difficulties.

Applegate et al, (2003, 2006), developed the program Concorde, which has been used in

many recent record solutions.

23

Reinel, (1991), published the travelling Salesman Problem Library (TSPLIB), a collection

of benchmark instances of varying difficulty, which has been used by many research

groups for comparing results.

Applegate et al, (1994), solved a travelling salesman problem which models the production

of printed circuit boards having 7397 holes (cities)..

Applegate, et al, (2008), described a computer code and data that together certify the

optimality of a solution to the 85,900-city travelling salesman problem, pla85900, the

largest instance in the TSPLIB collection of challenge problems, currently the largest

solved TSPLIB instance.

Cook et al, (2005), computed an optimal tour through a 33,810-city instance given by a

microchip layout problem

Haist et al, (2007), introduced an optical method based on white light interferometry in

order to solve the travelling salesman problem. To the authors‘ knowledge, it was the first

time that a method for the reduction of non–polynomial time to quadratic time had been

proposed. The authors showed that this achievement was limited by the number of

available photons for solving the problem. It turned out that the number of photons was

proportional to N
N
 for a travelling salesman problem with N cities and that for large

numbers of cities the method in practice therefore was limited by the signal–to–noise ratio.

Kohonen self organizing map is an important artificial neural network technique that uses

competitive, unsupervised learning to produce a low-dimensional discretized

representation of the input space of the training samples which preserves the topological

properties of the input space. The fuzzy set theory introduces the concept of membership

24

function to the learning process of Self Organizing Map which helps to handle the inherent

vagueness involved in most of the real life problems.

Chaudhuri et al, (2009), used fuzzy self organizing map with one dimensional

neighbourhood to find an optimal solution for the symmetrical Traveling Salesman

Problem. The solution generated by the Fuzzy Self Organizing Map algorithm was

improved by the 2-opt algorithm. Finally, the Fuzzy Self Organizing Map algorithm was

compared with Lin-Kerninghan Algorithm and Evolutionary Algorithm with Enhanced

Edge Recombination operator and self- proposed by Yang et al, (2008), adapting mutation

rate.

Yang et al, (2008), proposed, Shuffled frog-leaping algorithm (SFLA) is a new mimetic

meta-heuristic algorithm with efficient mathematical function and global search capability,

When applying the shuffled frog-leaping algorithm in TSP, the authors built memeplex

and submemeplex and the evolution of the algorithm, especially the local exploration in

submemeplex was carefully adapted based on the prototype SFLA.

 According to Yang et al, (2008), experimental results show that the shuffled frog leaping

algorithm is efficient for small-scale TSP. Particularly, for TSP with 51 cities; the

algorithm manages to find six tours which are shorter than the optimal tour provided by

TSPLIB.

Amponsah et al, (2010), used an algorithm due to Dharwalker, (2008), to find Hamilton

circuits in solving a ten-city TSP in Ghana.

 Ameyaw, (2010), also used simulated annealing to solve an eleven-city TSP of eleven

sales points of Unilever in Ghana. In both instances, the problems were modelled as

symmetric TSP.

25

2.2.1 Variants of Travelling Salesman Problem

Many forms of the TSP have been proposed by different authors in the literature. In the

next seven sections some of the various forms of the TSP will be reviewed.

The Selective Travelling Salesman Problem

 The Selective Travelling Salesman Problem is defined on a graph in which profits are

associated with vertices and costs are associated with edges. Some vertices are

compulsory. The aim is to construct a tour of maximal profit including all compulsory

vertices and whose cost does not exceed a preset constant.

Gendreau et al, (1998), developed several classes of valid inequalities for the symmetric

Selective Travelling Salesman Problem and used them in a branch-and-cut algorithm.

Depending on problem parameters, the proposed algorithm can solve instances involving

up to 300 vertices.

Non-Euclidean Visual Travelling Salesman Problem

In the task of finding the shortest tour of n cities given intercity costs, usually, the intercity

costs are 2-Dimentional Euclidean distances. In the presence of obstacles or in the case of

3-Dimentional surfaces, the intercity distances are in general not Euclidean. The TSP with

obstacles and on 3-Dimentional surfaces approximates our everyday visual navigation and

this leads to the Non-Euclidean visual travelling salesman problem

 Catrambone, et al, (2008),.proposed three questions that are related to the mechanisms

involved in solving TSP:

i. How do subjects find the intercity distances?

ii. How do they determine clusters of cities?

26

iii. How do they produce the TSP tour?

In their model, on Non-Euclidean visual travelling salesman problem, they found the non-

Euclidean distances (geodesics); the geodesic distances were then used as intercity costs in

a graph pyramid. The original TSP problem was represented by a sequence of problems

involving clusters of cities. The hierarchical clustering was performed by using a

Boruvka's minimum spanning tree. Close to the top of the pyramid, the original TSP

problem was represented at a very coarse level and involved very small number of ―cities‖.

This coarse representation was solved optimally. Expanding this coarse tour in a top-down

manner led to a solution of the original TSP. The new model had an adaptive spatial

structure and it simulated visual acuity and visual attention. The model solved the TSP

problem sequentially, by moving its attention from city to city.

The Generalized Travelling Salesman Problem (GTSP)

 The generalized travelling salesman problem (GTSP) is an extension of the TSP. In

GTSP, a partition of cities into groups is given and a minimum length tour that includes

exactly one city from each group is to be found.

The Probabilistic Travelling Salesman Problem

Campbell et al, (2007), defined the Probabilistic Travelling Salesman Problem (PTSP) as a

generalization of the well known Travelling Salesman Problem (TSP). In contrast to the

TSP, each city in the PTSP has to be visited only with a certain probability, thus allowing

more realistic models and scenarios. The goal here is to find a so called a-priori tour that

visits all cities exactly once, minimizing the expected cost over all possible a-posteriori

tours, where cities which do not require a visit are just skipped without changing the order

of the a-priori tour.

27

 As a generalization of the TSP, the PTSP is NP-hard and therefore algorithms computing

near optimal solutions in a reasonable amount of time are of great interest.

Formally, the PTSP can be defined over a complete undirected edge- and node-weighted

graph is the set of nodes which represent the customers,

 is the probability function that assigns to each node the probability that the

node requires a visit and is the symmetric cost function that represents the

non-negative travel costs between any two nodes

The Probabilistic Travelling Salesman Problem with

Deadlines (PTSPD)

Campbell et al, (2007), found out that time-constrained deliveries were one of the fastest

growing segments

of the delivery business, and yet there was surprisingly little

literature

that addressed time constraints in the context of

stochastic customer presence.

The authors began to fill that void by

introducing the probabilistic travelling salesman

problem with

deadlines (PTSPD) which is an extension of the well-known

probabilistic

travelling salesman problem (PTSP) in which, in

addition to stochastic presence, customers

must also be visited

before a known deadline.

Campbell et al, (2007), presented Two recourse models and

a chance constrained model

for the PTSPD.In their work, special cases were discussed for each model, and

computational experiments were used to illustrate under what conditions stochastic and

deterministic

models lead to different solutions.

The General Routing Problem (GRP)

28

The general routing problem (GRP) is the problem of finding

a minimum length tour,

visiting a number of specified vertices

and edges in an undirected graph.

Muyldermans et al, (2005), described how the well-known 2-opt and 3-opt local search

procedures for

node routing problems could be adapted to solve arc and general

routing

problems successfully. Two forms of the 2-opt and 3-opt

approaches were applied to the

GRP. The first version was similar

to the conventional approach for the travelling salesman

problem;

the second version included a dynamic programming procedure

and explored a

larger neighbourhood at the expense of higher

running times.

The Asymmetric Travelling Salesman Problem with Time Windows

In the asymmetric travelling salesman problem (ATSP) the cost or distance from city i to

city j is not the same as the cost or distance from city j to city i. The asymmetric travelling

salesman problem with time windows (ATSP-TW), an extension of ATSP, is a basic

model for scheduling and routing applications.

 Ascheuer et al, (2000), presented a formulation of the problem involving only 0/1

variables associated with the arcs of the underlying digraph. This had the advantage of

avoiding additional variables as well as the associated (typically very ineffective) linking

constraints. In the formulation, time-window restrictions were modelled using ―infeasible

path elimination‖ constraints. The authors presented the basic form of these constraints

along with some possible strengthening. Several other classes of valid inequalities derived

from related asymmetric travelling salesman problems were also described.

2.2.2 Applications of Travelling Salesman Problem

There are several practical applications of the TSP. Discussion that covers some possible

29

applications, not complete though, is given; we start with applications that can be modelled

directly as one of the variants given in the previous section.

Drilling of printed circuit boards

A direct application of the TSP is the drilling problem whose solution plays an important

role in economical manufacturing of printed circuit boards (PCBs).

Grötschel et al, (1991), gave a computational study in an industry application of a large

electronics company. To connect a conductor on one layer with a conductor on another

layer, or to position (in a later stage of the PCB production) the pins of integrated circuits,

holes have to be drilled through the board. The holes may be of different diameters. To

drill two holes of different diameters consecutively, the head of the machine has to move

to a tool box and change the drilling equipment. This is quite time consuming. Thus it is

clear at the outset that one has to choose some diameter, drill all holes of the same

diameter, change the drill, drill the holes of the next diameter, etc where the ―cities‖ are the

initial position and the set of all holes that can be drilled with one and the same drill. The

―distance‖ between two cities is given by the time it takes to move the drilling head from

one position to the other. The aim here is to minimize the travel time for the head of the

machine.

X-Ray crystallography

An important application of the TSP occurs in the analysis of the structure of crystals

(Bland and Shallcross, 1987; Dreissig and Uebach, 1990). Here an X-ray diffractometer is

used to obtain information about the structure of crystalline material. To this end a detector

measures the intensity of X-ray reflections of the crystal from various positions. Whereas

the measurement itself can be accomplished quite fast, there is a considerable overhead in

30

positioning time since up to hundreds of thousands positions have to be realized for some

experiments and the positioning involves moving four motors (Dreissig and Uebach,

1990). The time needed to move from one position to the other can be computed very

accurately. According to the authors, the result of the experiment does not depend on the

sequence in which the measurements at the various positions are taken. However, the total

time needed for the experiment depends on the sequence. Therefore, the problem consists

of finding a sequence that minimizes the total positioning time. This leads to a travelling

salesman problem.

Overhauling gas turbine engines

This application was reported by Plante, (1987), and occurs when gas turbine engines of

aircraft have to be overhauled. To guarantee a uniform gas flow through the turbines there

are so-called nozzle-guide vane assemblies located at each turbine stage. Such an assembly

basically consists of a number of nozzle guide vanes affixed about its circumference. All

these vanes have individual characteristics and the correct placement of the vanes can

result in substantial benefits (reducing vibration, increasing uniformity of flow, reducing

fuel consumption). The problem of placing the vanes in the best possible way can be

modelled as a TSP with a special objective function.

The order-picking problem in warehouses

This problem is associated with material handling in a warehouse (Ratliff and Rosethal,

1981)). Assume that at a warehouse an order arrives for a certain subset of the items stored

in the warehouse. Some vehicle has to collect all items of this order to ship them to the

customer. The relation to the TSP is immediately seen. The storage locations of the items

correspond to the nodes of the graph. The distance between two nodes is given by the time

31

needed to move the vehicle from one location to the other. The problem of finding a

shortest route for the vehicle with minimum pickup time can now be solved as a TSP.

Computer wiring

A special case of connecting components on a computer board is reported in Lenstra and

Kan, (1974), Modules are located on a computer board and a given subset of pins has to be

connected. In contrast to the usual case where a Steiner tree connection is desired, here the

requirement is that no more than two wires are attached to each pin. This leads to the

problem of finding a shortest Hamiltonian path with unspecified starting and terminating

points. A similar situation occurs for the so-called test bus wiring. To test the

manufactured

Board, one has to realize a connection which enters the board at some specified point, runs

through all the modules, and terminates at some specified point. For each module we also

have a specified entering and leaving point for this test wiring. This problem also amounts

to solving a Hamiltonian path problem with the difference that the distances are not

symmetric and that starting and terminating point are specified.

Vehicle routing

Suppose that in a city n mail boxes have to be emptied every day within a certain period of

time, say, 1 hour. The problem is to find the minimum number of trucks to do this and the

shortest time to do the collections using this number of trucks. As another example,

suppose that n customers require certain amounts of some commodities and a supplier has

to satisfy all demands with a fleet of trucks. The problem is to find an assignment of

customers to the trucks and a delivery schedule for each truck so that the capacity of each

truck is not exceeded and the total travel distance is minimized. Several variations of these

32

two problems, where time and capacity constraints are combined, are common in many

real-world applications.

Lenstra et al, (1974), Applied the method for the TSP to find good feasible solutions.

Control of robot motions

In order to manufacture some workpiece a robot has to perform a sequence of operations

on it (drilling of holes of different diameters, cutting of slots, etc.). The task is to determine

a sequence of the necessary operations that leads to the shortest overall processing time. A

difficulty in this application arises because there are precedence constraints that have to be

observed. This can be modelled as a problem of finding the shortest Hamiltonian path

(where distances correspond to times needed for positioning and possible tool changes)

that satisfies certain precedence relations between the operations.

33

CHAPTER THREE

METHODOLOGY

3.1 Introduction

Several exact and heuristic algorithms exist in the literature that can solve instances of the

TSP will be discussed in this chapter However, in this study, we used a heuristic method

namely Man-Min Ant System (MMAS) algorithm.

This algorithm is a member of ant colony algorithms family, in swarm intelligence

methods, and it constitutes some metaheuristic optimizations. Initially proposed by

Dorigo, (1992), in his PhD thesis, the first algorithm aimed to search for an optimal path

in a graph, based on the behavior of ants seeking a path between their colony and a source

of food. The original idea has since diversified to solve a wider class of numerical

problems, and as a result, several problems have emerged, drawing on various aspects of

the behavior of ants.

3.2 Formulation of TSP Model

The first step to solving instances of large TSPs must be to find a good mathematical

formulation of the problem. The mathematical structure is represented by a graph where

each city is denoted by a point (or node) and lines [(called arcs or edges)] are drawn

connecting every two nodes. Associated with every edge is a distance (or cost). When the

salesman can get from every city to every other city directly, then the graph is said to be

complete. A round-trip of the cities corresponds to some subset of the edges, and is called

a Hamilton tour or a Hamiltonian cycle in graph theory. The length of a tour is the sum of

the lengths of the lines in the round-trip.

http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Ants
http://en.wikipedia.org/wiki/Ant_colony

34

3.2.1 Formulation of the Asymmetric TSP

The problem can be defined as follows: Let G = (V,E) be a complete directed graph with

vertices W, |W|=n, where n is the number of cities, and edges E with edge length i jd for

(i,j). We focus on the asymmetric TSP case in which i jd  jid , for all (i,j). where i jc = i jd

The asymmetric TSP can be formulated as an integer linear programme in the following

way. Let n n distance matrix C = i jc be given. We the introduce a binary variable i jx by

 
1
0

if j is visited immediately after i
x

otherwiseij


11

1:
nn

ij ij
ji

P Minimize c x


  (3.1)

 Subject to

1

1 1,2,...,
n

ij
i

x for all j n


  (3.2)

1

1 1,2,...,
n

ij
j

x for all i n


  (3.3)

  | | 1 1,2,..., , 1 | | 1ij

i W j W

x W for all W n W n
 

       (3.4)

  0,1 , 1,2,...,ijx for all i j n  (3.5)

Equation (3.3) : Objective function, which minimize the total distance traveled

35

Equation (3.2) and (3.3): Constraints (3.2) and (3.3) define a regular assignment problem,

where (3.2) ensures that each city is entered from only one other city, while (3.3) ensures

that each city is only departed to on other city.

Constraint(3.4): is sub tour elimination constraint which ensures that every tour has at

most |W|-1 edges with both endpoints in the set W

Constraint(3.5):is the integrality constraint that ensures that the decision variable is either 0

or 1 However, the difficulty of solving TSP is that subtour constraints will grow

exponentially as the number of city grows large, so it is not possible to generate or store

these constraints. Many applications in real world do not demand optimal solutions.

3.2.2 The symmetric TSP Model

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with

vertices W, |W|=n, where n is the number of cities, and edges E with edge length dij for

(i,j). We focus on the symmetric TSP case in which i jd = jid , for all (i,j).

The formulation of symmetric TSP model in the Binary Linear programme form is;

1

2 :
1 1

n n
P Minimize c xi j i j

i j i


 
  

 (3.6)

 Subject to

 2 1,2,...,i j

j i

x for all i n


  (3.7)

  | | 1 1,2,..., , 2 | | 1i j

i W j W

x W for all W n W n
 

      (3.8)

36

  0,1 , 1,2,...,i jx for all i j n  (3.9)

ijc =the distance from city i to city j

i jx = the decision variable that is either 0 or 1

 W= arbitrary subset of {1,2,…,n}

 n=the total number of cities

Equation (3.6) is the objective function, which minimizes the total distance to be traveled.

Equation (3.7): Each edge is incident with exactly two cities

Equation (3.8):The subtour elimination constraint

Equation (3.9): The integrality constraint

3.3 Methods of Solving TSP

The two most popular exact methods that are used to solving IP problems are discussed.

They are cutting plane method and Branch and Bounds.

3.3.1 Cutting Plane Method

Cutting plane methods are exact algorithms for integer programming problems. They have

proven to be very useful computationally in the last few years, especially when combined

with a branch and bound algorithm in a branch and cut framework. These methods work

by solving a sequence of linear programming relaxations of the integer programming

problem.

 The relaxations are gradually improved to give better approximations to the integer

programming problem, at least in the neighborhood of the optimal solution. For hard

37

instances that cannot be solved to optimality, cutting plane algorithms can produce

approximations to the optimal solution in moderate computation times, with guarantees on

the distance to optimality.

Cutting plane algorithms have been used to solve many different integer programming

problems, including the traveling salesman problem (Gr¨otschel and Holland ,1991,

Padberg and Rinaldi, 1991, Applegate et al, 1994);the linear ordering problem (Gr¨otschel

et al, 1984, Mitchell and Borchers, 1996,Mitchell and Borchers, 1997); maximum cut

problems in (Barahona, et al, 1988, De Simone et al, 1995 and Mitchell, 1997) and

packing problems (Gr¨otschel, and Weismantel, (1996) , Nemhauser and Sigismondi,

(1992).

J¨unger et al. (1995) contains a survey of applications of cutting plane methods, as well as

a guide to the successful implementation of a cutting plane algorithm. Nemhauser and

Wolse (1992) provides an excellent and detailed description of cutting plane algorithms as

well as other aspects of integer programming..

3.3.1.1 Using the fractional algorithm of cutting plane

In this algorithm all coefficients including the right hand side need to be integer. This

condition is necessary as all variables (original, slack and artificial) are supposed to be

integer. The elements of A and b need not be integer although this can be transformed into

integers as shown below.

In case a constraint with fractional coefficient exist then both sides of the inequality

(equality) are multiplied by the least common multiple of the denominator (LCMD).

For instance
1 2

3 45 3 10
1 2 1 25 3

x x becomes x x   

38

3.3.1.2 Procedure for cutting plane algorithm

Solve the integer programming problem as a Linear Programming Problem.

If the optimal solution is integer stop else go to step c.

Introduce secondary constraints (cut) that will push the solution towards integrality

(Return to a).

We show how to constraint the secondary constraints in the following sections

3.1.3 The construction of the secondary constraints:

Given the integer problem

Minimize TZ=C X

 Subject to AX  b

 X 0 , integer

 X=Vector of decision variable.

TC =Vector coefficients

A=the given matrix

 B=vector coefficient

The optimal tableau of the Linear programming Problem is given in table 3 below:

For simplicity of notation let us have  ,X X X
B NB



 1(...)B MX X X and 1(...)NB NX W W

39

Table 3.1: Showing the variables to be considered in the Cutting Plane Method.

 Z X1 … Xi …XM W1 … WJ … WN Solution

Z 1 0 0 0 C1 … Cj … CN  0

X1

Xi

XM

0

0

0

1 0 0

0 1 0

0 0 1

 11 …  1j …  1N

 i1 …  ij …  iN

 M1 …  Mj …  MN

 1

 i

 M

Consider the ith equation where iX was required to be integer but found not integer.

 
1

.
N

i i ij j

j

X W 


  and i non integer : i = 1,…,M (3.10)

Any real number can be written as the sum of two parts , integer part and the fractional

part.

Let i = [i] + if and ij = [ij] + ijg (3.11)

then

 
1

[] []
N

i i i i j i j j

j

x f g w 


    and

…

…

…

…

…

…

40

     
1 1

N N

i ij j i i ij j

j j

f g W X W 
 

        (3.12)

 Where  a a and ([a] is integer part of a); 0 1if  ;

0 1ijg  ([] ([]and   is the integer part of )

 (note that 0if  as
iX is presently not integer)

Since all    1,..., 1,...,i jx i M and all W j N  must be integer, the right-hand side is

consequently integer and therefore the left-hand side is also integer thus from table 3.1

1

()
N

i ij j

j

f g W


  (Integer) (3.13)

0 0ij ijg and W  then from equation (3.3) with  
1

[] 0
N

i i i ij j

j

X f g W


  

Therefore

1

()
N

i i ij j

j

f f g W


  for all 1,...,i N (3.14)

 Since 0 1if  we have
1

() 1
N

i ij j

j

f g W


  and using (3.13) we obtain

1

() 0
N

i ij j

j

f g W


  (3.15)

 Constraint (13.15) is the cut and can be expressed as a secondary constraints by adding

slack variable:

 This gives

1 1

() 0 ()
N N

i ij j i i ij j i

j j

f g W S S g W f
 

       (3.16)

 for all 1,...,i M , Where 0iS  (integer slack variable).

41

3.3.1.4 Choice of the cut

Suppose two rows in table 3.1 gives non-integer solutions in
iX and

kX then there will be

two cuts based on iX and
kX having the following conditions:

i.
1

N

i ij j

j

f g W




ii.
1

N

k kj j

j

f g W




 Cut (i) is stronger than cut (k) if

 (iii) i kf f and ij kjg g for all j

With the strict inequality happening at least once.

In other words a cut is deeper in the iX direction as if increases and ijg decreases.

The condition (iii) is difficult to implement computationally and therefore empirical rule

that take into account the above definition have been developed.

(a)
1 1

; 1,..., ;
N N

r r k i i k i

j i

f g Max f g i M X for a specified k
 

 
  

 
 

(b)
1 1

; 1,..., ; int
N N

r r j i i j i i

j i

f g Max f g i M X but X required tobe eger
 

 
   

 
 

(c)  ; 1,..., ,r ik i i kf g Max f g i M for a specified k 

 Criterion (b) is more efficient as this represents the definition given by (iii) better.

42

3.3.1.5 Prototype Example

Maximize
1 27 9Z x x 

 Subject to

1 23 6x x  

1 27 35x x 

1 0x  , 2 0x  , integer

Solution:

Maximize 1 2 1 27 9 0 0Z x x s s   

Subject to

1 2 13 1 6x x s   

1 2 27 1 35x x s  

Table 3.2: Final Tableau for first iteration

jC 7 9 0 0

BC Basic

variable

1x 2x 1s 2s Solution

9
2x 0 1 7

22

1

22

7

2

7
1x 1 0 1

22



1

22

9

2

jZ 7 9 0 0 63

j jC Z 0 0 28

11



15

11



43

Let
1s =

3x ,
2s =

4x ,
5Z x

From the tableau the optimal solution becomes Z=63, where
2x =

7

2
 and

1x =
9

2

Since
2x and

1x are not integers, we apply the concepts of cutting plane techniques.

2x +

7

22
3x +

1

22
4x =

7

2
 (i)

1x +0
2x -

1

22
3x +

3

22
4x =

9

2
 (ii)

Choice of cut

 Taking equations (i) and (ii)

 2x +
3

7
0

22
x

 
 

 
 +

4

1
0

2
x

 
 

 
=

1
3

2

 
 

 
 (i)a

 1x -
3

21
1

22
x

 
 

 
 +

4

3
0

22
x

 
 

 
 =

1
4

2

 
 

 
 (ii)b

3 4 2 3 4

1 7 1
0 0

2 22 2
x x x x x     - (iii)

3 4 1 3 4

1 21 3
0

2 22 22
x x x x x     (iv)

2 23 24

1 7 1
, ,

2 22 2
f g g  

3 33 34

1 21 3
, ,

2 22 22
f g g  

44

Using

1 1

; 1,..., ; int
N N

r r j i i j i i

j j

f g Max f g i M X but X required tobe eger
 

 
   

 
 

 2when i  , 3,4j 

2

1

2
f  ,

23

7

22
g  and

24

1

22
g 

4

3

i j

j

g


 =
7

22
+

1

22
=

8

22

 3when i  , 3,4j 

 33

21

22
g  and 34

3

22
g 

4

3

21 3 24

22 22 22
i j

j

g


  

1 1
2 2max ,

8 24
2222

    
    

      

22 22
max ,

16 48

 
 
 

=
22

16

Hence (ia) would be considered to be part of the new constraints.

Thus 3 4

1 7 1
0

2 22 22
x x  

and 3 4 3

1 7 1
0

2 22 22
x x S   

3 4 3

7 1 1

22 22 2
x x s    

The system of equations becomes;

1 2 3 4 57 9 0 0 0Z x x x x x    

45

Subject to;

2x +
7

22
3x +

1

22
4x =

7

2

1x +0
2x -

1

22
3x +

3

22
4x =

9

2

3 4 5

7 1 1

22 22 2
x x x    

3 5S X

Table 3.3: Final Tableau for the second iteration

jc 7 9 0 0 0

Bc Basic

variable

1x 2x 3x 4x 3s Solution

9
2x 0 1 0 0 1 3

7
1x 1 0 0 1

7

1

7



32

7

0
3x 0 0 1 1

7

22

7



11

7

jz 7 9 0 1 0 59

j jc z 0 0 0 -1 -8

 maxz =59 , 2x =3 , 1x =
32

7
 and 3x =

11

7

Since 1x and 3x are not integers we apply the cutting plane techniques.

Using the fractional algorithm;

46

1 4 5

1 1 32

7 7 7
x x x   (i)*

1 4 5

1 6 4
0 1 4

7 7 7
x x x

   
          

   

1 4 5 4 5

4 1 6
0 1 4

7 7 7
x x x x x       (i)*

3 4 5

1 22 11

7 7 7
x x x   (ii)*

3 4 5

1 6 4
0 4 1

7 7 7
x x x

   
          

   

3 4 5 4 5

4 1 6
0 4 1

7 7 7
x x x x x

 
       

 
 (ii)*

Choice of Cut

From (1a)* 2 24 25

4 1 6
, ,

7 7 7
f g g  

From (2a)* 3 34 35

4 1 6
, ,

7 7 7
f g g  

Using

1 1

; 1,..., ; int
N N

r r j i i j i i

j j

f g Max f g i M X but X required tobe eger
 

 
   

 
 

 When 2i  , 4,5j 

 2

4

7
f  24

1

7
g  , 25

6

7
g 

Therefore

5

4

1 6
1

7 7
i j

j

g


  

When 3i  , 4,5j 

47

3

4

7
f 

34 35

1 6
,

7 7
g g 

5

4

1 6
1

7 7
i j

j

g


  

32

32

5 5

4 4

4 4
max , max ,

7 7

ii

i j i j

j j

ff

g g


 

 
 

        
 
  
 

=
4

7

Tie will be broken arbitrary by choosing equation (ii)* as the new constraints to be added.

Where 3 5s x .

The system of equations becomes;

1 2 3 4 5 47 9 0 0 0 0Z x x x x x s     

 Subject to

 2 3x 

 1 4 5

1 1 32

7 7 7
x x x  

 3 4 5

1 22 11

7 7 7
x x x  

 4 5 4

1 6 4

7 7 7
x x s    

48

Table 3.4: Final tableau for the last iteration

jc 7 9 0 0 0 0

Bc Basic

variable

1x 2x 3x 4x 5x 4s Solution

9
2x 0 1 0 0 0 0 3

7
1x 1 0 0 0 -1 1 4

0
3x 0 0 1 0 -4 1 1

0
4x 0 0 0 1 6 -7 4

jz 7 9 0 0 -7 7 55

jc - jz 0 0 0 0 7 -7

Now the max 55Z  , 2x =3 , 1x =4 , 3x =1 and 4x =4

Since all the variables are integers, we stop here.

 3.4 Branch and Bound Method

Branch-and-bound algorithms was developed by Eastman, (1958), Little et al, (1963), and

Shapiro, (1966),. Additionally, Hatfield and Pierce, (1966), used branch-and-bound

algorithms to solve a job sequencing problem closely related to the traveling salesman

problem, but further constrained because of job deadlines to be met. The work of Little, et

al, (1963), is a tour-building algorithm, while the work of Eastman and Shapiro are

examples of subtour elimination algorithms. The authors are not aware of a branch-and-

bound algorithm based upon tour-to-tour improvement, although presumably one could be

49

constructed. A rather complete survey of branch-and-bound methods has been given by

Lawler and Wood, (1966).

The problem can be modeled as

Maximize
1

n

j j

j

Z C X




Subject to
1

n

i j i

j

a x b


 , 1 i m 

 and jX is an integer ,1 j n 

To solve such integer programming problem the following steps should be considered.

3.4.1 Branch and Bound Algorithm .

The steps below are used in the branch and bound algorithm

STEP 1: Relaxed problem 0P with respect to integrality condition is called the relaxed

problem. This leads to the following linear programming problem which is called the

relaxed problem,

 0 :P Maximize
1

n

j j

j

Z C X




 Subject to:

1

n

i j j i

j

a x b


 , 1 i m 

 0jX  jX is integer

We solve the relaxation problem 0P by the simplex method.

50

STEP 2: If in the solution of
0P every variable that is supposed to be an integer is indeed

an integer , then we are done .If this is not the case, then there exist at least one variable

which is required to be an integer and whose value in our solution is not an integer. Pick

any such variable and branch on it as follows

 STEP 3: Suppose that at least one variable jX where (1 j n )

has a non-integer value jX = jK when it should been an integer.

We define [jK] to be the lower integer part of jK so that [] [] 1j j jK X K   .Since jX

must be an integer, it follows that it must obey exactly one of the following constraints.

(i) []j jX K or (ii) [] 1j jX K 

STEP 4: To branch on jX means solving the following problem.

Form two sub problems 1 2P and P to replace the current problem 0P adding a lower

bound constraint to one and an upper-bound constraint to the other for the variable selected

above in step 3.It then partition the current subset of solutions into two new subsets of

solutions.

We now solve the LP of 1P such that

(iv)  1 0: []j jP P x k  and the problem

  2 0: [] 1j jP P x k  

51

The branching is illustrated in the tree of figure 3.1 below

STEP 5: Let maximum objective function value of the two sub problems be Z= iM in

iP , 1,2i  Since the feasible region of problem iP is a subset of the feasible region of 0P ,

it follows that iM 0M , 1,2.i  Hence , 0M is an upper bound to the optimal solutions 0f

the problems 1P and 2P .Test the problems 1P and 2P , for feasibility, discard any

infeasible problem and solve the feasible ones. If, in the solution of 1P or 2P all the

variables in the original problem that satisfy integrality conditions are integers, we are

done and our optimal value is either 1M or 2M , depending on which is the larger one.

* 1j jX K   

1P : Maximize
1

n

j j

j

Z C X




 Subject to
1

n

i j i

j

a x b


 ,

*

j jX K   

 1 i m  0jX  and jX is an

integer 1 j n 

*

j jX K   

2P : Maximize
1

n

j j

j

Z C X




 Subject to
1

n

i j i

j

a x b


 ,

* 1j jX K   

 1 i m  0jX  and jX is an

integer ,1 j n 

0P : Maximize
1

n

j j

j

Z C X




 Subject to
1

n

i j i

j

a x b


 ,

 1 i m  0jX  and jX is an integer ,1 j n 

52

STEP 6: If , in the solution of a problem
iP , 1,2.i  , all the variables that should be

integers are indeed integers , we say that the problem
iP is fathomed. If either

1P or
2P is

not fathomed, we branch on it, choosing the problem with the higher bound. We continue

in this manner until some problems have been fathomed and all the unfathomed problems

have bounds lower than those in the fathomed problems. We then select the solution of the

fathomed problems with the highest objective function value as our solution.

3.4.1.1 Prototype Example

Using the steps given ,we consider the following problem:

Minimize Z= 1` 24X X (i)

Subject to ;

1` 22 8X X  (ii)

1` 2 6X X  (iii)

1` 0X  , 2` 0X  (iv)

1 2,X X are integers (v)

STEP 1 : The algorithm begins by solving (i) to (iv) as an LP problem. This has the

following optimal solutions for *

0 1

10
,

3
P X  ,

2

4

3
X   and

26 2
8

3 3
Z    is the lower

bound on the set of all feasible solutions .If this first solution had satisfied (v), it would

have been optimal for the integer programming problem and the algorithm would have

been terminated. However, as this is not the case , we shall proceed.

53

Figure 3.1: Solution tree for Dakin’s algorithm.

STEP (2):Since * *

1 2X and X both have non-integer values in step 1.Arbitrarily select one to

branch on .The set of feasible solutions is partitioned into two subsets. One set contains all

the feasible solutions with the addition of constraint 1
10[] 3

3
X    and the other contains

the set of feasible solutions with the addition of constraint 1
10[] 1 4

3
X     .This reduces

the region of feasible solutions of the LP problem, but leaves the region of feasible

solutions of the integer Linear programming problem unchanged, since there are no integer

solution between 3= 10[]
3

 and 4= 10[] 1
3
 .Therefore, iteration 1 begins by partitioning

the entire set of solutions into the two subsets below.

(1) Solution in which 1 3X 

1 4X  

 1 3X  

Node 2

1P : 9Z  

 1 3X  

 2
3

2
X  

Node 1

0P 28
3

Z   :

1

10

3
X




2

4

3
X




Node 3

2 :P Z 

Infeasible

Solution

54

(2) Solutions in which
1 4X 

 We now create two LP problems,
1P and

2P :

1P : Minimize 1 24Z X X 

Subject to
1 22 8X X 

1 22 6X X 

1 3X 

1 0X  , 2 0X  1 2,x x integers

2P : Minimize 1 24Z X X 

Subject to 1 22 8X X 

1 22 6X X 

1 4X  1 0X  , 2 0X  1 2,x x integers

For problem 1P ,we solve the corresponding LP problem. The solution is

1 3X   , 2
3

2
X   and 9Z   .

The solution is still non-feasible for the original problem, but 9Z   is the lower bound on

the set of all feasible solutions with 1 3X   ,as shown in figure(2).Also, the problem

corresponding to 2P is solved by using the corresponding LP problem. There is no feasible

solution for problem 2P .

55

Figure 3.2 : The complete solution tree for Daskin’s algorithm.

STEP 3 : Node 2 of problem 1P is the only one for branching. The solutions with

*

2
3

2
X  from problem 1P is partitioned into two subset, one with *

2
3[] 1

2
X   and the

other with 2 2X   .

These subsets correspond to Nodes 4 and 5 respectively of problems 3P and 4P as shown

in figure2.4.2.Therefore the sub problem to solve at node 4 of problem 3P is

3 :P Minimize 1 24Z X X 

1 3X  

Node 3

2 :P Z 

Infeasible

Solution

1 4X  

Node 1

0P

28
3

Z   :

1

10

3
X




2

4

3
X




Node 4

3P : Z 

Infeasible

solution

Node 5

4P : Z =10

1 3X



2 2X



2 2X



2 1X  
Node 2

1P : 9Z  

 1 3X  

2
3

2
X  

56

Subject to

1 22 8X X 

1 22 6X X 

1 3X 

2 1X 

 1 0X  , 2 0X 

By solving the LP of problem
3P at Node 4, we find the solution to be infeasible. The sub

problem 4P at Node 5 is

Minimize 1 24Z X X 

Subject to

1 22 8X X 

 1 22 6X X 

2 2X 

1 0X  , 2 0X  , 1X and 2X are integers.

By solving the LP of problem 4P at Node 5, the solution is

1 3X   , 2 2X   , and 10Z   .

1 3X   and 2 2X   is the optimal solution of the original problem with an

optimal value of the objective function being 10Z   .

57

3.6 Heuristic Approaches to Solving TSP

According to Hillier and Lieberman, (2005), heuristic method is a procedure that is likely

to discover a very good feasible solution, but not necessarily an optimal solution, for the

specified problem being considered. No guarantee can be given about the quality of the

solution obtained, but a well-designed heuristic method usually can provide a solution that

is at least nearly optimal. The procedure often is a full-fledged iterative algorithm, where

each iteration involves conducting a search for a new solution that might be better than the

best solution found previously. When the algorithm is terminated after a reasonable time,

the solution it provides is the best one that was found during any iteration. Heuristic

methods are often based on relatively simple common sense ideas on how to search for a

good solution. These ideas need to be carefully tailored to fit the specific problem of

interest. Thus, heuristic methods tend to be ad hoc in nature). TSP heuristics can be

partitioned into two classes: construction heuristics and improvement heuristics.

Construction Heuristics Construction heuristics build a tour from scratch and stop when

one is

 produced. The simplest and most obvious construction heuristic is nearest neighbor (NN):

the tour starts at any vertex x of the complete directed or undirected graph; we repeat the

following loop until all vertices have been included in the tour: add to the tour a vertex

(among vertices not yet in the tour) closest to the vertex last added to the tour.

Improvement Heuristics: Improvement heuristics start from a tour normally obtained

using a construction heuristic and iteratively improves it by changing some parts of it at

each iteration. Improvement heuristics are typically much faster than the exact algorithms,

yet often produce solutions very close to the optimal one.

58

 It appears that currently the best improvement heuristics are based on local search, on

genetic algorithm approach, or on a mixture of the two, which is often called memetic

algorithms.

The most developed TSP improvement algorithms are local search algorithms that use

edge exchange, in which a tour is improved by replacing k its edges with k edges not in the

solution. For STSP, the 2-opt algorithm starts from an initial tour T and tries to improve T

by replacing two of its non-adjacent edges with two other edges to form another tour. Once

an improvement is obtained, it becomes the new T. The procedure is repeated as long as an

improvement is possible (or a time limit is exceeded). For k 3, the k-opt algorithm is the

same as 2-opt except that k edges are replaced at each iteration (Rego and Glover 2002).

The best local search algorithms use a variable k-Opt search called the Lin-Kernighan local

search, where at each iteration the actual value of k varies depending on which value of k

gives the best improvement (Rego and Glover ,2002).

3.6.1 Sub-Tour Reversal Algorithm

The sub-Tour Reversal Algorithm is a local improvement procedure of a TSP that adjusts

the cities visited in the current trial solution by a subsequence of the cities of the current

solution and simply reversing the order in which that subsequence of cities is visited.(The

subsequence being reversed can consist of as few as two cities, but also can have more). It

improves upon the current trial solution to obtain a local optimum.

The Sub-tour reversal algorithm is implemented below

1. Initialization: Start with any feasible tour as the initial trial solution

2. Iteration: For the current trial solution, consider all possible ways of performing a

sub tour reversal (exclude the reversal of the entire tour). Select the one that

59

provides the largest decrease in the distance to the new trial solution. (Ties may be

broken arbitrary)

3. Stopping Rule: Stop when no sub-tour reversal will improve the current trial

solution. Accept this solution as the final solution. Otherwise go to step

The example shows the network of a traveling salesman problem with seven cities. City 1

is the salesman‘s city.

Figure 3.3: Travel Salesman Problem

Therefore, starting from city1 the salesman must choose a route to visit each of the other

cities exactly once before returning to city 1. The number next to each link between each

pair of cities represents the distance (or cost or time) between these cities. We assume that

the distance is the same in either direction. The objective is to determine which route will

minimize the total distance that the salesman must travel.

Let the initial trial solution for the network in figure 3.3 is to visit the cities in numerical

order: 1-2-3-4-5-6-7-1 with d(i,j) representing the distance from cityi to cityj

Trial solution:1-2-3-4-5-6-7-1 gives distance

1

2

4

3

5

6

9

12

12

10

12

9

7
6

10

1

1

1

1

1

1

1

11
3

7

11
8

60

Distance=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69

If we select, say, the subsequence 3-4 and reverse it, we obtain the new trial solution:

1-2-4-3-5-6-7 with distance

Distance =d(1,2)+d(2,4)+d(4,3)+d(3,5)+d(5,6)+d(6,7)+d(7,1)=65

Thus, this particular sub-tour reversal has succeeded in reducing the distance for the

complete tour from 69 to 65.

Figure 3.4 below depicts this sub-tour reversal, which leads from the initial solution on the

left to the new trial solution on the right.

The dashed lines indicate the links that are deleted from the tour (on the left) or added to

the tour (on the right).

(a)Initial solution (b):New solution

Figure 3.4: A sub-tour reversal that replaces the tour on the left (the initial trial

solution) by the tour on the right (the new trial solution)

Applying the sub-tour reversal algorithm to this example starting with 1-2-3-4-5-6-7-1 as

the initial solution, there are four possible sub-tour reversals that would improve upon this

1

2

3

4

5
6

7

12
11

9

6

12

Distance=65

12

3 1

2

3

4

5
6

7

12
8 11

11

9

6

12

Distance=69

61

solution. These sub-tour reversals are as listed in the second, third, fourth and fifth rows

below. 1-2-3-4-5-6-7-1

Distance =d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)= 69 (i)

Reverse ii-iii: 1-3-2-4-5-6-7-1

Distance =d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)= 68 (ii)

Reverse iii-iv: 1-2-4-3-5-6-7-1

Distance =d(1,2)+d(2,4)+d(4,3)+d(3,5)+d(5,6)+d(6,7)+d(7,1)= 65 (iii)

Reverse iv-v: 1-2-3-5-4-6-7-1

Distance =d(1,2)+d(2,3)+d(3,5)+d(5,4)+d(4,6)+d(6,7)+d(7,1)= 65 (iv)

Reverse v-vi: 1-2-3-4-6-5-7-1

Distance =d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,5)+d(5,7)d(7,1)= 66 (v)

The two solutions with Distance = 65 tie for providing the largest decrease in the distance

traveled, so suppose that the first of these, 1-2-4-3-5-6-7-1 (as shown on figure 2.5.2) is

chosen arbitrarily to be the next trial solution. This completes the first iteration.

The second iteration begins with the tour 1-2-4-3-5-6-7-1 as the current trial solution. For

this solution, there is only one sub-tour reversal that will provide an improvement, as listed

below in equation vi:

 1-2-4-3-5-6-7-1

Distance =d(1,2)+d(2,4)+d(4,3)+d(3,5)+d(5,6)+(6,7)+d(7,1)= 65

Reverse iii-v-vi: 1-2-4-6-5-3-7-1

62

Distance =d(1,2)+d(2,4)+d(4,6)+d(6,5)+d(5,3)+d(3,7)+d(7,1)= 64 (vi)

Figure 3.5 shows this sub-tour reversal, where the entire subsequence of cities 3-5-6 on the

left row is visited in reverse order (6-5-3) on the right.

(a) Initial solution (b) New solution

Figure 3.5: The sub-tour reversal of 3-5-6 that leads from the trial solution on the left

to an improved trial solution on the right.

Thus, the tour of equation 6 traverses the link 4-6 instead of 4-3, as well as the link 3-7

instead of 6-7, in order to use the reverse order 6-5-3 between cities 4 and 7.

But 1-2-4-6-5-3-7-1 is not the optimal solution. The optimal solution turns out to be

 1-2-4-6-7-5-3-1

Distance =d(1,2)+d(2,4)+d(4,6)+d(6,7)+d(7,5)+d(5,3)+d(3,1)= 63

(or 1-3-5-7-6-4-2-1 by reversing the order of this entire tour). However, this solution

cannot be reached by performing a sub-tour reversal that improves 1-2-4-6-7-5-3-1. In this

case, the algorithm stops.

1

2

3

4

5
6

7

12
11

9

6

12

Distance=64

12

3
1

2

3

4

5
6

7

12 11

9

6

12

Distance=65 3

10

9

63

 The sub-tour, 1-2-4-6-7-5-3-1, is a local optimum solution because there is no better

solution within its local neighborhood that can be reached by performing a sub-tour

reversal. The solution is trapped in a local optimum.

3.7 Tabu Search

The concept of Tabu Search (TS) is derived from artificial intelligence where intelligent

use of ―memory‖ helps in exploiting useful historical information. The memory concept of

TS is quite crucial. Golden et al (1998) defines two types of memory: Short term and Long

term memory. The short term memory is imposed to restrict the search from revisiting

solutions that have already been considered and to discourage the search from cycling

between subsets of solutions. On the other, the long term memory is used to diversify the

search.

3.7.1 The tabu search Algorithm

The Tabu Search (TS) based algorithms continue the search even if a locally optimal

solution is found. Briefly speaking, TS is a process of subsequent moves from one local

optimum to another. The best local optimum found during this process is the resulting

solution of TS. Thus, TS uses extended descent local search to escape. However, it has the

mechanism of trapping local optima. Consequently, it explores much larger part of the

solution space when compared with local search (LS). Hence, TS offers more

opportunities for discovering high quality solutions than traditional LS (

http//itc.ktu.it/itc32/Misev32.pdf).

The central idea of the TS method is allowing climbing moves when no improving

neighboring solution exists, i.e. a move is allowed even if a new solution s′ from the

neighborhood of the current solution s is worse than the current one. Naturally, the return

to the locally optimal solutions previously visited is to be forbidden in order to avoid

64

cycling of the search. Thus, TS is based on a methodology of prohibitions: some moves are

"frozen" (become "tabu") from time to time (http//itc.ktu.it/itc32/Misev32.pdf)

More formally, TS starts from an initial solution s° in S. The process is then continued in

an iterative way moving from a solution s to a neighbouring one s′. At each step of the

procedure, a certain subset Θ′(s) of the neighbouring solutions of the current solution is

considered, and the move (to the solution s′ Θ′(s)  Θ(s)) that improves most the

objective function value f is chosen. Naturally, s′ must not necessary be better than s: if

there are no improving moves, the TS algorithm chooses one that least degrades

(increases) the objective function. In order to eliminate an immediate returning to the

solution just visited, the reverse move must be forbidden. This is done by storing the

corresponding solution (move) (or its "attribute") in a memory (called a tabu list (T)). The

tabu list keeps information on the last |T| moves which have been done during the search

process (thus, a move from s to s′ is considered as tabu if s′, or its "attribute", is contained

in T). This way of proceeding hinders the algorithm from going back to a solution reached

in the last |T| steps. However, the straightforward prohibition may sometimes lessen the

efficiency of the search. Moreover, it might be worth returning after a while to a solution

visited previously to search in another promising direction. Consequently, an aspiration

criterion is introduced to permit the tabu status to be dropped under certain favourable

circumstances. Usually, a move from s to s′ (no matter its status) is permitted if the

solution f (s′) at s′ is better than the solution f(s
∗
) at s

∗
 , where s

∗

is the best solution found

so far. The resulting decision rule can thus be described as follows: replace the current

solutions by the new solution s′ if f(s′) is better than f(s
∗
)

The search process is stopped as soon as a termination criterion is satisfied (for example, a

fixed a priori number of iterations (trials) have been performed .

65

The framework of the Tabu Search for the problem: Optimize (),f x x S where S is the

solution space, consists of

Step 1.

 Initialization: A starting solution generated by choosing a random solution .x S the

evaluating function f (x) is used to evaluate x. The solution is stored in the algorithm

memory called the Tabu list.

 Step 2..

Neighborhood exploration: All possible neighbors N (s) of the solution x are generated

and evaluated. Solutions in the Tabu list are unreachable neighbors; they are Taboo

(Tabu).

Step 3

 New solution: A new solution is chosen from the explored neighborhood. This solution

should not be found in the Tabu list before it is discovered and has to have the best move

evaluation value of f (x) for all reachable neighbors of x.

i.Do Tabu check on the new solution. If successful, replace the current solution and update

the Tabu list and other Tabu attributes. Here the new solution evaluation can be worse

compared with that of the current solution. This enables the procedure not to be trapped at

a local optimum.

ii.If the solution is in the Tabu list, then check the aspiration level. If successful replace the

current solution and update the Tabu list and other Tabu attributes.

iii.If checks (i) and (ii) are not successful, then keep the current solution, otherwise replace

the current solution by the new solution.

66

iv.Compare the best to the current solution. If the current solution is better than the best

solution, then replace the best solution.

v.Until loop condition is satisfied, go to Step 2.

vi.Until termination condition is satisfied, go to Step 1

3.6.1.1 Prototype Example

Using the matrix representing a complete graph of figure 3.6, we find the optimal value by

applying the Tabu Search algorithm.

 1 2 3 4 5 6 7

1 0 12 10 21 13 21 12

2 12 0 8 12 11 17 17

3 10 8 0 11 3 9 9

4 21 12 11 0 11 10 18

5 13 11 3 11 0 6 7

6 21 17 9 10 6 0 7

7 12 17 9 18 7 7 0

 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: Tabu Search algorithm.

First iteration

Tabu List = [9, 9, 9]

Tabu position = [0, 0, 0, 0, 0, 0, 0, 0]

Tabu state = [0, 0, 0, 0, 0, 0, 0, 0, 3]

We randomly take the initial solution (0)x =[1,2,3,4,5,6,7,1]

Objective value ((0)x) =d ((0)x)

67

d((0)x)=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69

We find the move values by applying the method

(,) [(1,) (,) (, 1)] [(1, 1) (,) (, 1)]i j d i j d j i d i j d i j d i j d j j          

Where i and j are the move values.

We check the move values of (2,3),(3,4),(4,5),(5,6) by using the matrix

(2,3)  2, 3i j 

(2,3) [(1,3) (3,2) (2,4)] [(1,2) (2,3) (3,4)]d d d d d d      =10+8+12-12-8-11= -1

(3,4) 3, 4i j  

(3,4) [(2,4) (4,3) (3,5)] [(2,3) (3,4) (4,5)]d d d d d d      =12+11+3-8-11-11= -4

(4,5) 4, 5i j  

(4,5) [(3,5) (5,4) (4,6)] [(3,4) (4,5) (5,6)]d d d d d d      =3+11+10-11-11-6= -4

(5,6) 5, 6i j  

(5,6) [(4,6) (6,5) (5,7)] [(4,5) (5,6) (6,7)]d d d d d d      =10+6+7-11-6-9= -3

We break tie arbitrary by considering the least move value (3, 4)

Thus d ((0)x) + the move value (3, 4) =69-4=65.

By swapping (3,4) we get the new solution (1)x =[1,2,4,3,5,6,7,1] and the objective value

d((1)x)= (1,2) (2,4) (4,3) (3,5) (5,6) (6,7) (7,1)d d d d d d d      =65

68

Since d ((1)x) <d ((0)x), we assign (0) (1)x x

Second Iteration

Then new solution is (0)x = [1, 2, 4, 3, 5, 6, 7, 1]

Tabu List = [4, 9, 9]

Tabu position= [0, 0, 0, 0, 0, 0, 0, 1]

Tabu state= [0, 0, 0, 1, 0, 0, 0, 0, 2]

We find the move values (2, 4), (3, 5), (5, 6)

(2,4) 2, 4i j  

(2,4) [(1,4) (4,2) (2,5)] [(1,2) (2,4) (4,5)]d d d d d d      = 21+12+11-12-12-12=9

(3,5) 3, 5i j  

(3,5) [(2,5) (5,3) (3,6)] [(2,3) (3,5) (5,6)]d d d d d d      =11+3+9-8-3-6=6

(5,6) 5, 6i j  

(5,6) [(4,6) (6,5) (5,7)] [(4,5) (5,6) (6,7)]d d d d d d      =10+6+7-11-6-9= -3

The least move value is (5, 6)

Thus d ((0)x) + the move value (5, 6) =65-3=62

By swapping (5, 6) we obtain the solution (1)x = [1, 2, 4, 3, 6, 5, 7, 1].

d((1)x)= (1,2) (2,4) (4,3) (3,6) (6,5) (5,7) (7,1) 62d d d d d d d      

Since d ((1)x) <d ((0)x), we assign (0) (1)x x

69

Third Iteration

The new solution is (0)x = [1, 2, 4, 3, 6, 5, 7, 1].

Tabu List = [6, 4, 9]

Tabu position= [0, 0, 0, 0, 0, 0, 1, 1]

Tabu state= [0, 0, 0, 1, 0, 1, 0, 0, 1]

We find the move values (2, 4), (3, 6)

(2,4) 2, 4i j  

(2,4) [(1,4) (4,2) (2,5)] [(1,2) (2,4) (4,5)]d d d d d d      = 21+12+11-12-12-11=9

(3,6) 3, 6i j  

(3,6) [(2,6) (6,3) (3,7)] [(2,3) (3,6) (6,7)]d d d d d d      =17+9+9-8-9-9= 9

We break tie arbitrary by taking the move value (3, 6)

Thus d ((0)x) + the move value (3, 6) =65+9=74

(1)x =[1,2,4,6,3,5,7,1]

d ((1)x) =65

The process continues until the optimal solution is obtained.

3.8 Simulated Annealing

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global

optimization problem of applied mathematics, namely locating a good approximation to

the global minimum of a given function in a large search space. It is often used when the

search space is discrete (e.g., all tours that visit a given set of cities). For certain problems,

70

simulated annealing may be more effective than exhaustive enumeration — provided that

the goal is merely to find an acceptably good solution in a fixed amount of time, rather

than the best possible solution.

The name and inspiration come from annealing in metallurgy, a technique involving

heating and controlled cooling of a material to increase the size of its crystals and reduce

their defects. The heat causes the atoms to become unstuck from their initial positions (a

local minimum of the internal energy) and wander randomly through states of higher

energy; the slow cooling gives them more chances of finding configurations with lower

internal energy than the initial one.

By analogy with this physical process, each step of the SA algorithm replaces the current

solution by a random "nearby" solution, chosen with a probability that depends on the

difference between the corresponding function values and on a global parameter T (called

the temperature), that is gradually decreased during the process. The dependency is such

that the current solution changes almost randomly when T is large, but increasingly

"downhill" as T goes to zero. The allowance for "uphill" moves saves the method from

becoming stuck at local minima—which are the bane of greedier methods.

The method was independently described by Kirkpatrick et al in 1983 and by V. Černý in

1985 . The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo

method to generate sample states of a thermodynamic system, invented by N. Metropolis

et al. in 1953 .

3.8.1 Using simulated Annealing to solve TSP

The TSP was one of the first problems to which simulated annealing was applied, serving

as an example for both Kirkpatrick et al, (1983), and Cerny, (1985)., Since then the TSP

71

has continued to be a prime test bed for the approach and its variants. Most adaptations

have been based on the simple schema presented in Figure below, with implementations

differing as to their methods for generating starting solutions (tours) and for handling

temperatures, as well as in their definitions of equilibrium, frozen, neighbor, and random.

Note that the test in Step 6 is designed so that large steps uphill are unlikely to be taken

except at high temperatures t. The probability that an uphill move of a given cost will be

accepted declines as the temperature is lowered. In the limiting case, when T =0, the

algorithm reduces to a randomized version of iterative improvement, where no uphill

moves are allowed at all.

3.8.1.1 General schema for a simulated annealing algorithm

 Step 1. Generate a starting solution S and set the initial solution S * S.

Step 2. . Determine a starting temperature T.

Step 3. While not yet at equilibrium for this temperature, do the following:

 Step 4. Choose a random neighbor Sof the current solution.

Step 5 . Set Length(S) Length(S).

Step6.. If 0 (downhill move):

Set S S.

.If Length(S) Length(S *), set S * S.

 Else (uphill move):

Step 7 .Choose a random number r uniformly from [0, 1].

72

If r  Te


 , set S S.

Step 8. End ‗‗While not yet at equilibrium‘‘ loop.

Step 9. Lower the temperature T.

Step 10. End the when the improved solution is obtained else return to S *.

3.8.1.2 Prototype Example

Considering Figure 3.5

Taking the initial solution to be in the tour in the order: 1-2-3-4-5-6-7-1

We use the parameters;

0 20T  1k kT T  0.5 

Stop when 0.1T 

First Iteration

Assuming 0x =1-2-3-4-5-6-7-1

d(0x)=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69

Using the subtour reversal as local search to generate the new solution 1x =1-3-2-4-5-6-7-1

d(1x)=d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=68

 1 0() ()d x d x   =68-69=-1

Since 0  then we set 0 1x x

We then update the temperature 1 0T T =0.5(20)=10

73

Second Iteration

d(0x)=68

By sing the subtour reversal as local search to generate the new solution 1-2-3-5-4-6-7-1

1x =1-2-3-5-4-6-7-1

d(1x)=d(1,2)+d(2,3)+d(3,5)+d(5,4)+d(4,6)+d(6,7)+d(7,1)=65

1 0() ()d x d x   =65-68=-3

Since 0  then we set 0 1x x

Updating the temperature ,
2T =0.5(10)=5

Third Iteration

d(0x)=65

Using the subtour reversal as local search to generate the new solution 1-2-3-4-6-5-7-1

1x =1-2-3-4-6-5-7-1

d(1x)=d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,5)+d(5,7)+d(7,1)=66

1 0() ()d x d x   =66-65=1

Since 0  we the apply Boltzmann‘s condition 2T
m e



 =0.81

A random number would be generated from a computer say 

If m> then we set 0 1x x otherwise 1 0x x

Updating the temperature, 3 0.5(5) 2.5T  

The process will continue until the final temperature is obtained.

74

3.9 The Ant Colony Optimization

The Ant Colony Optimization (ACO) algorithm is a nature-inspired cybernetic method in

artificial intelligence. ACO can be considered to be a cognitive informatics (CI) model of

social animals like ants rather than the CI model of humans .The idea of ACO comes from

the ants‘ behavior, which is different from traditional mathematics-based cybernetic

techniques. The ACO algorithm does a surprisingly successful performance in the solution

of NP-hard problems, which draws more and more attention on ACO research, particularly

to the study of its theoretical foundation.

3.9.1 Variations of ACO

 Different ACO algorithms are discussed subsequently:

3.9.2 ANT SYSTEM (AS)

In AS, K artificial ants probabilistically construct tours in parallel exploiting a given

pheromone model. Initially, all ants are placed on randomly chosen cities. At each

iteration, each ant moves from one city to another, keeping track of the partial solution it

has constructed so far. The algorithm has two fundamental components:

(i) the amount of pheromone on arc (i, j), ij

(ii) desirability of arc (i, j), ij

where arc (i, j) denotes the connection between cities i and j.

At the start of the algorithm an initial amount of pheromone 0 is deposited on each arc:

0 O

K
ij L
   , where L0 is the length of an initial feasible tour and K is the number of ants.

In AS, the initial tour is constructed using the nearest-neighbor algorithm; however,

another TSP heuristic may be utilized as well. The desirability value (also referred to as

75

visibility or heuristic information) between a pair of cities is the inverse of their distance

1

ijij d
  where di j is the distance between cities i and j. So, if the distance on the arc (i, j) is

long, visiting city j after city i (or vice-versa) will be less desirable.

Each ant constructs its own tour utilizing a transition probability: an ant k positioned

at a city i selects the next city j to visit with a probability given by

[] .[]
,

[] .[]

0 ,otherwise

k
i

ij ij k

i
k

ik ik
ij

l N

j N

p

 

 

 

 





 





 (3.17)

where, k

iN denotes the set of not yet visited cities; and   are positive parameters to

control the relative weight of pheromone information
ij and heuristic information

ij .

After each ant has completed its tour, the pheromone levels are updated. The pheromone

update consists of the pheromone evaporation and pheromone reinforcement. The

pheromone evaporation refers to uniformly decreasing the pheromone values on all arcs.

The aim is to prevent the rapid convergence of the algorithm to a local optimal solution by

reducing the probability of repeatedly selecting certain cities. The pheromone

reinforcement process, on the other hand, allows each ant to deposit a certain amount of

pheromone on the arcs belonging to its tour. The aim is to increase the probability of

selecting the arcs frequently used by the ants that construct short tours. The pheromone

update rule is the following:

1

(1). (,)
K

k

ij ij ij

k

i j   


     . (3.18)

In this formulation (0 1)   is the pheromone evaporation parameter and k

ij is the

amount of pheromone deposited on arc (i, j) by ant k and is computed as follows:

76

th1
, if k ant uses path (,) in its tour

0 , otherwise

k
kij

i j
L




  

 (3.19)

where
kL is the tour length constructed by the k-th ant.

3.9.3 Algorithm 1. Ants System Algorithm

Input: a combinatorial optimization problem (, ,)S f

Step 1.: Initializes the pheromone matrix (0), 0T t 

(()T t is the pheromone matrix at time)t

Step 2.: ()bsS t Null

(()bss t is the best so-far solution at time)t

While the termination condition is not satisfied do

Step 3 1, ()itert t S t  

(()iterS t is the set solutions obtained by ants by at)t

for 1,...j K do

Step 4 The j -th artificial builds solution s

Step 5. if (() (())bsf s f s t or (())bss t NULL then

bss s

Step 6 () () { }iter iterS t S t s

77

end while

Output: the best-so-far solution ()bss t

3.9,4 IMPROVEMENT OF ANT SYSTEM

The success of ant heuristic lie sorely on the door steps of the pheromone trial. A

substantial research on ACO has focused on how to improve AS all in the aim of

improving the tour length. Some of these AS improvement algorithms are

(i) Elitist Ant System (EAS);

(ii) Rank Based Ant System (A S Rank);

(iii) Ant Colony System (ACS) and

(iv) Max-Min Ant System (MMAS)

3.9.5 ELITIST ANT SYSTEM (EAS)

In the EAS an elitist strategy is implemented by further increasing the pheromone levels

on the arcs belonging to the best tour achieved since the initiation of the algorithm. That

best-so-far tour is referred to as the ―global-best‖ tour. The pheromone update rule is as

follows:

1

(1) (,)
K

k gb

ij ij ij ij

k

w i j    


      
 (3.20)

Here, w denotes the weight associated with the global-best tour and gb

ij is the amount of

pheromone deposited on arc (i, j) by the global-best ant and calculated by the following

formula:

1
, if the global best ant uses arc (,) in its tour

0, otherwise

gb gb
ij

i j
L




 



here gbL is the length of global-best tour.

78

3.9.6 RANK BASED ANT SYSTEM (Rank AS)

In the ASrank a rank-based elitist strategy is adopted in an attempt to prevent the algorithm

from being trapped in a local minimum. In this strategy, w best ranked ants are used to

update the pheromone levels and the amount of pheromone deposited by each ant

decreases with its rank. Furthermore, at each iteration, the global-best ant is allowed to

deposit the largest amount of pheromone. The pheromone update rule is given by:

1

1

(1) () (,)
w

r gb

ij ij ij ij

k

w r w i j    




       
 (3.21)

3.9.7 ANT COLONY SYSTEM (ACS)

The ACS attempts to improve AS by increasing the importance of exploitation versus

exploration of the search space. This is achieved by employing a strong elitist strategy to

update pheromone levels and a pseudo-random proportional rule in selecting the next node

to visit. The strong elitist strategy is applied by using the global-best ant only to increase

the pheromone levels on the arcs that belong to the global-best tour:

(1) (,)gb

ij ij ij i j        

The mechanism of the pseudo-random proportional rule is as follows: an ant k located at

customer i may either visit its most favorable city or randomly select a city. The selection

rule is the following:

0argmax

, otherwise

k
i

ij ij ij
k

j N

k

z z

j

J

   


 


 



where z is a random variable drawn from a uniform distribution U[0,1] and 0 0(0 1)z z 

is a parameter to control exploitation versus exploration.
kj is selected according to the

79

probability distribution k

ijp . ACS also uses local pheromone updating while building

solutions: as soon as an ant moves from city i to city j the pheromone level on arc (i, j) is

reduced in an attempt to promote the exploration of other arcs by other ants. The local

pheromone update is performed as follows:

0(1)ij ij     

where  is a positive parameter less than 1.

Similar to ACS, uses either the global-best ant or the iteration-best ant alone to reinforce

the pheromone.

3.9.8 Max-Min Ant System (MMAS):

 Stuuzle and Hoos, (2000), proposed the MMAS algorithm to have more control on the

pheromone trail, so as to avoid the stagnation situation in which all ants are stuck within a

local optimum.

According to Stutzle et al, (200), local search is used to improve the algorithm, the

importance of local heuristic information is replace by local search. Therefore, local

heuristic information is ignored in this version of state transition rule.

The state transition rule used is either the random-proportional rule or the pseudo-random-

proportional rule. The pheromone trail is updated when all ants complete their solution

construction by
new old e

ij ij ij   
,

where either the best solution in this iteration and the best solution found so far is used

for
e

ij All ij are initialized as max and min maxij    .

StUtzle et al, (1999), also proposed a variation of the state transition rule as
ij

ij

il

l u

P








80

Algorithm 2: The algorithm MMAS*.

Step 1. function MMAS* on G=(V,E) is

Step 2. 1() , ;e e E
V

    where E is the of set edges and V is the set of vertices

Step 3. * ();x construct 

Step 4 *(,);update x This is done by using the model
1

(1) k

k
Qr

ij ij ij L
r

   


    

Step 5 while true do

Step 6 ();x construct 

Step 7 if *() ()f x f x then

Step 8 * ;x x

Step 9 *(,);update x 

3.9.9 Mathematical Formulation Of STSP Model

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with

vertices V, |V|=n, where n is the number of cities, and edges E with edge length dij for

(i,j). We focus on the symmetric TSP case in which i j j iC C , for all (i,j).

The problem PI is;

Minimize i j i j

i v j v

Z c x
 

 (3.22)

81

1i j

j v

j i

x i v




  (3.23)

1i j

i v

x j v

i j


 



 (3.24)

| | 1 ,i j

i s j s

x s s v s
 

     (3.25)

0 1 ,i jx or i j v (3.26)

The problem is an assignment problem with additional restrictions that guarantee the

exclusion of subtours in the optimal solution. Recall that a subtour in V is a cycle that does

not include all vertices (or cities). Equation (3.23) is the objective function, which

minimizes the total distance to be traveled.

Constraints (3.24) and (3.25) define a regular assignment problem, where (3.23) ensures

that each city is entered from only one other city, while (3.24) ensures that each city is

only departed to on other city. Constraint (3.25) eliminates subtours. Constraint (3.26) is a

binary constraint, where i jx = 1 if edge (i,j) in the solution and i jx = 0, otherwise.

3.10 ACO ALGORITHM FOR OUR PROPOSED WORK

The construction graph G = (N, A), where the set A fully connects the components N, is

identical to the problem graph, that is the set of states of the problem corresponds to the set

of all possible partial tours.

82

An initial solution is first obtained using the nearest-neighbor heuristic: start at the depot

and then select the not yet visited closest feasible customer as the next customer to be

visited.

Each artificial ant has a memory called tabu list. The tabu list forces the ant to make legal

tours. It saves the cities already visited and forbids the ant to move already visited cities

until a tour is completed.

After all cities are visited, the tabu list of each ant will be full. The shortest path found is

computed and saved. Then, tabu lists are emptied. This process is iterated for a user-

defined number of cycles.

Suppose there are N nodes and
ib is the number of ants at city i. Consider the following

notation:

 1

n

i

i

K b


 : Total number of ants

Step 1. Set the of cities to be visited by the Ants to be N .

Step 2. Add the city already visited by the Ant to the ;Tabu list of the k-th ant

 tabu
k
(s) : s-th city visited by the k-th ant in the tour

Step 3. ij (t) : Intensity of trail on edge between city i and city j at time t This is done by

 the use of the model
1

(1) k

k
Qr

ij ij ij L
r

   


    
.

Step 4. Calculate the Visibility of edge between city i and city j to be

1
ij

ijd
 

83

ij is usually assumed as the inverse of the distance between city i and city j (
ijd) Thus,

1
ij

ijd
 

After K artificial ants are randomly placed on cities, the first element of each ant's tabu list

is set to be equal to its starting city. Then, they move to unvisited cities. The probability of

moving from city i to cityr j for the k-th ant is defined as: ()k

ijp

[] .[]
,

[] .[]

0, otherwise

kij ij

i
k

ik ik
ij

j N

j
p

N
 

 

 

 





 





 (3.27)

where N is the set of neighboring cities , α and β are parameters that control the relative

importance of pheromone trail versus visibility.

3.10.1. HEURISTIC INFORMATION

Generally in solving TSP, the visibility value between a pair of cities of the Ant is the

inverse of their distance, thus
1

ij

ijd
  .

3.10.2. INITIAL PHEROMONE TRIALS

In most of the ant colony based algorithms to TSP, initial pheromone trails τ
0

is set equal to

the inverse of the best known route distances found for the particular problem. Thus.

0

,

1

i jd
  . When the initial route is constructed, it is started at the initial point and the city

84

with the highest
,i j value is selected as the first city to be visited. Then, the tour is

constructed by selecting the not yet visited feasible city with the highest
,i j at each time.

3.10.3 ROUTE CONSTRUCTION PROCESS

It is assumed that the number of ants is equal to the number of directors, who are suppose

to embark on the inspectional tour of the twelve main sales point of Ghacem ,Ghana. Thus

serving as artificial Ants. Then, each ant constructs its own tour by successively selecting a

not yet visited feasible customer. The choice of the next director to visit is based on

proportional fitness (Roulette Wheel ie the basic part of the selection process is to

stochastically select from one generation to create the basis of the next generation, the

requirement is that the fittest individuals have a greater chance of survival than weaker

ones. This replicates nature in that fitter individuals will tend to have a better probability of

survival and will go forward to form the mating pool for the next generation.) in

conjunction with the information of both the pheromone trails and the visibility of that

choice given in equation []ij ij ij

   , τ
ij

denotes the amount of pheromone on arc (i, j)

and β is power weighting parameter that weights the consistency of arc (i , j).

3.10.4 PHEROMONE UPDATE

Our pheromone update consists of an improved ant system strategy. In this strategy our

pheromone update rule is as follows:
1

(1) k

k
Qr

ij ij ij L
r

   


    

where Q is a constant ie the product of the longest distance between nodes
,i j and, where

N is the number of cities to be visited by an ant k . kL is the distance ant k has visited ,

85

kL is the length of tour of ant K and , 0 1   , is the evaporation factor, which

determines the strength of an update.

3. 11.0 Illustrative Example

 In order to get more insight of the algorithm, we shall consider a five (5) node TSP

problem. The objective is to find a minimum tour required to visit all the five (5) nodes.

A connectivity matrix of figure 3.7 is given in Table 3.5. The values given in the table

denotes the distance ‗‘d‘‘ between nodes and it is assumed to be a symmetric TSP

problem, in which ij jid d

Figure 3.7: Road Network of the Five (5) Cities

3.11.1 Distance Matrix for the five cities in Kilometers (km)

The distance matrix was formulated from the network graph of figure 3.6 Where the cities

have no direct link, the minimum distance along the edges are considered. The cells

indicated zeros shows that there is no distance thus when 0i i j jC C  .It therefore

represents a complete graph for the five cities.

86

3.11.2 Table 3.5 shows the connectivity matrix of the five cities which have been

Degninated with alphabets The distance between the various are shown and the

Zeros indicate that
, ,

0
i j j id d 

Table 3.5: Connectivity matrix of TSP in Figure 3.6.

 A B C D E

A 0 100 125 100 75

B 100 0 50 75 125

C 125 50 0 100 125

D 100 75 100 0 50

E 75 125 125 50 0

Each edge in the graph is given an initial pheromone value 0() . For the simplicity of this

example 0 is set to be 1

Where 5n  ,thus the number of cities to be visited by an Ant.

The heuristic value
1

ij

ijd
  , is the inverse the distance between city i and city j .

The probability of selecting an edge is then equal to






Nl

ilil

ijijk

ij
t

t
tp









][*)]([

][*)]([
)((i)

Where N is the set of neighboring cities, ,
,i j is the initial pheromone and

87

,i j

 is the heuristic value , α and β are two parameters that control the relative weight of

pheromone trail and heuristic value.

In this example, for the sake of simplicity, the value of α and β are set equal to 1.

3.11.3 The table 3.6 shows the Heuristic value ((η) between nodes of the five in table

3.5 above .These values were obtained through the use of the model
1

ij

ijd
  .

Table 3.6: Heuristic value ((η) for each edge in Figure 3.6.

 A B C D E

A 0.000 0.010 0.008 0.010 0.013

B 0.010 0.000 0.020 0.013 0.0008

C 0.008 0.020 0.000 0.010 0.008

D 0.010 0.013 0.010 0.000 0.020

E 0.013 0.008 0.008 0.020 0.000

Since there are 5 cities, assume that the size of the colony of ant is 5. Each ant will start its

tour from different city. For example, the first ant starts from city A, the second ant starts

from city B, and so on.

Iteration 1: Ant 1 at node 1(A)






Nl

ilil

ijijk

ij
t

t
tp









][*)]([

][*)]([
)((ii)

1 1

1,2 1,21

1,2 1 1

1, 1,

5

[(1)] *[]
 (1)

[(1)] *[]j j

j

P
 

 





88

1 1

1

1,2

[1.0] *[0.010] 0.01
 (1) 0.2439024

(1.0*0.01) ... (1.0*0.013) 0.041
P   

 

1 1

1

1,3 1 1

[1.00] *[0.008] 0.008
(1) 0.1951219

[1.0*0.010] ... [1.0*0.013] 0.041
P   

 

1 1

1

1,4 1 1

[1.00] *[0.010] 0.01
(1) 0.24390

[1.0*0.010] ... [1.0*0.013] 0.041
P   

 

1 1

1

1,5 1 1

[1.00] *[0.013] 0.013
(1) 0.31707

[1.0*0.010] ... [1.0*0.013] 0.041
P   

 

 The first ant starts the tour from city A. There are four neighboring cities to be considered

by the ant.

 The probability of choosing any edge leading to certain city is calculated using the

 Probability decision rule, ie





Nl

ilil

ijijk

ij
t

t
tp









][*)]([

][*)]([
)(

 Table 3.7 Shows the neighboring cities left for the Ant 1 to select from.

B C D E

0.24 0.19 0.24 0.32

89

Using a stochastic process, (Roulette Wheel), the ant chooses the next city. Assume that

the ant takes city B as the next city to visit.

 The ant will update its memory and put city B in its Tabu List (to add to A)

When the ant arrives at city B, there are 3 cities left to visit. The probability of choosing

these cities is given in the table.3.8.

 Table 3.8 Shows the neighboring cities left for the Ant 1 to select from

1 1

1

2,3 1 1 1

[1.00] *[0.02] 0.02
(1) 0.487804

[1.0*0.020] [1.0*0.013] [1.0*0.008] 0.041
P   

 

1 1

1

2,4 1 1 1

[1.00] *[0.013] 0.013
(1) 0.317073

[1.0*0.020] [1.0*0.013] [1.0*0.008] 0.041
P   

 

1 1

1

2,5 1 1 1

[1.00] *[0.008] 0.008
(1) 0.195121

[1.0*0.020] [1.0*0.013] [1.0*0.008] 0.041
P   

 

Assume that city D is taken. The ant will then update its Tabu List by adding city D.

There are two neighbors of city D: C and E. The following table shows the probability of

choosing each of these cities.

C D E

0.48 0.32 0.19

C D E

0.48 0.32 0.19

90

1 1

1

4,5 1 1

[1.00] *[0.010] 0.010
(1) 0.33333

[1.0*0.01] [1.0*0.020] 0.03
P   



1 1

1

5,5 1 1

[1.00] *[0.020] 0.02
(1) 0.6666

[1.0*0.01] [1.0*0.020] 0.03
P   



 Table 3.9 Shows the neighboring cities left for the Ant 1 to select from

Assume that the ant selects city E. The content of its Tabu List is then: A, B, D, and E.

Since there is one remaining city to visit, the next process will certainly take C. The path

that was built by the ant is then: A  B  D  E  C. The length of this path is L = AB +

BD + DE + EC = 100 + 75 + 50 + 125 = 350.

The remaining ants will proceed according to the same procedure.

 3.11.4; Table3.10 summarizes the solutions built by all ants. The last column in Table

3.10 shows the gain obtained by each ant. Since the longest distance between cities is 125,

the solution built by the ant must not exceed Q=4 *125 = 500. Thus, the gain of each ant

can be formulated as 500/L, with L is the length of the path of the solution.

C E

0.33 0.66

91

Table 3.10 : Shows the Solutions built by all ants in the first iteration

Ant Path Length of the path (L) ∆τ = 500/L

ant1 A  B  D  E  C 350 1.43

ant2 B  C  D  E  A 275 1.82

ant3 C  B  D  E  A 250 2.00

ant4 D  E  A  B  C 275 0.82

ant5 E  A  B  C  D 325 1.54

When all ants finish their tour, they will back track and update the pheromone along their

path by putting additional pheromone (∆τ). Note that, the amount of ∆τ is proportional to

the gain obtained by the ant.

,

1

N
k

i j ij

k

 


   (iii)

 Where k

ij is the adding pheromone to the arcs in the tour ant k has

 visited,

 ,i j

k

Q

L
  , (iv)

 where Q is constant, ie the product of the longest distance between nodes i and j where

N is the number of cities to be visited by an ant k . kL is the distance ant k has visited.

For example 4*125 500Q  

 The new pheromone value is given by the following model

92

 (1) () ()t t t     . (v)

Consider, for example, edge AB was used by ant1, ant4 and ant5. The new pheromone

value for edge AB is therefore equal to 1 + 1.43 + 1.82 + 1.54 = 5.79.

Then, pheromone will evaporate according to the formula:

 τ = (1 - ρ) * τ (vi)

Assume that ρ is equal to 0.2. Then the pheromone value on edge AB is equal to

0.8 * 5.79 = 4.63. The calculation of pheromone value is performed for all edges.

 (1 0,2)*5.79 4.632AB     ,where 1 1.43 1.82 1.54 5.79      

 1.0 0.0 1.0AC         , Since ant k did not have direct link to C

 0 

 0.8*1.0 0.8AC   

 0.8*1.0 0.8AD   

 0.8*(1 1.82 2.00 1.82 1.54) 6.544AE        , where

 (1 1.82 2.00 1.82 1.54) 8.18       

93

3.11.5; The Table 3.11 shows the new pheromone values on each edge at the end of

iteration

Table 3.11: Pheromone values for each edge after iteration 1.

 initial pheromone value new pheromone value

 A B C D E A B C D E

A 0.00 1.00 1.00 1.00 1.00 0.00 4.63 0.80 0.80 6.54

B 1.00 0.00 1.00 1.00 1.00 4.63 0.00 6.54 3.54 0.80

C 1.00 1.00 0.00 1.00 1.00 0.80 6.54 0.00 0.80 0.80

D 1.00 1.00 1.00 0.00 1.00 0.80 3.54 0.80 0.00 6.45

E 1.00 1.00 0.80 1.00 0.00 6.54 0.80 0.80 6.45 0.00

3,11,6 Figure 3.7 (a) shows the visualization of pheromone values on the edges. In this

figure, the darker the edge, the higher the pheromone. The best solution found by the

heuristic in the first iteration is shown in Figure 3.7 (b).

Figure 3.7. shows the visualization of pheromone values on the edges

94

Iteration 2

The same process that was performed in the first iteration is repeated in the second.

However, the initial pheromone values on all edges have changed. Thus, the probability of

selecting a certain edge will also change. The higher the pheromone on the edge, the more

attractive the edge for an ant to choose.

3.11.7 Assume that all ants have finished their tour construction. The table 3.12

summarizes the solutions built by all ants.

Table 3.12: Solutions built by the ant in the second iteration.

Ant Path Length of the path (L) ∆τ =5 00/L

ant1 AEDBC 250 2.00

ant2 BCDEA 275 1.82

ant3 CBDEA 250 2.00

ant4 DEABC 275 1.82

ant5 EADBC 300 1.67

3.11.8 The pheromone update and pheromone evaporation procedures are then performed.

This will change the value of pheromone on each edge. The new pheromone values for

edge after iteration 2 are shown on table 3.13

Table 3.13 Shows the Pheromone values for each edge after iteration 2.

 initial pheromone value new pheromone value

 A B C D E A B C D E

A 0.00 4.63 0.80 0.80 6.54 0.00 6.45 0.80 2.47 15.84

95

B 4.63 0.00 6.54 3.54 0.80 6.45 0.00 15.84 9.21 0.80

C 0.80 6.54 0.00 0.80 0.80 0.80 15.84 0.00 2.62 0.80

D 0.80 3.54 0.80 0.00 6.45 2.47 9.21 2.62 0.00 14.09

E 6.54 0.80 0.80 6.45 0.00 15.84 0.80 0.80 14.09 0.00

3.11.9 Figure 3.7 (a) shows the visualization of pheromone values on the edges. As we can

see, the lines representing edge AE, ED and BC are very thick. These lines are thicker than

the corresponding ones in the previous iteration (see Figure 3.6).

Figure 3.7 (a) shows the visualization of pheromone values on the edges.

3.11.8: The thickness of these lines corresponds to their high pheromone values. On the

other hand, the lines representing edge AC, BE and CE are very thin. Since no ant is using

these edges, there is no additional pheromone given.

In addition, pheromone evaporation reduces the intensity of pheromone values on these

edges.

From Figure 3.7(a), it can be seen that the best solution for the given TSP problem will

likely be equal to the one illustrated in Figure 3.7 (b).

96

In the next chapter,we consider the use of an ACO algorithm called Min-Max Ant System

(MMAS) to solve a symmetric TSP problem involving twelve cities.This is illustrated as

Algorithm 2 of section 3.9.9.

97

CHAPTER FOUR

DATA COLLECTION AND ANALYSIS

4.0 Introduction

In this chapter, we shall look at how the data for the work was obtained, how it was used

for the intended analysis based on the method(s) discussed in the previous chapter

4.1 Data Collection

We considered a twelve city node graph (major sales point of Ghacem) with the nodes

representing the twelve cities, and the edges representing the major roads linking the cities

(figure 4.1). Based on this graph, we collected secondary data of the inter-city driving

distances from the Ghana Highway Authority. In table 4.1 we have designated each city

with a number for convenience.

Table 4.1: Twelve major sales points of Ghacem in Ghana and their numerical

 representation

 City Allocated number

Tema 1

Accra 2

Cape Coast 3

Takoradi 4

Obuasi 5

Kumasi 6

Koforidua 7

Sunyani 8

Wa 9

Bolgatanga 10

Tamale 11

Ho 12

98

4.2 Data Analysis

The figure 4.1 below shows the Road Network of the twelve (12) major sales points of

Ghacem and their geographical locations on the map of Ghana.

Figure 4.1 Road Network of the twelve (12) major sales points of Ghacem

Obuasi

Tema

C-coast

Accr

a

34

2

173

29

Bolga

Wa

Sunyan

i Kuma

si

Takorad

i

36

8

378

314

170

615

357

300

194

74

88
136

270

163

388

372
133

221

23

4

476

Tamale

Ho

Koforidu

a 114

99

Table 4.2: Data from the Ghana Highways Authority indicating the matrix for the

weighted graph of the major roads linking twelve major Sales of points of Ghacem in

Ghana in Kilometers

City/cityj Tema Accra C-coast Takoradi Obuasi Kumasi Koforidua Sunyani Wa Bolga Tamale Ho

Tema 0 29 inf Inf Inf Inf Inf inf inf Inf inf 136

Accra 29 0 144 Inf Inf 270 85 inf inf Inf inf 165

C-coast inf 144 0 74 133 221 Inf inf inf Inf inf inf

Takoradi inf Inf 74 0 Inf 242 Inf inf inf Inf inf inf

Obuasi inf Inf 133 Inf 0 88 Inf inf inf Inf inf inf

Kumasi inf 270 221 242 88 0 194 130 inf Inf 388 inf

Koforidua inf 85 inf Inf Inf 194 0 inf inf Inf inf inf

Sunyani inf Inf inf Inf Inf 130 Inf 0 378 Inf 388 inf

Wa inf Inf inf Inf Inf Inf Inf 378 0 368 314 inf

Bolga inf Inf inf Inf Inf Inf Inf inf 368 0 170 614

Tamale inf Inf inf Inf Inf 388 Inf 300 314 170 0 476

Ho 136 165 Inf Inf Inf Inf 163 inf inf 614 476 0

ijC The cost matrix representing the distance from city i to city j .

 Where 0
ij jic c  .ie no direct link from one city to the other.

100

4.3: Connectivity matrix for the twelve major sales points cities of Ghacem in

Kilometers (Km)

 (4.3 The distance matrix was formulated from the connectivity graph of figure4.2 .Where

the cities have no direct link ,the minimum distance along the edges are considered .The

cells indicated inf shows that there is no direct distance ,thus 0
ij jic c 

 Table 4.3: Connectivity matrix for the twelve major sales points cities of Ghacem in

Kilometers (Km) (All pair shortest path from table 4.2 by Floyd Warshall’s

Algorithm)

City/cityj 1 2 3 4 5 6 7 8 9 10 11 12

1 0 29 173 247 352 299 114 429 816 750 612 136

2 29 0 144 218 358 270 85 400 778 770 641 165

3 173 144 0 74 133 221 229 351 729 779 609 309

4 247 218 74 0 213 242 303 372 750 800 630 383

5 352 358 133 213 0 88 282 218 596 646 476 445

6 299 270 221 242 88 0 194 130 508 558 388 357

7 114 85 229 303 282 194 0 324 702 752 582 163

8 429 400 351 372 218 130 324 0 378 470 300 487

9 816 778 729 750 596 508 702 378 0 368 314 790

10 750 770 779 800 646 558 752 470 368 0 170 615

11 612 641 609 630 476 388 582 300 314 170 0 476

12 136 165 309 383 445 357 163 487 790 615 476 0

4.4 In this study each edge in the graph is given an initial pheromone value

0

1 1
0.0833

12n
    .where 12n  . Let heuristic value (η) be equal to the reciprocal of the

101

distance, ie .
1

ij

ijd
  . where

ijd is the distance between city(i) to city(j). The probability of

selecting an edge is given by
[] []

[] []

ij ijk

ij

il il

l N

p

 

 

 

 






, (4.1)

where N = 12 (the set of neighboring Cities (nodes) to be visited by the artificial Ants (The

inspectional Team of Ghacem,Ghana)  and  are parameters that control the relative

weight of pheromone trial and heuristic value. In this study, the values of  and  are set

be 1. Again Max and
Min are set to be 1.0 and 0.01

 respectively. In this work, we considered several values for the evaporation rate such as

0.1, 0.02, 0.1,0.2, …

102

4.4 Heuristic value ((η) between nodes of the twelve major Sales of points of Ghacem

in Ghana in table

 The table 4.4 shows the Heuristic value ((η) between nodes of the twelve major Sales

of points of Ghacem in Ghana in table 4.3 above, These values were obtained through

the use of the model
1

ij

ijd
  .

Table 4.4 shows the heuristic value (η) for each edge in Figure 4.1

City/cityj 1 2 3 4 5 6 7 8 9 10 11 12

1 0.000 .0.034 0.006 0.004 0.003 0.004 0.009 0.002 0.001 0.001 0.002 0.007

2 0.034 0.000 0.007 0.005 0-003 0.004 0.012 0.003 0.001 0.001 0.002 0.006

3 0.006 0.007 0.000 0.014 0.008 0.005 0.004 0.003 0.001 0.001 0.002 0.003

4 0.004 0.005 0.014 0.000 0.005 0.004 0.003 0.003 0.001 0.001 0.002 0.003

5 0.003 0.003 0.008 0.005 0.000 0.011 0.004 0.005 0.002 0.002 0.002 0.002

6 0.004 0.004 0.005 0.004 0.011 0.000 0.005 0.008 0.002 0.002 0.003 0.003

7 0.009 0.012 0.004 0.003 0.004 0.005 0.000 0.003 0.001 0.001 0.002 0.006

8 0.002 0.003 0.003 0.003 0.005 0.008 0.003 0.000 0.003 0.002 0.003 0.002

9 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.003 0.000 0.003 0.003 0.001

10 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.003 0.000 0.006 0.002

11 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.003 0.006 0.000 0.002

12 0.007 0.006 0.003 0.003 0.002 0.003 0.006 0.002 0.001 0.002 0.002 0.000

 4.6 The table 4.5 shows the :initial pheromone value 0() for each edge. In this study each

edge in the graph is given an initial pheromone value
0

1 1
0.0833

12n
    .where n is the

number of cities to be visited by the Ants.

103

Table 4.5: Initial pheromone value 0() for each edge is as shown in Figure 4.1.

City/cityj 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083

2 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083

3 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083

4 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083

5 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083

6 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083

7 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083

8 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083

9 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083

10 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083

11 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083

12 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0

104

4.5 Mathematical Formulation Of TSP Model

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with

vertices V, |V|=n, where n is the number of cities, and edges E with edge length dij for

(i,j). We focus on the symmetric TSP case in which i j j iC C , for all (i,j).

The problem PI is;

 Minimize i j i j

i v j v

Z c x
 

 (4.2)

Subject to

 1i j

j v

j i

x i v




  (4.3)

 1i j

i v

x j v

i j


 



 (4.4)

 | | 1 ,i j

i s j s

x s s v s
 

     (4.5)

 0 1 ,i jx or i j v (4.6)

The problem is an assignment problem with additional restrictions that guarantee the

exclusion of subtours in the optimal solution. Recall that a subtour in V is a cycle that does

not include all vertices (or cities). Equation (4.2) is the objective function, which

minimizes the total distance to be traveled.

Constraints (4.3) and (4.4) define a regular assignment problem, where (4,3) ensures that

each city is entered from only one other city, while (4.3) ensures that each city is only

105

departed to on other city. Constraint (4.5) eliminates subtours. Constraint (4,6) is a binary

constraint, where i jx = 1 if edge (i,j) in the solution and i jx = 0, otherwise.

Algorithm

 Table 3.6: Shows the Pseudo-code of the algorithm applied to solve the MMAS

 Procedure of MMAS

Step 1

The Directors Inspectional Tour (DIT), whose serve as Artificial Ants in

this study, graph was transformed into a TSP graph

Step2

The initial pheromone matrix was computed in Table 3.5.

Set
gL best   ,iterate=TRUE, i=0

While iterate = TRUE

Set i=i+1

For h =1 to m

Set tabu _h= 

Step 3

A city , ijC was randomly selected by ant k as the starting point of the path

ijC was added to tabu_h

For j=I to n-1

106

 Step 4

The next city ,C, was selected according to probability decision rule in (4.2)

City C was added to tabu_h

End-for

 Step 5

Compute the length of the path L(h)

If
gL _best >Lb

Set
gL _best >Lb=Lb

 If
gL _best has not been improved during the last 15 iterations

Set iterate = FALSE

end -if

If ,Lx Ly ,1 ,
y

y x y m
x
  

 Step 6

Reset the pheromone matrix trails to the value Max

 else

update the pheromone matrix according to the expression in (4.5)

 end-if

 end while

107

Step 7

The TSP solution was then transformed into DIT solution.

4.6 .Computational Method

 The MMAS proposed by Stuuzle and Hoos, (2000) was coded in Matlab language. The

tests were performed on a personal computer, Dell core 5 Dua processor, 3.0GHZ with

RAM 2G memory and working on Window7 Operating system.

4.7 Results

The MMAS algorithm was coded used to find the minimum tour of each ant and then

selected the best ant tour. After performing 6652800 iterations the result for each ant is

shown in table 4.7

108

Table 4.7 Shows both the tour of an individual Ant and their various distance

covered

Ant

tour

Dist.

Cov.

By

ant

Ant

1 9 12 2 1 7 4 3 5 6 8 11 10 1874

Ant

2 9 10 11 8 6 5 3 4 7 2 1 12 2238

Ant

3 10 5 6 8 4 3 1 2 7 12 11 9 2272

Ant

4 10 8 6 5 7 2 1 12 3 4 11 9 2445

Ant

5 12 3 4 6 5 11 10 8 9 7 1 2 2908

Ant

6 5 9 10 11 6 4 3 1 2 7 12 8 2397

Ant

7 9 7 2 1 12 11 10 8 6 5 3 4 2541

Ant

8 12 1 2 7 6 5 3 4 10 11 8 9 3041

Ant

9 9 6 5 4 3 1 2 7 12 11 10 8 2319

Ant

10 8 4 3 5 6 1 2 7 12 10 11 9 2348

Ant

11 9 11 10 8 6 4 3 5 7 2 1 12 2541

Ant

12 12 2 1 7 3 4 5 6 8 11 10 9 2505

4.8. Discussions

Considering the total distances covered by the individual Ants, the optimal tour came out

to be 12 2 1 7 4 3 5 6 8 11 10 9          

This was obtained by Ant 1.Thus the total tour distance came out to be optimal solution.

 ie 1874km

Representing the tour

 lg

Ho Accra Tema Koforidua Takoradi Cape Coast

Obuasi Kumasi Sunyani Temale Bo a Wa

     

     

109

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.0 Introduction

 This chapter basically talks about the conclusion and recommendation of the work

 5.1. Conclusion.

 We conclude that the objective of finding the minimum tour from the

symmetric TSP model by using Max-Min Ants System (MMAS) Algorithm

was successfully achieved.

 We therefore suggested that plying the routes that came out the MMAS

model would be of help to minimize their cost since those routes gave the

optimal cost of 1874km .

The optimal route is represented as

lg

Tema Accra Ho Koforidua Takoradi Cape Coast

Obuasi Kumasi Sunyani Temale Bo a Wa

     

     

The total cost distance of their usual tour is 2319KM . Thus

5.2 Recommendation

After thorough study of TSP and Maxi-Min Ants System algorithm the following

recommendation were made:

lg

Tema Accra Cape Coast Takoradi Obuasi

Kumasi Sunyani Wa Bo a Temale Ho Tema

     

     

110

 The company are therefore advise to make use the of programme to obtain the

optimal tour in the event of cities to be visit being perturbed

 In using the MMAS programme, we therefore advise the company to employ

mathematicians who are very good in programming to update the model in

event of cities to be visited are charged

 This shows that for the inspectional team of Ghacem ,Ghana to minimized

cost in order maximized profit, must seize using their usual route and stick to

the new one that came out of model.

 We once again recommend further research into this study by researchers.

111

REFFERENCE

1. Ackoff, R.L., Arnoff, E.L., and Sengupta, S.S. (1961). "Mathematical Programming".

In: Progress in Operations Research. R.L. Ackoff, editor. John Wiley and Sons: New

York: NY. 105-210.

2. Al-Hboub-Mohamad, H. and Selim Shokrik, Z. (1993). A Sequencing Problem in the

Weaving Industry. European Journal of Operational Research (The Netherlands).

66(1):6571. Applegate, D., Bixby, R., Chv'atal, V., and Cook, W. (1999). ―Finding

Tours in the TSP‖. Technical Report 99885. Research Institute for Discrete

Mathematics, Universitaet Bonn: Bonn, Germany.

3. Amponsah, S .K and F.K Darkwah (2007) .Lecture notes on operation Research ,IDL

KNUST 62-67

4. Applegate .D, Bixby R.E., Chvatal V., and Cook W. (1994) "Finding cuts in the TSP" a

preliminary report distributed at The Mathematical Programming Symposium, Ann Arbor,

Michigan.

5. AppleGate D, Bixby R., Chvatal V and Cook W. (1998). On the Solution of the

Traveling Salesman Problems. Documenta Mathematica – Extra Volume ICM, chapter 3,

pp. 645-656

 Applegate, D., Bixby, R., Chv'atal, V. and Cook, W. (2007). The Traveling Salesman

Problem. Princeton University Press: Princeton, NJ.

6. Applegate, D., Bixby, R., Chvatal, V., Cook, W., and Helsghaun, K. (2004). ―The

Sweden Cities TSP Solution‖. http://www.tsp.gatech.edu//sweeden/cities/ cities.htm.

7. Applegate, D., Bixby, R., Chv´atal, V., and Cook, W. (1994): Finding Cuts in the TSP

112

(A preliminary report), Tech. rep., Mathematics, AT&T Bell Laboratories, Murray Hill,

NJ.

Balas, E. and Simonetti, N. (2001). ―Linear Time Dynamic Programming Algorithms for

New Classes of Restricted TSPs: A Computational Study.‖ INFORMS Journal on

Computing. 13(1): 56-75.

8. Barachet, L.L. (1957). "Graphic Solution of the Traveling-Salesman Problem".

Operations Research. 5:841-845.

9. Barahona, F., Gr¨otschel, M., J¨unger, M., and Reinelt, G. (1988): ‗An application of

combinatorial optimization to statistical physics and circuit layout design‘, Operations

Research 36(3) ,493–513

10. Bellman, R. (1960). "Combinatorial Processes and Dynamic Programming". In:

Combinatorial Analysis. R. Bellman and M. Hall, Jr., eds. American Mathematical

Society: Washington, DC. 217-249.

11. Bellman, R. (1960). ―Dynamic Programming Treatment of the TSP‖. Journal of

Association of Computing Machinery. 9:66.

12. Bellmore .M and. Nemhauser G. L, (1968) The Traveling Salesman Problem: A

Survey Operations Research, Vol. 16, No. 3 pp. 538-558.

http://www.jstor.org/stable/168581

13. Bellmore, M. and Nemhauser, G.L. (1968). "The Traveling Salesman Problem: A

Survey". Operations Research. 16:538-558.

14. Bock, F. (1958). "An Algorithm for Solving Traveling-Salesman' and Related Network

Optimization Problems". Research Report, Operations Research Society of America

http://www.jstor.org/stable/168581?origin=JSTOR-pdf

113

Fourteenth National Meeting: St. Louis, MO. Problems". Research Report, Operations

Research Society of America Fourteenth National Meeting: St. Louis, MO.

15. Burkard, R.E. (1979). "Traveling Salesman and Assignment Problems: A Survey". In:

Discrete Optimization 1. P.L. Hammer, E.L. Johnson, and B.H. Korte, eds. Annals of

Discrete Mathematics Vol. 4, North-Holland: Amsterdam. 193-215.

16. Carpaneto, G., Dell‘Amico, M. and Toth, P., (1995), ―Exact Solution of Large-scale

Asymmetric Traveling Salesman Problems‖, ACM Transactions on Mathematical

Software, 21, pp.394–409.

17. Carpaneto, G., Toth, P., (1980).‖ Some new branching and bounding criteria for the

asymmetric traveling salesman problem‖, Management Science 21, pp.736–743.

18. Cerny, V. (1985) "Thermodynamical Approach to the Traveling Salesman Problem:

An Efficient Simulation Algorithm", J. Opt. Theory Appl., 45, 1, 41-51.

19. Charles–Owaba, O.E. (2002). ― Set-Sequencing Algorithm to the Cyclic TSP‖.

Nigerian Journal of Engineering Management. 3(2):47-64.

20. Charles–Owaba, O.E.(2001). ―Optimality Conditions to the Accyclic Travelling

Salesman Problem‖. Operational Research Society of India. 38:5.

21. Clarker, R.J. and Ryan, D.M. (1989). ―Improving the Performance of an X-ray

Diffractometer‖. Asia-Pacific Journal of Operational Research (Singapore). 6(2):107-130.

22. Crama,Y. ,Van de Klundert, J., and Spieksma, F. C.R. (2002). ―Production Planning

Problems in Printed Circuit Board Assembly‖. Discrete Applied Mathematics. 123:339-

361.

114

 23. Croes, G.A. 1958. "A Method for Solving Travelling-Salesman Problems". Operations

Research. 6:791-812.

24. Crowder, H. and Padberg, M.W. (1980). "Solving Large-Scale Symmetric Travelling

Salesman Problems to Optimality". Management Science. 26:495-509.

25. Fleurent .C, and Ferland .J.A, (1994). Genetic hybrids for the quadratic assignment

problem, Quadratic Assignment and Related Problems, DIMACS Series on Discrete

Mathematics and Theoretical Computer Science, Vol. 16, American Mathematical Society,

Providence, RI, 1994, pp. 173–187.

26. Freisleben.B and Merz .P,(1996). A genetic local search algorithm for solving

symmetric and asymmetric traveling salesman problems, in: Proceedings of the IEEE

International Conference on Evolutionary Computation (ICEC‘96), IEEE Press,

Piscataway, USA, 1996, pp. 616–621.

 27. Gambardella .L.M and Marco Dorigo,(1996). Solving symmetric and asymmetric

TSPs by ant colonies, in: Proceedings of the IEEE International Conference on

Evolutionary Computation(ICEC‘96), IEEE Press, Piscataway, USA, 1996, pp. 622–627.

28. Johnson .D.S and McGeoch .L.M,(1997). The travelling salesman problem: a case

study in local optimization, in: E.H.L. Aarts, J.K. Lenstra (Eds.), Local Search in

Combinatorial Optimization, Wiley, Chichester, UK, 1997, pp. 215–310.

 29. Jones .T, and Forrest .S,(1995). Fitness distance correlation as a measure of problem

difficulty for genetic algorithms, in: L.J. Eshelman (Ed.), Proceedings of the Sixth

International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA,

1995, pp. 184–192.

115

30. Kirkpatrick .S ,(1985). Configuration space analysis of travelling salesman problems,

J. de Physique 46 (1985) 1277–1292.

31. Maniezzo .V, Dorigo .M and Colorni .A,(1994). The ant system applied to the

quadratic assignment problem, Technical Report IRIDIA/94-28, Université de Bruxelles,

Belgium, 1994.

32. Marco Dorigo and L.M. Gambardella, (1997). Ant colony system: a cooperative

learning approach to the traveling salesman problem, Vol 53-66.1997. IEEE Trans.

Evolut. Comput

33. Marco Dorigo, Maniezzo .V and Colorni. A, (1991). Positive feedback as a search

strategy, Technical Report 91-016, Dip. Elettronica, Politecnico di Milano, Italy, 1991.

34. Marco Dorigo, Maniezzo .V, and Colorni .A. (1992). The ant system: optimization

by a colony of cooperating agents, IEEE Trans.

35. Martin .O ,(1991). Large-step Markov chains for the traveling salesman problem,

Complex Systems 5 (1991) 299–326.

36. Stuuzle and Hoos,(2000). Ant-Q: A reinforcement learning approach to the traveling

salesman problem, Proceedings of the 11t International Conference on Machine Learning,

Morgan Kaufmann, San Francisco, CA, 1995, pp.252–260.

37. Vitruvius, "The Ten Books of Architecture," Dover Publications, 1960.

116

APPENDIX

Matlab Programme

function ACOtest(inputMatrix)

clc

%% START declare of own Variable for testing

global ASAdded

[row,col] = size(inputMatrix);

if row > col || col > row

end

ASAdded.inputMatrix = inputMatrix;

ASAdded.row = row;

ASAdded.col = col - 1;

ASAdded.MaxDist = max(max(inputMatrix)) * ASAdded.col;

Dimension = ASAdded.row;

NodeWeight = [];

disp(['AS start at ',datestr(now)]);

%%%%%%%%%%%%% the key parameters of Ant System %%%%%%%%%

data_input = ASAdded.inputMatrix

MaxITime=1e3;

AntNum=Dimension; %depends on # of nodes

alpha=1;

beta=5;

rho=0.65;

%%%%%%%%%%%%% the key parameters of Ant System %%%%%%%%%

fprintf('Showing Iterative Best Solution:\n');

finalOutput = ...

AS(NodeWeight,AntNum,MaxITime,alpha,beta,rho);

disp(['AS stop at ',datestr(now)]);

function

[GBTour,GBLength,Option,IBRecord]=AS(WeightMatrix,AntNum,Max

ITime,alpha,beta,rho)

%% (Ant System) date:070427

%%

%%%%%%%%%%%%%%%

% Referenceï¿½ï¿½

117

% Dorigo M, Maniezzo Vittorio, Colorni Alberto.

% The Ant System: Optimization by a colony of cooperating

agents [J].

% IEEE Transactions on Systems, Man, and Cybernetics--Part

B,1996, 26(1)

%%

%%%%%%%%%%%%%%%

global ASOption Problem AntSystem ASAdded

ASOption = InitParameter(AntNum,alpha,beta,rho,MaxITime);

Problem = InitProblem(WeightMatrix);

AntSystem = InitAntSystem();

ITime = 0;

ASAdded.ITime = ITime;

IBRecord = [];

while 1

 InitStartPoint();

 for step = 2:ASOption.n

 for ant = 1:ASOption.m

 P = CaculateShiftProb(step,ant);

 nextnode = Roulette(P,1);

 RefreshTabu(step,ant,nextnode);

 end

 end

 ITime = ITime + 1;

 CaculateToursLength();

 GlobleRefreshPheromone();

 ANB = CaculateANB();

 [GBTour,GBLength,IBRecord(:,ITime)] =

GetResults(ITime,ANB);

 %==

 deltaTau = (ASAdded.MaxDist)./(AntSystem.lengths);

 [deltaMax_val,deltaMax_indx] = max(deltaTau);

 ASAdded.deltaMax_tour = AntSystem.tours(deltaMax_indx,:);

%update InitStartPoint

 %==

 if Terminate(ITime,ANB)

 Ant_Tour = AntSystem.tours

 format bank

 Ant_Tour_Delta = [AntSystem.tours, deltaTau]

 format short

 Distance_Covered_By_Ant = AntSystem.lengths

 [BestVal,BestIdx] = max(Ant_Tour_Delta(:,end));

 BestTour = AntSystem.tours(BestIdx,:)

 break;

118

 end

end

Option = ASOption;

%% ---

function ASOption =

InitParameter(AntNum,alpha,beta,rho,MaxITime)

global ASAdded

ASOption.n = ASAdded.row;

ASOption.m = AntNum;

ASOption.alpha = alpha;

ASOption.beta = beta;

ASOption.rho = rho;

ASOption.MaxITime = MaxITime;

ASOption.OptITime = 1;

ASOption.Q = 10;

ASOption.C = 100;

ASOption.lambda = 0.15;

ASOption.ANBmin = 2;

ASOption.GBLength = inf;

ASOption.GBTour = zeros(ASAdded.row,1);

ASOption.DispInterval = 10;

rand('state',sum(100*clock));

%% ---

function Problem = InitProblem(WeightMatrix)

global ASOption

n = ASOption.n;

MatrixTau = (ones(n,n)-eye(n,n))*ASOption.C;

Distances = WeightMatrix;

SymmetryFlag = false;

if isempty(WeightMatrix)

 Distances = CalculateDistance;

 SymmetryFlag = true;

end

Problem =

struct('dis',Distances,'tau',MatrixTau,'symmetry',SymmetryFl

ag);

%% ---

function AntSystem = InitAntSystem()

global ASOption

AntTours = zeros(ASOption.m,ASOption.n);

ToursLength = zeros(ASOption.m,1);

AntSystem = struct('tours',AntTours,'lengths',ToursLength);

%% ---

function InitStartPoint()

global AntSystem ASOption ASAdded

AntSystem.tours = zeros(ASOption.m,ASOption.n);

119

rand('state',sum(100*clock));

if ASAdded.ITime == 0

 AntSystem.tours(:,1) = randperm(ASAdded.row)';

else

 AntSystem.tours(:,1) = ASAdded.deltaMax_tour';

end

AntSystem.lengths = zeros(ASOption.m,1);

%% ---

function Probs = CaculateShiftProb(step_i, ant_k)

global AntSystem ASOption Problem

CurrentNode = AntSystem.tours(ant_k, step_i-1);

VisitedNodes = AntSystem.tours(ant_k, 1:step_i-1);

tau_i = Problem.tau(CurrentNode,:);

tau_i(1,VisitedNodes) = 0;

dis_i = Problem.dis(CurrentNode,:);

dis_i(1,CurrentNode) = 1;

Probs =

(tau_i.^ASOption.alpha).*((1./dis_i).^ASOption.beta);

if sum(Probs) ~= 0

 Probs = Probs/sum(Probs);

else

 NoVisitedNodes = setdiff(1:ASOption.n,VisitedNodes);

 Probs(1,NoVisitedNodes) = 1/length(NoVisitedNodes);

end

%% ---

function Select = Roulette(P,num)

m = length(P);

flag = (1-sum(P)<=1e-5);

Select = zeros(1,num);

rand('state',sum(100*clock));

r = rand(1,num);

for i=1:num

 sumP = 0;

 j = ceil(m*rand);

 while (sumP<r(i)) && flag

 sumP = sumP + P(mod(j-1,m)+1);

 j = j+1;

 end

 Select(i) = mod(j-2,m)+1;

end

%% ---

function RefreshTabu(step_i,ant_k,nextnode)

global AntSystem

AntSystem.tours(ant_k,step_i) = nextnode;

%% ---

function CaculateToursLength()

120

global ASOption AntSystem

x = CalculateDistance;

p = AntSystem.tours;

Lengths = zeros(ASOption.m,1);

for j=1:ASOption.n

 pRow = p(j,:);

 sumRow = 0;

 for i=1:ASOption.n-1

 sumRow = sumRow + x(pRow(i),pRow(i+1));

 end

 Lengths(j) = sumRow;

end

AntSystem.lengths = Lengths;

%% ---

function [GBTour,GBLength,Record] = GetResults(ITime,ANB)

global AntSystem ASOption

[IBLength,AntIndex] = min(AntSystem.lengths);

IBTour = AntSystem.tours(AntIndex,:);

if IBLength<=ASOption.GBLength

 ASOption.GBLength = IBLength;

 ASOption.GBTour = IBTour;

 ASOption.OptITime = ITime;

end

GBTour = ASOption.GBTour';

GBLength = ASOption.GBLength;

Record = [IBLength,ANB,IBTour]';

%% ---

function GlobleRefreshPheromone()

global AntSystem ASOption Problem

AT = AntSystem.tours;

TL = AntSystem.lengths;

sumdtau=zeros(ASOption.n,ASOption.n);

for k=1:ASOption.m

 for i=1:ASOption.n

sumdtau(AT(k,i),AT(k,i))=sumdtau(AT(k,i),AT(k,i))+ASOption.Q

/TL(k);

 if Problem.symmetry

 sumdtau(AT(k,i),AT(k,i))=sumdtau(AT(k,i),AT(k,i));

 end

 end

end

Problem.tau=Problem.tau*(1-ASOption.rho)+sumdtau;

%% ---

function flag = Terminate(ITime,ANB)

121

global ASOption

flag = false;

if ANB<=ASOption.ANBmin || ITime>=ASOption.MaxITime

 flag = true;

end

%% ---

function ANB = CaculateANB()

global ASOption Problem

mintau =

min(Problem.tau+ASOption.C*eye(ASOption.n,ASOption.n));

sigma = max(Problem.tau) - mintau;

dis = Problem.tau -

repmat(sigma*ASOption.lambda+mintau,ASOption.n,1);

NB = sum(dis>=0,1);

ANB = sum(NB)/ASOption.n;

%% ---

function Distances = CalculateDistance

global ASAdded

Distances = ASAdded.inputMatrix;

%% ---
