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ABSTRACT 

This research presents Max-Min Ants System (MMAS) under an Ant Colony Optimization 

(ACO) to solve a company‘s problem of checking the main sales points of Ghacem, Ghana 

starting from Tema (initial city). 

This problem is formulated as a travelling salesman problem (TSP).TSP involves finding 

an optimal route for visiting cities and returning to point of origin. The problem 

formulation of the TSP in this work is based on symmetric TSP. 

This work presents the solution based on Max-Min Ants System (MMAS) approach. 

The MMAS algorithm proposed by Stuutzle and Hoos (2000) was coded in the matlab 

language in solving the problem of Ghacem, Ghana inspectional team tour of the main 

sales points of the company, in the country. 

The result that came out the work showed that the optimal route that can be considered by 

the company in order to maximize profit is     

   
lg

Ho Accra Tema Koforidua Takoradi Cape Coast

Obuasi Kumasi Sunyani Temale Bo a Wa

     

     
 

    The total cost distance of their usual tour is 2319km . 
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CHAPTER ONE 

INTRODUCTION 

1.1 History of Cement 

Throughout history, cementing materials have played a vital role. They were used widely 

in the ancient world. The Egyptians used calcined gypsum as a cement. The Greeks and 

Romans used lime made by heating limestone and added sand to make mortar, with 

coarser stones for concrete. (Vitruvius, "The Ten Books of Architecture," Dover 

Publications, 1960.) 

The Romans found that cement could be made which set under water and this was used for 

the construction of harbours. The cement was made by adding crushed volcanic ash to lime 

and was later called a "pozzolanic" cement, named after the village of Pozzuoli near 

Vesuvius. (Vitruvius, "The Ten Books of Architecture," Dover Publications, 1960.)  

In places such as Britain, where volcanic ash was scarce, crushed brick or tile was used 

instead. The Romans were therefore probably the first to manipulate the properties of 

cementations materials for specific applications and situations. (Vitruvius, "The Ten Books 

of Architecture," Dover Publications, 1960.) 

 In 300BC, the Egyptians began to use mud mixed with straw to bind dried bricks. They 

also used gypsum mortars and mortars of lime in the building of the pyramids. The 

Chinese used cementitious materials in the construction of the Great Wall.  

The Greeks in 800BC, used lime mortars that were much harder than later Roman mortars. 

This material was also in evidence in Crete and Cyprus at this time. The Babylonians and 

Assyrians in 300BC, used bitumen to bind stones and bricks together.  
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 The Ancient Romans frequently used broken brick aggregate embedded in a mixture of 

lime putty with brick dust or volcanic ash. They built a wide variety of structures that 

incorporated stone and concrete, including roads, aqueducts, temples and palaces.  

Between 1200BC to 1500BC, the quality of cementing materials deteriorated and even the 

use of concrete died out during The Middle Ages as the art of using burning lime and 

pozzolan (admixture) was lost, but it was later reintroduced in the 1300s. After the 

Romans, there was a general loss in building skills in Europe, particularly with regard to 

cement. Mortars hardened mainly by carbonation of lime, a slow process. The use of 

pozzolana was rediscovered in the late Middle Ages.  

The great mediaeval cathedrals, such as Durham, Lincoln and Rochester in England and 

Chartres and Rheims in France, were clearly built by highly skilled masons. Despite this, it 

would probably be fair to say they did not have the technology to manipulate the properties 

of cementitious materials in the way the Romans had done a thousand years earlier.  

The Renaissance and Age of Enlightenment brought new ways of thinking, which for led 

to the industrial revolution. The interests of industry and empire coincided, with the need 

to build lighthouses on exposed rocks to prevent shipping losses.  

Smeaton, building the third Eddystone lighthouse (1759) off the coast of Cornwall in 

Southwestern England, found that a mix of lime, clay and crushed slag from iron-making 

produced a mortar which hardened under water. Joseph Aspdin took out a patent in 1824 

for "Portland Cement," a material he produced by firing finely-ground clay and limestone 

until the limestone was calcined. He called it Portland Cement because the concrete made 

from it looked like Portland stone, a widely-used building stone in England.  
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A few years later, in 1845, Isaac Johnson made the first modern Portland Cement by firing 

a mixture of chalk and clay at much higher temperatures, similar to those used today. At 

these temperatures (1400C-1500C), clinkering occurs and minerals form which are very 

reactive and more strongly cementitious.  

While Johnson used the same materials to make Portland cement as we use now, three 

important developments in the manufacturing process lead to modern Portland cement.  

Rotary kilns heat the clinker mainly by radiative heat transfer and this is more efficient at 

higher temperatures, enabling higher burning temperatures to be achieved. Also, because 

the clinker is constantly moving within the kiln, a fairly uniform clinkering temperature is 

achieved in the hottest part of the kiln, the burning zone.  

In 1414, the manuscripts of the Roman Pollio Vitruvius are discovered in a Swiss 

monastery reviving general interest in concrete.  

John Smeaton (1774) found that combining quicklime with other materials created an 

extremely hard material that could be used to bind together other materials. He used this 

knowledge to build the first concrete structure since the Ancient Romans. 

The Panama Canal (1914) was opened after decades of construction. It features three pairs 

of concrete locks with floors as thick as 20 feet, and walls as much as 60 feet thick at the 

bottom. 

1.2 Background of the Study  

Ghacem was founded by the Government of Ghana in collaboration with Norcem AS of 

Norway on August 30, 1967. In 1993, the Ghana Government sold 35 % of its shares to 

Scancem (formerly Norcem). Scancem as a result had 59.5 %, leaving Government with 

40 % and 0.5 % going to a local investor. In 1997, the Ghana Government sold 5 % of its 
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40 % shareholding to the workers of the company. The remaining 35 % shares of the 

Ghana Government was sold to Scancem in 1999 and at present Scancem has 93.1 % 

shares in the company, workers have 5 % shares with 1.9 % owned by a local investor. In 

1999, Heidelberg Cement took over Scancem, thus making it a subsidiary. Ghacem Ghana 

is located at both Takoradi and Tema which are coastal cities in the country. Ghacem 

cement has been used for construction of big and small projects, such as:  

Tema Harbour, Takoradi Harbour, Akosombo Dam, Adomi Bridge, Tema Motorway, 

Kotoka International Airport, Aboadze Thermal Plant and West African Gas concrete 

piping  

Construction of new stadia at Takoradi and Tamale, and the rehabilitation of Accra, 

Kumasi and Tema Stadia .Construction of Presidential Palace Construction of Government 

affordable houses for workers 

The factories in Tema and Takoradi, have produced over 30 million tonnes of cement 

since inception in 1967. Several millions of dollars have lately been invested in expansion 

at both factories. These expansion works have improved the quality of Ghacem cement, 

reduced energy consumption at the plants, ensured efficient production and reduced 

environmental impact of the plants operations. Currently, Ghacem has a number of 

accredited distributors through-out the country. Periodic meetings are held with these 

distributors to reinforce partnership. An awards ceremony is held at the end of the year to 

honour distributors who have sold the most number of bags.   

Goods from the company are transported to the regional capitals. They are then kept in the 

warehouses owned by key distributors in the various regional capitals. The key distributors 

then transport these goods to a specified area that has been allocated to them by the 
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company to sell. The storeowners purchase the goods from the distributors and the goods 

are later sold to consumers. 

1.3 Statement of the Problem  

The Directors of the company are tasked in every two months period to embark on tour in 

order to check the sales of the company‘s goods. They usually use the following route;  

lg

Tema Accra Cape Coast Takoradi Obuasi

Kumasi Sunyani Wa Bo a Temale Ho Tema

     

     
 

Their choice of the routes for the visit was done without considering any Mathematical 

model. This research aims at using Min-Max Ant System (MMAS) algorithm with respect 

to a Symmetric Traveling Salesman Problem(STSP) model to check whether the tour is 

optimal. 

1.4 Objective of the Study 

The objectives of this research are; 

1. To use a Max-Min Ant System (MMAS), which belongs to Ants Colony 

Optimization (ACO) to model the tour distance of the inspectional team of 

Ghacem, as a travelling salesman problem. 

2. To provide an optimal  tour distance of the inspectional team of Ghacem, as they 

go on to check on the sales performance of the twelve main sales points in Ghana.  



6 

1.5 Methodology 

The tour of Directors of Ghacem to the major sales points to inspect sales will be modeled 

as Symmetric Travelling Salesman Problem. The Min-Max Ant System (MMAS) 

algorithm, which belongs Ants Colony Optimization (ACO) family, will be used as a 

method of solving the Symmetric TSP model. 

 In this work, a biologically inspired heuristic (ant colony) is used to solve such problem. 

The ant colony implemented is closely rooted at the biological and behavioral model of the 

real social insects. It is a non-deterministic heuristic and could be used as both constructive 

and iterative. The solution uses many ants of simple nature and limited memory 

requirements. The intelligence of this heuristic is not portrayed by individual ants, but 

rather is expressed by the colony as a whole. Careful presentation of the problem to the ant 

colony model facilitates the close biological solution derivation. 

Ghana High Ways Authority will be consulted for information on the distance of the 

network routes from one major sales point to the other. 

A matlab and Genta programs that uses the ACO algorithm will be employed to solve the 

TSP model. The internet, KNUST Library and Mathematics journals will be used to obtain 

the related literature 

1.6 Justification of the Study 

Ghacem Ghana is a state own company which contribute to the government revenue. It 

therefore prudent to minimize its operational cost so as to maximize its profit. The profit 

margin the company will go along way to increase the revenue of the government. In this 

light the fitted model will help the company to minimize its operational cost in order 

maximize its profit. 
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1.7 Structure of the thesis 

Chapter one deals with the historical background of the study, the statement of the 

problem, the objective of the study, significant of the study and the limitation of study. 

 Chapter two deals with Review of relevant literature on the topic of study 

 Chapter three covers the Mathematical tools that will be used in analyze the data in 

order to establish the appropriate model 

 Chapter four talks about data collection as well as its analyses. 

 Chapter five discuss findings, conclusion, summary and recommendation of the 

study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 INTRODUCTION 

This chapter will review the relevant literature and applications on Ants Colony 

Optimization (ACO) and Travel Salesman Problem (TSP) .In computer science and 

operations research, the ant colony optimization algorithm (ACO) is a probabilistic 

technique for solving computational problems which can be reduced to finding good paths 

through graphs 

This algorithm is a member of ant colony algorithms family, in swarm intelligence 

methods, and it constitutes some metaheuristic optimizations. Initially proposed by  Dorigo 

(1992) in his PhD thesis, the first algorithm was aiming to search for an optimal path in a 

graph, based on the behavior of ants seeking a path between their colony and a source of 

food. The original idea has since diversified to solve a wider class of numerical problems, 

and as a result, several problems have emerged, drawing on various aspects of the behavior 

of ants. 

 

2.1 Applications on ACO  

Ant colony optimization (ACO) has widely been applied to solve combinatorial 

optimization problems in recent years. There are few studies, however, on its convergence 

time, which reflects how many iteration times ACO algorithms spend in converging to the 

optimal solution. Based on the absorbing Markov chain model, they analyzed the ACO 

convergence time. 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Operations_research
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Ants
http://en.wikipedia.org/wiki/Ant_colony
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 Huanq et al, (2008), presented a general result for the estimation of convergence time to 

reveal the relationship between convergence time and pheromone rate. This general result 

was then extended to a two-step analysis of the convergence time, which included the 

following: 

( 1) the iteration time that the pheromone rate spends on reaching the objective value and 

(2) the convergence time that was calculated with the objective pheromone rate in 

expectation. Furthermore, four brief ACO algorithms were investigated by using the 

proposed theoretical results as case studies. Finally, the conclusions of the case studies that 

the pheromone rate and its deviation determine the expected convergence time were 

numerically verified with the experiment results of four one-ant ACO algorithms and four 

ten-ant ACO algorithms. 

  

ACO has been proved to be one of the best performing algorithms for NP-hard problems 

as TSP. Many strategies for ACO have been studied, but little theoretical work has been 

done on ACO‘s parameters α and β, which control the relative weight of pheromone trail 

and heuristic value. Yang et al, (2011), described the importance and functioning of α and 

β, and drawn a conclusion that a fixed β may not enable ACO to use both heuristic and 

pheromone information for solution when α= 1. Later, following the analysis, an adaptive 

β strategy was designed for improvement. Finally, a new ACO called adaptive weight ant 

colony system (AWACS) with the adaptive β and α= 1 was introduced, and proved to be 

more effective and steady than traditional ACS through the experiment based on TSPLIB 

test.  

Khader et al,(2008), proposed an ant colony optimization (ACO) algorithm together with 

traveling salesman problem (TSP) approach to investigate the clustering problem in 
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protein interaction networks (PIN). They named this combination as ACOPIN. The 

purpose of that work was two-fold. First, to test the efficacy of ACO in clustering PIN and 

second, to propose the simple generalization of the ACO algorithm that might allow its 

application in clustering proteins in PIN. They split that paper to three main sections. First, 

they described the PIN and clustering proteins in PIN. Second, They discussed the steps 

involved in each phase of ACO algorithm. Finally, presented some results of the 

investigation with the clustering patterns. 

Stitizle et al, (1999), gave an overview on the available ACO algorithms for the TSP. they 

first introduced the TSP. they outlined how ACO algorithms can be applied to that 

problem and present the available ACO algorithms for the TSP. They also discussed local 

search for the TSP, while presented experimental results which have been obtained with 

MAX --MIN Ant System, one of the improved versions of Ant System. Since the first 

application of ACO algorithms to the TSP, which had been applied to several other 

combinatorial optimization problems? On many important problems ACO algorithms have 

proved to be among the best available algorithms. They gave a concise overview of these 

other applications of ACO algorithms. On The Traveling Salesman Problem 

Beam-ACO algorithms are hybrid methods that combine the metaheuristic ant colony 

optimization with beam search. Christian Blum et al..,(2005) heavily relied on accurate 

and computationally inexpensive bounding information for choosing between different 

partial solutions during the solution construction process. In this work they presented the 

use of stochastic sampling as a useful alternative to bounding information in cases were 

computing accurate bounding information was too expensive. As a case study they chose 

the well-known travelling salesman problem with time windows. their results clearly 
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demonstrated that Beam-ACO, even when bounding information was replaced by 

stochastic sampling, may have important advantages over standard ACO algorithm 

 Dorigo et al,(2005), researched on a new metaheuristic that focused on proof-of-concept 

applications. It was only after experimental work had shown the practical interest of the 

method that researchers tried to deepen their understanding of the method‘s functioning not 

only through more and more sophisticated equations such as ―how and why the method 

works‘ ‘is important, because finding an answer may help in improving its applicability. 

Ant colony optimization, which was introduced in theearly1990s as a novel technique for 

solving hard combinatorial optimization problems, finds itself currently at this point of its 

life cycle. With this article they provided a survey on theoretical results on ant colony 

optimization. First, were view some convergence results. Then they discussed relations 

between ant colony optimization algorithms and other approximate methods for 

optimization. Finally, they focused on some research efforts directed at gaining a deeper 

understanding of the behavior of ant colony optimization algorithms. Throughout the paper 

they identified some open questions with a certain interest of being solved in the near 

future 

Shan et al, (2010), addressed an integrated model that schedules multi-item replenishment 

with uncertain demand to determine delivery routes and truck loads, where the actual 

replenishment quantity only becomes known upon arrival at a demand location. The paper 

departed from the conventional ant colony optimization (ACO) algorithm, which 

minimizes total travel length, and incorporates the attraction of pheromone values that 

indicate the stock out costs on nodes. The contributions of the paper to the literature were 

made both in terms of modeling this combined multi-item inventory management with the 
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vehicle-routing problem and in introducing a modified ACO for the inventory routing 

problem. 

 Ant colony optimization (ACO) is a metaheuristic for solving combinatorial optimization 

problems that is based on the foraging behavior of biological ant colonies. Starting with 

the 1996 seminal paper by Dorigo, Maniezzo and Colorni, ACO techniques have been 

used to solve the traveling salesperson problem (TSP). Maniezzo et al, (1996), focused on 

a particular type of the ACO algorithm, namely, the rank-based ACO algorithm for the 

TSP. In particular, that paper identifies an optimal set of key parameters by statistical 

analysis applied to results of the rank-based ACO for the TSP. Specifically, for six 

frequently used TSPs available on the World Wide Web.  

Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior of 

ant colonies that had been successful in the resolution of hard combinatorial optimization 

problems like the Traveling Salesman Problem (TSP). Osvaldo et al, (2000), proposed the 

Omicron ACO (OA), a novel population-based ACO alternative originally designed as an 

analytical tool. To experimentally prove OA advantages, that work compared the behavior 

between the OA and the MMAS as a function of time in two well-known TSP problems. A 

simple study of the behavior of OA as a function of its parameters showed its robustness. 

Yuren et al, (2006), presented the first rigorous analysis of a simple ACO algorithm called 

(1 + 1) MMAA (Max-Min ant algorithm) on the TSP. The expected runtime bounds for (1 

+ 1) MMAA on two TSP instances of complete and non-complete graphs are obtained. 

The influence of the parameters controlling the relative importance of pheromone trail 

versus visibility was also analyzed, and their choice was shown to have an impact on the 

expected runtime. 
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Amirahmad et al, (2005), estimation of sediment concentration in rivers was very 

important for water resource projects planning and managements. The sediment 

concentration was generally determined from the direct measurement of sediment 

concentration of river or from sediment transport equations. Direct measurement was 

very expensive and cannot be conducted for all river gauge stations. However, sediment 

transport equations do not agree with each other and require many detailed data on the 

flow and sediment characteristics. Various models have been developed so far to identify 

the relation between discharge and sediment load. Most of the models based on 

regression method have some restrictive assumptions. Ant colony optimization (ACO) is 

now being used more frequently to solve optimization problems other than those for 

which they were originally developed. The main purpose of that paper was literature 

review of Ant Colony Optimization for suspended sediment estimation.  

Ant colony optimization (ACO) has been proved to be one of the best performing 

algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of 

the main parameters in ACO algorithms. It is usually set experimentally in the literatures 

for the application of ACO. Yong et al, (2006), presented a paper that proposed an 

adaptive strategy for the volatility rate of pheromone trail according to the quality of the 

solutions found by artificial ants. The strategy was combined with the setting of other 

parameters to form a new ACO algorithm. Finally, the experimental results of computing 

traveling salesman problems indicated that the proposed algorithm was more effective than 

other ant methods.  

 White et al, (2008), proposed the addition of Genetic Algorithms to Ant Colony System 

(ACS) applied to improve performance. Two modifications were proposed and tested. The 

first algorithm was a hybrid between ACS-TSP and a Genetic Algorithm that encodes 

experimental variables in ants. The algorithm does not yield improved results but offered 
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concepts that could be used to improve the ACO algorithm. The second algorithm used a 

Genetic Algorithm to evolve experimental variable values used in ACSTSP. They found 

that the performance of ACS-TSP could be improved by using the suggested values. 

ACO is a metaheuristic inspired in the behavior of natural ant colonies to solve 

combinatorial optimization problems, based on simple agents that work cooperatively 

communicating by artificial pheromone trails.  

Eduardo et al, (2009), used a model to solve the municipal waste collection problem by 

containers was presented, which applies a concept of partial collection sequences that must 

be joined to minimize the total collection distance. The problem to join the partial 

collection sequences was represented as a TSP, which is solved by an ACO algorithm. 

Based on the literature, algorithm parameters are experimentally calibrated and range of 

variations that represents good average solutions are recommended. The model was 

applied to a waste collection sector of the San Pedro de la Paz commune in Chile, 

obtaining recollection routes with less total distance with respect to the actual route 

utilized and to the solution obtained by a previously developed approach.  

 Beam-ACO algorithms are hybrid methods that combine the metaheuristic ant colony 

optimization with beam search.  

 Lopez et al, (2005), heavily relied on accurate and computationally inexpensive bounding 

information for choosing between different partial solutions during the solution 

construction process. In that work they presented the use of stochastic sampling as a useful 

alternative to bounding information in cases were computing accurate bounding 

information is too expensive. As a case study they choose the well-known travelling 

salesman problem with time windows. Their results clearly demonstrated that Beam-ACO, 
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even when bounding information was replaced by stochastic sampling, may have 

important advantages over standard ACO algorithms. 

Yunmming et al, (2010), combined with the idea of the Bean Optimization algorithm 

(BOA), the ant colony optimization (ACO) algorithm was presented to solve the well 

known traveling salesman problem (TSP). The core of that algorithm was using BOA to 

optimize the control parameters of ACO which consist of heuristic factor, pheromone 

evaporation factor and random selection threshold, and applying ant colony system to 

solve two typical TSP. The new algorithm effectively overcame the influence of control 

parameters of ACO and decreased the numbers of experiments. The novel hybrid 

algorithm ACOBOA found the balance between exploiting the optimal solution and 

enlarging the search space. The results of the experiments showed that ACOBOA had 

better optimization performance and efficiency than the general ant colony optimization 

algorithm and genetic algorithm. The new algorithm could also be generalized to solve 

other NP problems. 

Recently, researchers have been dealing with the relation of ACO algorithms to the other 

methods for learning and optimization. One example is the work presented in 

Birattari, et al, (2002), presented work that relates ACO to the fields of optimal control and 

reinforcement learning. A more prominent example is the work that aim at finding 

similarities between ACO algorithms and other probalistic learning algorithms such as 

stochastic gradient ascent (SGA), and the cross-entropy (CE) method. 

Meuleau et al, (2002 ), shown that the pheromone update as outline in the proof-of-concept 

application to the TSP (Dorigo et al. 1991, 1996) is very similar to a stochastic gradient 

ascent in the space of pheromone values. 
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 Blum, (2004), proposed the first implementation of SGA-based ACO algorithms where it 

was shown that SGA-based pheromone updates avoid certain types of search bias.  

 Zlochin et al, (2004), proposed a unifying framework from so-called model-based search 

(MBS) algorithms. An MBS algorithm is characterized by the used of a (parameterized) 

probabilistic. The class of MBS algorithm can be divided into two subclasses with respect 

to the way the probabilistic model is used. The algorithm in the first subclass use a given 

probabilistic model without changing the model structure at run-time, whereas the 

algorithms of the second subclass use and change the probabilistic model in alternating 

phases. 

ACO algorithms are examples of algorithms from the first subclass. While convergence 

proofs can provide insight into the working of an algorithm, they usually not very useful to 

the practitioner that wants to implement efficient algorithms. This is because, generally, 

either infinite time or infinite spaces are required for a stochastic optimization algorithm to 

converge to an optimal solution (or to the optimal solution value). The existing 

convergence proofs for particular ACO algorithms are no exception. 

Blum et al, (2005, 2004), adopted the term deception for the field of ant colony 

optimization , similarly to what had previously been done in evolutionary computation. It 

was shown that ant colony optimization algorithms in general suffer from first order 

deception in the same way as Gas suffer from deception. they further introduce the concept 

of second order deception, which is caused by a bias that leads to decreasing algorithm 

performance over time. 

Recently Montgomery et al,(2004), recently made an attempt to extend the work by Blum 

and Sampels, ( 2002), to assignment problems, and to attribute search bias to different 

algorithmic components. 
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Merkle et al, (2002), were the first to study the behavior of a simple ACO algorithm by 

analyzing the dynamics of its model, which is obtained by applying the expected 

pheromone update. Their work deals with the application of ACO to idealized permutation 

problems. When applied to constrained problems such as permutation problems, the 

solution construction process of ACO algorithms consist of a sequence of random 

decisions in which later decisions depend on earlier ones. Therefore, the later decisions of 

the construction process are inherently biased by the earlier ones. The work of Merkle and 

Middendorf shows that this leads to a bias which they call selection bias. Furthermore, the 

competition between the ants was identified as the main driving force of the algorithm. 

ACO is a metaheuristic inspired in the behavior of natural ant colonies to solve 

combinatorial optimization problems, based on simple agents that work cooperatively 

communicating by artificial pheromone trails.  

Nelson et al, (2009), generated a model to solve the municipal waste collection problem by 

containers was presented, which applied a concept of partial collection sequences that must 

be joined to minimize the total collection distance. The problem to join the partial 

collection sequences is represented as a TSP, which was solved by an ACO algorithm. 

Based on the literature, algorithm parameters were experimentally calibrated and range of 

variations that represents good average solutions are recommended. The model was 

applied to a waste collection sector of the San Pedro de la Paz commune in Chile, 

obtaining recollection routes with less total distance with respect to the actual route 

utilized and to the solution obtained by a previously developed approach. 

Ant colony optimization (ACO) has been proved to be one of the best performing 

algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of 

the main parameters in ACO algorithms. It is usually set experimentally in the literatures 
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for the application of ACO. Shanker et al, (2008), presented a paper that proposed an 

adaptive strategy for the volatility rate of pheromone trail according to the quality of the 

solutions found by artificial ants. The strategy was combined with the setting of other 

parameters to form a new ACO algorithm. Finally, the experimental results of computing 

traveling salesman problems indicated that the proposed algorithm was more effective than 

other ant methods 

The behavior of a (1+1)-ES process on Rudolph's binary long k paths was investigated 

extensively in the asymptotic framework with respect to string length l. First, the case of 

k=l
α
 was addressed.  

Kallel et al, (2002), proved that the long k path was a long path for the (1+1)-ES in the 

sense that the process follows the entire path with no shortcuts, resulting in an exponential 

expected convergence time. For α<1/2, the expected convergence time is also exponential, 

but some shortcuts occur in the meantime that speed up the process. Next, in the case of 

constant k, the statistical distribution of convergence time was calculated, and the 

influence of population size was investigated for different (μ+λ)-ES. The histogram of the 

first hitting time of the solution shows an anomalous peak closed to zero, which 

corresponds to an exceptional set of events that speed up the expected convergence time 

with a factor of l
2
. A direct consequence of this exceptional set is that performing 

independent (1+1)-ES processes proves to be more advantageous than any population-

based (μ+λ)-ES  

Chun et al, (2004), put forward a brief runtime analysis of an evolutionary programming 

(EP) which is one of the most important continuous optimization evolutionary algorithms. 

A theoretical framework of runtime analysis was proposed by modeling EP as an 

absorbing Markov process. The framework was used to study the runtime of a classical EP 
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algorithm named as EP with Cauchy mutation (FEP). It was proved that the runtime of 

FEP could be less than a polynomial of n if the Lebesgue measure of optimal solution set 

was more than an exponential form of 2. Moreover, the runtime analysis result could be 

used to explain the performance of EP based on Cauchy mutation. 

Ant colony optimization (ACO) is one of the most famous bio-inspired algorithms. Its 

theoretical research contains convergence proof and runtime analysis. The convergence of 

ACO has been proved since several years ago, but there are less results of runtime analysis 

of ACO algorithm except for some special and simple cases. Yang et al, (2010), presented 

a paper that proposed a theoretical framework of a class of ACO algorithms. The ACO 

algorithm was modeled as an absorbing Markov chain. Afterward its convergence could be 

analyzed based on the model, and the runtime of ACO algorithm was evaluated with the 

convergence time which reflects how many iteration times ACO algorithms spend in 

converging to the optimal solution. Moreover, the runtime analysis result was advanced as 

an estimation method, which was used to study a binary ACO algorithm as a case study.  

2.2 Travelling Salesman Problem 

The Travelling Salesman problem is one of the most popular problems from the NP set; it 

is also one of the hardest too. 

The solution to this problem enjoys wide applicability in a variety of practical fields. Thus, 

it highly raises the need for an efficient solution for this NP Hard problem.  

According to Schrijver, (2005), the general form of the TSP appears to have been first 

studied during the 1930s in Vienna and at Harvard, notably by Karl Menger, who defined 

the problem, considered the obvious brute-force algorithm, and observed the non-

optimality of the nearest neighbour heuristic; i.e. the rule that one should first go from the 

starting point to the closest point, then to the point closest to this, etc., in general does not 
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yield the shortest route.  

Hassler, (2006), introduced the name travelling salesman problem soon after (Schrijver, 

2005). In the 1950s and 1960s, the travelling Salesman problem became increasingly 

popular in scientific circles in Europe and the USA.  

Dantzig et al, (1954), at the RAND Corporation in Santa Monica, made notable 

contribution who expressed the problem as an integer linear program and developed the 

cutting plane method for its solution. A problem instance with 49 cities was then solved to 

optimality with these new methods by constructing a tour and proving that no other tour 

could be shorter.  

In the years that followed, the problem was studied by many researchers from 

mathematics, computer science, chemistry, physics, and other sciences.  

Karp et al, (1970), explored new approaches to the TSP in which 1-trees, which are a 

variant of spanning trees, play essential role. They observed that a tour is a 1-tree in which 

each vertex has degree 2.  

Karp et al, (1971), described Dynamic programming algorithm for solving small instances 

and for finding approximate solutions to larger instances. The exact algorithm was used to 

solve 13-city instance on an IBM 7090 computer. The approximation algorithm (also 

programmed for the IBM 7090) found the optimal solution to the 42-city Dantzig-

Fulkerson-Johnson example on two out of five trials, and was also tested on a new 48-city 

instance.  

Karp, (1972), showed that the Hamiltonian cycle problem was NP-complete, which 

implies the NP-hardness of TSP. This supplied a mathematical explanation for the 

apparent computational difficulty of finding optimal tours.  
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The Christofides, (1976), algorithm, one of the first approximation algorithms, combines 

the minimum spanning tree with a solution of another problem, minimum-weight perfect 

matching. This gives a TSP tour which is at most 1.5 times the optimal. The Christofides 

algorithm was, in part, responsible for drawing attention to approximation algorithms as a 

practical approach to intractable problems. The term "algorithm" was not commonly 

extended to approximation algorithms until later; the Christofides algorithm was initially 

referred to as the Christofides heuristic (Schrijver, 2005).  

Land, (1979), described a cutting-plane algorithm for the TSP. She solved linear-

programming relaxations in integer arithmetic, thus avoiding rounding errors in the 

computations. The separation algorithms included a shrinking heuristic for identifying 

subtour inequalities and a heuristic for identifying blossom inequalities. If no subtours or 

blossoms were found, a Gomory-cut was added to the relaxation. She used column 

generation to handle the great number of edges present in larger instances.  

Padberg et al, (1980), described a cutting-plane algorithm which makes use of new 

separation routines for comb inequalities. Like Land (1979), the linear programming 

computations were carried out using integer arithmetic to "avoid any problems connected 

with round-off errors." In their computational study, the authors solved 54 out of total of 

74 instances by linear programming relaxation. For the 318-city example of Lin and 

Kernighan (1973), the bound obtained via the relaxation was within a factor of 0.96 of the 

best tour that was found. 

Padberg et al, (1980), solved the 318-city instance, described in Lin and Kernighan (1973), 

which remained until 1987 as the largest TSP solved. In their work, the authors made 

further rounds of cutting planes and IBM MPSX-MIP/370 interger-programming solver 
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was used to carry out a branch and bound search on the final linear programming 

relaxation.  

Grötschel et al, (1984), managed to exactly solve instances with up to 2392 cities, using 

cutting planes and branch-and-bound. 

Hopfield, (1986), explored an innovative method to solve combinatorial optimization 

problems and implemented a neural network of the Hopfield Model (HM) into an electric 

circuit that produces approximate solutions to the TSP quite efficiently.  

Walshaw, (2002), derived, and implemented a multilevel approach to
 
the travelling 

salesman problem. The resulting algorithm progressively
 
coarsens the problem, initialises a 

tour, and then employs either
 
the Lin-Kernighan (LK) or the Chained Lin-Kernighan 

(CLK) algorithm
 
to refine the solution on each of the coarsened problems in

 
reverse order. 

In experiments on a well-established test suite
 
of 80 problem instances. 

Walshaw, (2002), found multilevel configurations that
 
either improved the tour quality by 

over 25% as compared to
 
the standard CLK algorithm using the same amount of execution

 

time, or that achieved approximately the same tour quality over
 
seven times more rapidly. 

According to Walshaw, (2002), the multilevel variants
 
seemed to optimise far better the 

more clustered instances with
 

which the LK and CLK algorithms have the most 

difficulties. 

Applegate et al, (2003, 2006), developed the program Concorde, which has been used in 

many recent record solutions. 
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Reinel, (1991), published the travelling Salesman Problem Library (TSPLIB), a collection 

of benchmark instances of varying difficulty, which has been used by many research 

groups for comparing results.  

Applegate et al, (1994), solved a travelling salesman problem which models the production 

of printed circuit boards having 7397 holes (cities)..  

Applegate, et al, (2008), described a computer code and data that together certify the 

optimality of a solution to the 85,900-city travelling salesman problem, pla85900, the 

largest instance in the TSPLIB collection of challenge problems, currently the largest 

solved TSPLIB instance.  

Cook et al, (2005), computed an optimal tour through a 33,810-city instance given by a 

microchip layout problem 

Haist et al, (2007), introduced an optical method based on white light interferometry in 

order to solve the travelling salesman problem. To the authors‘ knowledge, it was the first 

time that a method for the reduction of non–polynomial time to quadratic time had been 

proposed. The authors showed that this achievement was limited by the number of 

available photons for solving the problem. It turned out that the number of photons was 

proportional to N
N
 for a travelling salesman problem with N cities and that for large 

numbers of cities the method in practice therefore was limited by the signal–to–noise ratio.  

Kohonen self organizing map is an important artificial neural network technique that uses 

competitive, unsupervised learning to produce a low-dimensional discretized 

representation of the input space of the training samples which preserves the topological 

properties of the input space. The fuzzy set theory introduces the concept of membership 
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function to the learning process of Self Organizing Map which helps to handle the inherent 

vagueness involved in most of the real life problems. 

Chaudhuri et al, (2009), used fuzzy self organizing map with one dimensional 

neighbourhood to find an optimal solution for the symmetrical Traveling Salesman 

Problem. The solution generated by the Fuzzy Self Organizing Map algorithm was 

improved by the 2-opt algorithm. Finally, the Fuzzy Self Organizing Map algorithm was 

compared with Lin-Kerninghan Algorithm and Evolutionary Algorithm with Enhanced 

Edge Recombination operator and self- proposed by Yang et al, (2008), adapting mutation 

rate. 

Yang et al, (2008), proposed, Shuffled frog-leaping algorithm (SFLA) is a new mimetic 

meta-heuristic algorithm with efficient mathematical function and global search capability, 

When applying the shuffled frog-leaping algorithm in TSP, the authors built memeplex 

and submemeplex and the evolution of the algorithm, especially the local exploration in 

submemeplex was carefully adapted based on the prototype SFLA. 

 According to Yang et al, (2008), experimental results show that the shuffled frog leaping 

algorithm is efficient for small-scale TSP. Particularly, for TSP with 51 cities; the 

algorithm manages to find six tours which are shorter than the optimal tour provided by 

TSPLIB.  

Amponsah et al, (2010), used an algorithm due to Dharwalker, (2008), to find Hamilton 

circuits in solving a ten-city TSP in Ghana. 

 Ameyaw, (2010), also used simulated annealing to solve an eleven-city TSP of eleven 

sales points of Unilever in Ghana. In both instances, the problems were modelled as 

symmetric TSP. 
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2.2.1 Variants of Travelling Salesman Problem  

Many forms of the TSP have been proposed by different authors in the literature. In the 

next seven sections some of the various forms of the TSP will be reviewed. 

The Selective Travelling Salesman Problem  

 The Selective Travelling Salesman Problem is defined on a graph in which profits are 

associated with vertices and costs are associated with edges. Some vertices are 

compulsory. The aim is to construct a tour of maximal profit including all compulsory 

vertices and whose cost does not exceed a preset constant. 

Gendreau et al, (1998), developed several classes of valid inequalities for the symmetric 

Selective Travelling Salesman Problem and used them in a branch-and-cut algorithm. 

Depending on problem parameters, the proposed algorithm can solve instances involving 

up to 300 vertices. 

 

Non-Euclidean Visual Travelling Salesman Problem 

In the task of finding the shortest tour of n cities given intercity costs, usually, the intercity 

costs are 2-Dimentional Euclidean distances. In the presence of obstacles or in the case of 

3-Dimentional surfaces, the intercity distances are in general not Euclidean. The TSP with 

obstacles and on 3-Dimentional surfaces approximates our everyday visual navigation and 

this leads to the Non-Euclidean visual travelling salesman problem 

 Catrambone, et al, (2008),.proposed three questions that are related to the mechanisms 

involved in solving TSP: 

i. How do subjects find the intercity distances? 

ii. How do they determine clusters of cities?  
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iii. How do they produce the TSP tour? 

In their model, on Non-Euclidean visual travelling salesman problem, they found the non-

Euclidean distances (geodesics); the geodesic distances were then used as intercity costs in 

a graph pyramid. The original TSP problem was represented by a sequence of problems 

involving clusters of cities. The hierarchical clustering was performed by using a 

Boruvka's minimum spanning tree. Close to the top of the pyramid, the original TSP 

problem was represented at a very coarse level and involved very small number of ―cities‖. 

This coarse representation was solved optimally. Expanding this coarse tour in a top-down 

manner led to a solution of the original TSP. The new model had an adaptive spatial 

structure and it simulated visual acuity and visual attention. The model solved the TSP 

problem sequentially, by moving its attention from city to city.  

The Generalized Travelling Salesman Problem (GTSP) 

 The generalized travelling salesman problem (GTSP) is an extension of the TSP. In 

GTSP, a partition of cities into groups is given and a minimum length tour that includes 

exactly one city from each group is to be found.  

The Probabilistic Travelling Salesman Problem  

Campbell et al, (2007), defined the Probabilistic Travelling Salesman Problem (PTSP) as a 

generalization of the well known Travelling Salesman Problem (TSP). In contrast to the 

TSP, each city in the PTSP has to be visited only with a certain probability, thus allowing 

more realistic models and scenarios. The goal here is to find a so called a-priori tour that 

visits all cities exactly once, minimizing the expected cost over all possible a-posteriori 

tours, where cities which do not require a visit are just skipped without changing the order 

of the a-priori tour. 
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 As a generalization of the TSP, the PTSP is NP-hard and therefore algorithms computing 

near optimal solutions in a reasonable amount of time are of great interest.  

Formally, the PTSP can be defined over a complete undirected edge- and node-weighted 

graph   is the set of nodes which represent the customers, 

 is the probability function that assigns to each node the probability that the 

node requires a visit and  is the symmetric cost function that represents the 

non-negative travel costs between any two nodes  

The Probabilistic Travelling Salesman Problem with
 
Deadlines (PTSPD) 

Campbell et al, (2007), found out that time-constrained deliveries were one of the fastest 

growing segments
 
of the delivery business, and yet there was surprisingly little

 
literature 

that addressed time constraints in the context of
 
stochastic customer presence.  

The authors began to fill that void by
 
introducing the probabilistic travelling salesman 

problem with
 
deadlines (PTSPD) which is an extension of the well-known

 
probabilistic 

travelling salesman problem (PTSP) in which, in
 
addition to stochastic presence, customers 

must also be visited
 
before a known deadline.  

Campbell et al, (2007), presented Two recourse models and
 
a chance constrained model 

for the PTSPD.In their work, special cases were discussed for each model, and 

computational experiments were used to illustrate under what conditions stochastic and 

deterministic
 
models lead to different solutions. 

The General Routing Problem (GRP)  
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The general routing problem (GRP) is the problem of finding
 
a minimum length tour, 

visiting a number of specified vertices
 
and edges in an undirected graph. 

Muyldermans et al, (2005), described how the well-known 2-opt and 3-opt local search 

procedures for
 
node routing problems could be adapted to solve arc and general

 
routing 

problems successfully. Two forms of the 2-opt and 3-opt
 
approaches were applied to the 

GRP. The first version was similar
 
to the conventional approach for the travelling salesman 

problem;
 
the second version included a dynamic programming procedure

 
and explored a 

larger neighbourhood at the expense of higher
 
running times.

  

The Asymmetric Travelling Salesman Problem with Time Windows
 

In the asymmetric travelling salesman problem (ATSP) the cost or distance from city i to 

city j is not the same as the cost or distance from city j to city i. The asymmetric travelling 

salesman problem with time windows (ATSP-TW), an extension of ATSP, is a basic 

model for scheduling and routing applications. 

 Ascheuer et al, (2000), presented a formulation of the problem involving only 0/1 

variables associated with the arcs of the underlying digraph. This had the advantage of 

avoiding additional variables as well as the associated (typically very ineffective) linking 

constraints. In the formulation, time-window restrictions were modelled using ―infeasible 

path elimination‖ constraints. The authors presented the basic form of these constraints 

along with some possible strengthening. Several other classes of valid inequalities derived 

from related asymmetric travelling salesman problems were also described. 

2.2.2 Applications of Travelling Salesman Problem  

There are several practical applications of the TSP. Discussion that covers some possible 
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applications, not complete though, is given; we start with applications that can be modelled 

directly as one of the variants given in the previous section.  

Drilling of printed circuit boards 

A direct application of the TSP is the drilling problem whose solution plays an important 

role in economical manufacturing of printed circuit boards (PCBs). 

Grötschel et al, (1991), gave a computational study in an industry application of a large 

electronics company. To connect a conductor on one layer with a conductor on another 

layer, or to position (in a later stage of the PCB production) the pins of integrated circuits, 

holes have to be drilled through the board. The holes may be of different diameters. To 

drill two holes of different diameters consecutively, the head of the machine has to move 

to a tool box and change the drilling equipment. This is quite time consuming. Thus it is 

clear at the outset that one has to choose some diameter, drill all holes of the same 

diameter, change the drill, drill the holes of the next diameter, etc where the ―cities‖ are the 

initial position and the set of all holes that can be drilled with one and the same drill. The 

―distance‖ between two cities is given by the time it takes to move the drilling head from 

one position to the other. The aim here is to minimize the travel time for the head of the 

machine. 

X-Ray crystallography 

An important application of the TSP occurs in the analysis of the structure of crystals 

(Bland and Shallcross, 1987; Dreissig and Uebach, 1990). Here an X-ray diffractometer is 

used to obtain information about the structure of crystalline material. To this end a detector 

measures the intensity of X-ray reflections of the crystal from various positions. Whereas 

the measurement itself can be accomplished quite fast, there is a considerable overhead in 
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positioning time since up to hundreds of thousands positions have to be realized for some 

experiments and the positioning involves moving four motors (Dreissig and Uebach, 

1990). The time needed to move from one position to the other can be computed very 

accurately. According to the authors, the result of the experiment does not depend on the 

sequence in which the measurements at the various positions are taken. However, the total 

time needed for the experiment depends on the sequence. Therefore, the problem consists 

of finding a sequence that minimizes the total positioning time. This leads to a travelling 

salesman problem. 

 

Overhauling gas turbine engines 

This application was reported by Plante, (1987), and occurs when gas turbine engines of 

aircraft have to be overhauled. To guarantee a uniform gas flow through the turbines there 

are so-called nozzle-guide vane assemblies located at each turbine stage. Such an assembly 

basically consists of a number of nozzle guide vanes affixed about its circumference. All 

these vanes have individual characteristics and the correct placement of the vanes can 

result in substantial benefits (reducing vibration, increasing uniformity of flow, reducing 

fuel consumption). The problem of placing the vanes in the best possible way can be 

modelled as a TSP with a special objective function. 

 

The order-picking problem in warehouses 

This problem is associated with material handling in a warehouse (Ratliff and Rosethal, 

1981)). Assume that at a warehouse an order arrives for a certain subset of the items stored 

in the warehouse. Some vehicle has to collect all items of this order to ship them to the 

customer. The relation to the TSP is immediately seen. The storage locations of the items 

correspond to the nodes of the graph. The distance between two nodes is given by the time 
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needed to move the vehicle from one location to the other. The problem of finding a 

shortest route for the vehicle with minimum pickup time can now be solved as a TSP.  

 

Computer wiring 

A special case of connecting components on a computer board is reported in Lenstra and 

Kan, (1974), Modules are located on a computer board and a given subset of pins has to be 

connected. In contrast to the usual case where a Steiner tree connection is desired, here the 

requirement is that no more than two wires are attached to each pin. This leads to the 

problem of finding a shortest Hamiltonian path with unspecified starting and terminating 

points. A similar situation occurs for the so-called test bus wiring. To test the 

manufactured 

Board, one has to realize a connection which enters the board at some specified point, runs 

through all the modules, and terminates at some specified point. For each module we also 

have a specified entering and leaving point for this test wiring. This problem also amounts 

to solving a Hamiltonian path problem with the difference that the distances are not 

symmetric and that starting and terminating point are specified. 

 

Vehicle routing 

Suppose that in a city n mail boxes have to be emptied every day within a certain period of 

time, say, 1 hour. The problem is to find the minimum number of trucks to do this and the 

shortest time to do the collections using this number of trucks. As another example, 

suppose that n customers require certain amounts of some commodities and a supplier has 

to satisfy all demands with a fleet of trucks. The problem is to find an assignment of 

customers to the trucks and a delivery schedule for each truck so that the capacity of each 

truck is not exceeded and the total travel distance is minimized. Several variations of these 
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two problems, where time and capacity constraints are combined, are common in many 

real-world applications. 

Lenstra et al, ( 1974), Applied the method for the TSP to find good feasible solutions. 

 

Control of robot motions 

In order to manufacture some workpiece a robot has to perform a sequence of operations 

on it (drilling of holes of different diameters, cutting of slots, etc.). The task is to determine 

a sequence of the necessary operations that leads to the shortest overall processing time. A 

difficulty in this application arises because there are precedence constraints that have to be 

observed. This can be modelled as a problem of finding the shortest Hamiltonian path 

(where distances correspond to times needed for positioning and possible tool changes) 

that satisfies certain precedence relations between the operations. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

Several exact and heuristic algorithms exist in the literature that can solve instances of the 

TSP will be discussed in this chapter However, in this study, we used a heuristic method 

namely Man-Min Ant System (MMAS) algorithm.  

This algorithm is a member of ant colony algorithms family, in swarm intelligence 

methods, and it constitutes some metaheuristic optimizations. Initially proposed by  

Dorigo, ( 1992 ), in his PhD thesis, the first algorithm aimed to search for an optimal path 

in a graph, based on the behavior of ants seeking a path between their colony and a source 

of food. The original idea has since diversified to solve a wider class of numerical 

problems, and as a result, several problems have emerged, drawing on various aspects of 

the behavior of ants. 

3.2 Formulation of TSP Model 

The first step to solving instances of large TSPs must be to find a good mathematical 

formulation of the problem. The mathematical structure is represented by a graph where 

each city is denoted by a point (or node) and lines [(called arcs or edges)] are drawn 

connecting every two nodes. Associated with every edge is a distance (or cost). When the 

salesman can get from every city to every other city directly, then the graph is said to be 

complete. A round-trip of the cities corresponds to some subset of the edges, and is called 

a Hamilton tour or a Hamiltonian cycle in graph theory. The length of a tour is the sum of 

the lengths of the lines in the round-trip. 

http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/Ants
http://en.wikipedia.org/wiki/Ant_colony


34 

3.2.1 Formulation of the Asymmetric TSP 

The problem can be defined as follows: Let G = (V,E) be a complete directed graph with 

vertices W, |W|=n, where n is the number of cities, and edges E with edge length i jd  for 

(i,j). We focus on the asymmetric TSP case in which i jd    jid  , for all (i,j ). where i jc = i jd  

The asymmetric TSP can be formulated as an integer linear programme in the following 

way. Let n n  distance matrix C = i jc  be given. We the introduce a binary variable i jx  by 

   
1
0

if j is visited immediately after i
x

otherwiseij
  

    

11

1:
nn

ij ij
ji

P Minimize c x


        (3.1) 

  Subject to 

   

1

1 1,2,...,
n

ij
i

x for all j n


        (3.2) 

  

1

1 1,2,...,
n

ij
j

x for all i n


        (3.3) 

   | | 1 1,2,..., , 1 | | 1ij

i W j W

x W for all W n W n
 

          (3.4) 

   0,1 , 1,2,...,ijx for all i j n          (3.5)   

Equation (3.3) : Objective function, which minimize the total distance traveled 
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Equation (3.2) and (3.3): Constraints (3.2) and (3.3) define a regular assignment problem, 

where (3.2) ensures that each city is entered from only one other city, while (3.3) ensures 

that each city is only departed to on other city.  

Constraint(3.4): is sub tour elimination constraint which ensures that every tour has at 

most |W|-1 edges with both endpoints in the set W 

Constraint(3.5):is the integrality constraint that ensures that the decision variable is either 0 

or 1 However, the difficulty of solving TSP is that subtour constraints will grow 

exponentially as the number of city grows large, so it is not possible to generate or store 

these constraints. Many applications in real world do not demand optimal solutions.  

3.2.2 The symmetric TSP Model 

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with 

vertices W, |W|=n, where n is the number of cities, and edges E with edge length dij for 

(i,j). We focus on the symmetric TSP case in which i jd  = jid , for all (i,j).  

The formulation of symmetric TSP model in the Binary Linear programme form is; 

 

   
1

2 :
1 1

n n
P Minimize c xi j i j

i j i


 
  

       (3.6) 

   Subject to 

    2 1,2,...,i j

j i

x for all i n


          (3.7) 

     | | 1 1,2,..., , 2 | | 1i j

i W j W

x W for all W n W n
 

        (3.8) 



36 

  0,1 , 1,2,...,i jx for all i j n         (3.9) 

ijc =the distance from city i to city j 

i jx = the decision variable that is either 0 or 1 

 W= arbitrary subset of {1,2,…,n}  

 n=the total number of cities 

Equation (3.6) is the objective function, which minimizes the total distance to be traveled. 

Equation (3.7): Each edge is incident with exactly two cities 

Equation (3.8):The subtour elimination constraint 

Equation (3.9): The integrality constraint  

3.3 Methods of Solving TSP  

The two most popular exact methods that are used to solving IP problems are discussed. 

They are cutting plane method and Branch and Bounds. 

3.3.1 Cutting Plane Method 

Cutting plane methods are exact algorithms for integer programming problems. They have 

proven to be very useful computationally in the last few years, especially when combined 

with a branch and bound algorithm in a branch and cut framework. These methods work 

by solving a sequence of linear programming relaxations of the integer programming 

problem. 

 The relaxations are gradually improved to give better approximations to the integer 

programming problem, at least in the neighborhood of the optimal solution. For hard 
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instances that cannot be solved to optimality, cutting plane algorithms can produce 

approximations to the optimal solution in moderate computation times, with guarantees on 

the distance to optimality. 

Cutting plane algorithms have been used to solve many different integer programming 

problems, including the traveling salesman problem (Gr¨otschel and Holland ,1991, 

Padberg and Rinaldi, 1991, Applegate et al, 1994);the linear ordering problem (Gr¨otschel 

et al, 1984, Mitchell and Borchers, 1996,Mitchell and Borchers, 1997); maximum cut 

problems in (Barahona, et al, 1988, De Simone et al, 1995 and Mitchell, 1997) and 

packing problems (Gr¨otschel, and Weismantel, (1996) , Nemhauser and Sigismondi, 

(1992). 

J¨unger et al. (1995) contains a survey of applications of cutting plane methods, as well as 

a guide to the successful implementation of a cutting plane algorithm. Nemhauser and 

Wolse (1992) provides an excellent and detailed description of cutting plane algorithms as 

well as other aspects of integer programming.. 

3.3.1.1 Using the fractional algorithm of cutting plane  

In this algorithm all coefficients including the right hand side need to be integer. This 

condition is necessary as all variables (original, slack and artificial) are supposed to be 

integer. The elements of A and b need not be integer although this can be transformed into 

integers as shown below. 

In case a constraint with fractional coefficient exist then both sides of the inequality 

(equality) are multiplied by the least common multiple of the denominator (LCMD). 

For instance 
1 2

3 45 3 10
1 2 1 25 3

x x becomes x x     
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3.3.1.2 Procedure for cutting plane algorithm 

Solve the integer programming problem as a Linear Programming Problem.  

If the optimal solution is integer stop else go to step c. 

Introduce secondary constraints (cut) that will push the solution towards integrality 

(Return to a). 

We show how to constraint the secondary constraints in the following sections  

3.1.3 The construction of the secondary constraints: 

Given the integer problem 

Minimize TZ=C X  

 Subject to AX   b 

 X 0 , integer 

 X=Vector of decision variable. 

TC =Vector coefficients 

A=the given matrix 

 B=vector coefficient 

The optimal tableau of the Linear programming Problem is given in table 3 below: 

For simplicity of notation let us have  ,X X X
B NB

  

 1( ... )B MX X X  and 1( ... )NB NX W W   
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Table 3.1: Showing the variables to be considered in the Cutting Plane Method. 

 Z X1 … Xi …XM W1 … WJ … WN Solution 

Z 1 0  0  0 C1 … Cj … CN  0 

X1 

 

 

Xi 

 

 

XM 

 

0 

 

 

0 

 

 

0 

1  0  0    

 

 

0  1  0 

 

 

0  0  1 

 11 …  1j …  1N 

 

 

 i1 …  ij …  iN 

 

 

 M1 …  Mj …  MN 

 1 

 

 

 i 

 

 

 M 

 

Consider the ith  equation where iX  was required to be integer but found not integer. 

 
1

.
N

i i ij j

j

X W 


   and i  non integer : i = 1,…,M    (3.10) 

 

Any real number can be written as the sum of two parts , integer part and the fractional 

part. 

Let i  = [ i ] + if  and ij = [ ij ] + ijg         (3.11) 

then 

 
1

[ ] [ ]
N

i i i i j i j j

j

x f g w 


     and  

…
 

…
 

…
 

…
 

…
 

…
 



40 

     
1 1

N N

i ij j i i ij j

j j

f g W X W 
 

                (3.12) 

 Where  a a  and ([a] is integer part of a); 0 1if   ;  

0 1ijg  ( [ ] ([ ]and   is the integer part of  ) 

 ( note that 0if   as 
iX  is presently not integer) 

Since all    1,..., 1,...,i jx i M and all W j N   must be integer, the right-hand side is 

consequently integer and therefore the left-hand side is also integer thus from table 3.1 

 
1

( )
N

i ij j

j

f g W


   (Integer)          (3.13) 

0 0ij ijg and W   then from equation (3.3) with  
1

[ ] 0
N

i i i ij j

j

X f g W


    

Therefore  

 
1

( )
N

i i ij j

j

f f g W


   for all 1,...,i N         (3.14)  

 Since 0 1if   we have 
1

( ) 1
N

i ij j

j

f g W


   and using (3.13) we obtain 

    
1

( ) 0
N

i ij j

j

f g W


            (3.15) 

 Constraint (13.15) is the cut and can be expressed as a secondary constraints by adding 

slack variable: 

 This gives 

  
1 1

( ) 0 ( )
N N

i ij j i i ij j i

j j

f g W S S g W f
 

             (3.16) 

   for all 1,...,i M ,    Where 0iS   (integer slack variable). 
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3.3.1.4 Choice of the cut 

Suppose two rows in table 3.1 gives non-integer solutions in
iX  and

kX then there will be 

two cuts based on iX  and 
kX  having the following conditions: 

i. 
1

N

i ij j

j

f g W


  

ii. 
1

N

k kj j

j

f g W


  

 Cut (i) is stronger than cut (k) if 

 (iii) i kf f  and ij kjg g  for all j   

With the strict inequality happening at least once. 

In other words a cut is deeper in the iX  direction as if  increases and ijg decreases. 

The condition (iii) is difficult to implement computationally and therefore empirical rule 

that take into account the above definition have been developed. 

(a) 
1 1

; 1,..., ;
N N

r r k i i k i

j i

f g Max f g i M X for a specified k
 

 
  

 
   

(b) 
1 1

; 1,..., ; int
N N

r r j i i j i i

j i

f g Max f g i M X but X required tobe eger
 

 
   

 
   

(c)  ; 1,..., ,r ik i i kf g Max f g i M for a specified k   

 Criterion (b) is more efficient as this represents the definition given by (iii) better. 
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3.3.1.5 Prototype Example 

Maximize 
1 27 9Z x x   

 Subject to  

1 23 6x x    

1 27 35x x   

1 0x  , 2 0x  , integer 

Solution: 

Maximize 1 2 1 27 9 0 0Z x x s s     

Subject to 

1 2 13 1 6x x s     

1 2 27 1 35x x s    

Table 3.2: Final Tableau for first iteration 

 
jC  7 9 0 0  

BC  Basic 

variable 

1x  2x  1s  2s  Solution 

9 
2x  0 1 7

22
 

1

22
 

7

2
 

7 
1x  1 0 1

22


 

1

22
 

9

2
 

 
jZ  7 9 0 0 63 

 
j jC Z  0 0 28

11


 

15

11
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Let 
1s = 

3x  , 
2s =

4x  , 
5Z x  

From the tableau the optimal solution becomes Z=63, where 
2x =

7

2
 and 

1x =
9

2
 

Since 
2x  and 

1x  are not integers, we apply the concepts of cutting plane techniques. 

 
2x  + 

7

22
3x  +

1

22
4x =

7

2
        (i) 

1x  +0
2x  - 

1

22
3x +

3

22
4x =

9

2
          (ii) 

 

Choice of cut  

 Taking equations (i) and (ii) 

 2x  + 
3

7
0

22
x

 
 

 
 +

4

1
0

2
x

 
 

 
=

1
3

2

 
 

 
        (i)a 

 1x  -
3

21
1

22
x

 
 

 
 + 

4

3
0

22
x

 
 

 
 =

1
4

2

 
 

 
        (ii)b 

 

3 4 2 3 4

1 7 1
0 0

2 22 2
x x x x x     -          (iii)  

3 4 1 3 4

1 21 3
0

2 22 22
x x x x x               (iv)  

2 23 24

1 7 1
, ,

2 22 2
f g g    

3 33 34

1 21 3
, ,

2 22 22
f g g    
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Using  

 
1 1

; 1,..., ; int
N N

r r j i i j i i

j j

f g Max f g i M X but X required tobe eger
 

 
   

 
   

 2when i   , 3,4j      

 
2

1

2
f   , 

23

7

22
g   and 

24

1

22
g   

 
4

3

i j

j

g


 =
7

22
+

1

22
=

8

22
 

 3when i  , 3,4j   

 33

21

22
g   and 34

3

22
g   

 
4

3

21 3 24

22 22 22
i j

j

g


    

1 1
2 2max ,

8 24
2222

    
    

      

 

22 22
max ,

16 48

 
 
 

=
22

16
 

Hence (ia) would be considered to be part of the new constraints. 

Thus 3 4

1 7 1
0

2 22 22
x x    

and 3 4 3

1 7 1
0

2 22 22
x x S     

3 4 3

7 1 1

22 22 2
x x s       

The system of equations becomes; 

1 2 3 4 57 9 0 0 0Z x x x x x      
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Subject to; 

2x  + 
7

22
3x  +

1

22
4x =

7

2
  

1x  +0
2x  - 

1

22
3x +

3

22
4x =

9

2
 

3 4 5

7 1 1

22 22 2
x x x      

3 5S X  

Table 3.3: Final Tableau for the second iteration 

 
jc  7 9 0 0 0  

Bc  Basic 

variable 

1x  2x  3x  4x  3s  Solution 

9 
2x  0 1 0 0 1 3 

7 
1x  1 0 0 1

7
 

1

7


 

32

7
 

0 
3x  0 0 1 1

7
 

22

7


 

11

7
 

 
jz  7 9 0 1 0 59 

 
j jc z  0 0 0 -1 -8  

 

 maxz =59 , 2x =3 , 1x = 
32

7
 and 3x =

11

7
  

Since 1x  and 3x  are not integers we apply the cutting plane techniques. 

Using the fractional algorithm; 
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1 4 5

1 1 32

7 7 7
x x x              (i)* 

1 4 5

1 6 4
0 1 4

7 7 7
x x x

   
          

   
  

1 4 5 4 5

4 1 6
0 1 4

7 7 7
x x x x x                (i)*  

3 4 5

1 22 11

7 7 7
x x x              (ii)* 

3 4 5

1 6 4
0 4 1

7 7 7
x x x

   
          

   
 

3 4 5 4 5

4 1 6
0 4 1

7 7 7
x x x x x

 
       

 
        (ii)* 

Choice of Cut  

From (1a)* 2 24 25

4 1 6
, ,

7 7 7
f g g    

From (2a)* 3 34 35

4 1 6
, ,

7 7 7
f g g    

Using  

 
1 1

; 1,..., ; int
N N

r r j i i j i i

j j

f g Max f g i M X but X required tobe eger
 

 
   

 
   

 When 2i  , 4,5j   

 2

4

7
f    24

1

7
g  , 25

6

7
g   

Therefore 

  
5

4

1 6
1

7 7
i j

j

g


    

When 3i  , 4,5j   
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3

4

7
f     

34 35

1 6
,

7 7
g g   

 
5

4

1 6
1

7 7
i j

j

g


    

32

32

5 5

4 4

4 4
max , max ,

7 7

ii

i j i j

j j

ff

g g


 

 
 

        
 
  
 

=
4

7
 

 

Tie will be broken arbitrary by choosing equation (ii)* as the new constraints to be added. 

Where 3 5s x . 

The system of equations becomes; 

1 2 3 4 5 47 9 0 0 0 0Z x x x x x s       

 Subject to 

     2 3x   

   1 4 5

1 1 32

7 7 7
x x x    

   3 4 5

1 22 11

7 7 7
x x x    

   4 5 4

1 6 4

7 7 7
x x s      
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Table 3.4: Final tableau for the last iteration 

 
jc  7 9 0 0 0 0  

Bc  Basic 

variable 

1x  2x  3x  4x  5x  4s  Solution 

9 
2x  0 1 0 0 0 0 3 

7 
1x  1 0 0 0 -1 1 4 

0 
3x  0 0 1 0 -4 1 1 

0 
4x  0 0 0 1 6 -7 4 

 
jz  7 9 0 0 -7 7 55 

 
jc - jz  0 0 0 0 7 -7  

Now the max 55Z   , 2x =3 , 1x =4 , 3x =1 and 4x =4 

Since all the variables are integers, we stop here. 

              

 

 3.4 Branch and Bound Method 

Branch-and-bound algorithms was developed by Eastman, (1958), Little et al, (1963), and 

Shapiro, (1966),. Additionally, Hatfield and Pierce, (1966), used branch-and-bound 

algorithms to solve a job sequencing problem closely related to the traveling salesman 

problem, but further constrained because of job deadlines to be met. The work of Little, et 

al, (1963), is a tour-building algorithm, while the work of Eastman and Shapiro are 

examples of subtour elimination algorithms. The authors are not aware of a branch-and-

bound algorithm based upon tour-to-tour improvement, although presumably one could be 
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constructed. A rather complete survey of branch-and-bound methods has been given by 

Lawler and Wood, (1966). 

The problem can be modeled as  

Maximize 
1

n

j j

j

Z C X


  

Subject to 
1

n

i j i

j

a x b


  , 1 i m   

 and jX  is an integer ,1 j n    

To solve such integer programming problem the following steps should be considered. 

3.4.1 Branch and Bound Algorithm . 

The steps below are used in the branch and bound algorithm 

STEP 1: Relaxed problem 0P  with respect to integrality condition is called the relaxed 

problem. This leads to the following linear programming problem which is called the 

relaxed problem,  

  0 :P  Maximize 
1

n

j j

j

Z C X


  

 Subject to:  

  
1

n

i j j i

j

a x b


  , 1 i m   

 0jX   jX is integer 

We solve the relaxation problem 0P  by the simplex method.  
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STEP 2: If in the solution of 
0P  every variable that is supposed to be an integer is indeed 

an integer , then we are done .If this is not the case, then there exist at least one variable 

which is required to be an integer and whose value in our solution is not an integer. Pick 

any such variable and branch on it as follows 

 STEP 3: Suppose that at least one variable jX  where (1 j n  ) 

has a non-integer value jX = jK when it should been an integer. 

We define [ jK ] to be the lower integer part of jK  so that [ ] [ ] 1j j jK X K   .Since jX  

must be an integer, it follows that it must obey exactly one of the following constraints. 

(i) [ ]j jX K  or (ii) [ ] 1j jX K   

STEP 4: To branch on jX  means solving the following problem. 

Form two sub problems 1 2P and P  to replace the current problem 0P  adding a lower 

bound constraint to one and an upper-bound constraint to the other for the variable selected 

above in step 3.It then partition the current subset of solutions into two new subsets of 

solutions. 

We now solve the LP of 1P  such that 

(iv)  1 0: [ ]j jP P x k   and the problem 

   2 0: [ ] 1j jP P x k    
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The branching is illustrated in the tree of figure 3.1 below 

 

  

 

 

 

 

 

 

 

 

 

 

 

STEP 5: Let maximum objective function value of the two sub problems be Z= iM  in 

iP , 1,2i   Since the feasible region of problem iP  is a subset of the feasible region of 0P , 

it follows that iM 0M , 1,2.i  Hence , 0M  is an upper bound to the optimal solutions 0f 

the problems 1P  and 2P .Test the problems 1P  and 2P  , for feasibility, discard any 

infeasible problem and solve the feasible ones. If, in the solution of 1P or 2P  all the 

variables in the original problem that satisfy integrality conditions are integers, we are 

done and our optimal value is either 1M  or 2M , depending on which is the larger one. 

* 1j jX K     

1P   :   Maximize 
1

n

j j

j

Z C X


                         

 Subject to   
1

n

i j i

j

a x b


  ,     

*

j jX K     

 

   

  1 i m  0jX   and jX  is an 

integer 1 j n     

 

 

  

 

                            

 

*

j jX K     

2P   :   Maximize 
1

n

j j

j

Z C X


                         

 Subject to   
1

n

i j i

j

a x b


  ,   

* 1j jX K       

  1 i m  0jX   and jX  is an 

integer ,1 j n     

  

 

                            

 

0P  :  Maximize 
1

n

j j

j

Z C X


                         

 Subject to   
1

n

i j i

j

a x b


  ,   

  1 i m  0jX   and jX  is an integer ,1 j n     
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STEP 6: If , in the solution of a problem 
iP , 1,2.i  , all the variables that should be 

integers are indeed integers , we say that the problem 
iP  is fathomed. If either 

1P or
2P  is 

not fathomed, we branch on it, choosing the problem with the higher bound. We continue 

in this manner until some problems have been fathomed and all the unfathomed problems 

have bounds lower than those in the fathomed problems. We then select the solution of the 

fathomed problems with the highest objective function value as our solution.  

3.4.1.1 Prototype Example 

Using the steps given ,we consider the following problem: 

Minimize Z= 1` 24X X         (i) 

Subject to ; 

1` 22 8X X           (ii) 

1` 2 6X X             (iii) 

1` 0X   , 2` 0X           (iv) 

1 2,X X  are integers         (v) 

STEP 1 : The algorithm begins by solving (i) to (iv) as an LP problem. This has the 

following optimal solutions for *

0 1

10
,

3
P X   , 

2

4

3
X    and 

26 2
8

3 3
Z     is the lower 

bound on the set of all feasible solutions .If this first solution had satisfied (v), it would 

have been optimal for the integer programming problem and the algorithm would have 

been terminated. However, as this is not the case , we shall proceed. 
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Figure 3.1: Solution tree for Dakin’s algorithm. 

STEP (2):Since * *

1 2X and X  both have non-integer values in step 1.Arbitrarily select one to 

branch on .The set of feasible solutions is partitioned into two subsets. One set contains all 

the feasible solutions with the addition of constraint 1
10[ ] 3

3
X     and the other contains 

the set of feasible solutions with the addition of constraint 1
10[ ] 1 4

3
X     .This reduces 

the region of feasible solutions of the LP problem, but leaves the region of feasible 

solutions of the integer Linear programming problem unchanged, since there are no integer 

solution between 3= 10[ ]
3

 and 4= 10[ ] 1
3
  .Therefore, iteration 1 begins by partitioning 

the entire set of solutions into the two subsets below. 

(1) Solution in which 1 3X    

1 4X  

 1 3X    

Node 2 

 

1P : 9Z    

   1 3X    

    2
3

2
X    

Node 1 

0P 28
3

Z   : 

 

1

10

3
X


  

2

4

3
X


  

Node 3 

 

2 :P Z 
 

Infeasible 

Solution 
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(2) Solutions in which 
1 4X   

 We now create two LP problems,
1P  and 

2P : 

1P  : Minimize 1 24Z X X   

Subject to 
1 22 8X X   

1 22 6X X    

1 3X    

1 0X  , 2 0X   1 2,x x  integers 

2P  : Minimize 1 24Z X X   

Subject to 1 22 8X X   

1 22 6X X    

1 4X   1 0X  , 2 0X   1 2,x x  integers 

For problem 1P ,we solve the corresponding LP problem. The solution is  

1 3X   , 2
3

2
X    and 9Z   . 

The solution is still non-feasible for the original problem, but 9Z    is the lower bound on 

the set of all feasible solutions with 1 3X   ,as shown in figure(2).Also, the problem 

corresponding to 2P  is solved by using the corresponding LP problem. There is no feasible 

solution for problem 2P . 
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Figure 3.2 : The complete solution tree for Daskin’s algorithm. 

 

STEP 3 : Node 2 of problem 1P  is the only one for branching. The solutions with 

*

2
3

2
X   from problem 1P  is partitioned into two subset, one with *

2
3[ ] 1

2
X    and the 

other with 2 2X   . 

These subsets correspond to Nodes 4 and 5 respectively of problems 3P  and 4P  as shown 

in figure2.4.2.Therefore the sub problem to solve at node 4 of problem 3P  is  

3 :P  Minimize 1 24Z X X   

1 3X    

Node 3 

 

2 :P Z 
 

Infeasible 

Solution 

 

1 4X    

Node 1 
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1P : 9Z    

   1 3X    

    

2
3

2
X    



56 

Subject to  

1 22 8X X   

1 22 6X X   

1 3X   

2 1X   

 1 0X  , 2 0X    

By solving the LP of problem 
3P  at Node 4, we find the solution to be infeasible. The sub 

problem 4P  at Node 5 is  

Minimize 1 24Z X X   

Subject to 

1 22 8X X   

 1 22 6X X   

2 2X   

1 0X  , 2 0X  , 1X and 2X  are integers. 

By solving the LP of problem 4P  at Node 5, the solution is  

1 3X   , 2 2X   , and 10Z   . 

1 3X    and 2 2X    is the optimal solution of the original problem with an 

optimal value of the objective function being 10Z   . 
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3.6 Heuristic Approaches to Solving TSP 

According to Hillier and Lieberman, (2005), heuristic method is a procedure that is likely 

to discover a very good feasible solution, but not necessarily an optimal solution, for the 

specified problem being considered. No guarantee can be given about the quality of the 

solution obtained, but a well-designed heuristic method usually can provide a solution that 

is at least nearly optimal. The procedure often is a full-fledged iterative algorithm, where 

each iteration involves conducting a search for a new solution that might be better than the 

best solution found previously. When the algorithm is terminated after a reasonable time, 

the solution it provides is the best one that was found during any iteration. Heuristic 

methods are often based on relatively simple common sense ideas on how to search for a 

good solution. These ideas need to be carefully tailored to fit the specific problem of 

interest. Thus, heuristic methods tend to be ad hoc in nature). TSP heuristics can be 

partitioned into two classes: construction heuristics and improvement heuristics. 

Construction Heuristics Construction heuristics build a tour from scratch and stop when 

one is 

 produced. The simplest and most obvious construction heuristic is nearest neighbor (NN): 

the tour starts at any vertex x of the complete directed or undirected graph; we repeat the 

following loop until all vertices have been included in the tour: add to the tour a vertex 

(among vertices not yet in the tour) closest to the vertex last added to the tour.  

Improvement Heuristics: Improvement heuristics start from a tour normally obtained 

using a construction heuristic and iteratively improves it by changing some parts of it at 

each iteration. Improvement heuristics are typically much faster than the exact algorithms, 

yet often produce solutions very close to the optimal one. 



58 

 It appears that currently the best improvement heuristics are based on local search, on 

genetic algorithm approach, or on a mixture of the two, which is often called memetic 

algorithms. 

The most developed TSP improvement algorithms are local search algorithms that use 

edge exchange, in which a tour is improved by replacing k its edges with k edges not in the 

solution. For STSP, the 2-opt algorithm starts from an initial tour T and tries to improve T 

by replacing two of its non-adjacent edges with two other edges to form another tour. Once 

an improvement is obtained, it becomes the new T. The procedure is repeated as long as an 

improvement is possible (or a time limit is exceeded). For k 3, the k-opt algorithm is the 

same as 2-opt except that k edges are replaced at each iteration (Rego and Glover 2002). 

The best local search algorithms use a variable k-Opt search called the Lin-Kernighan local 

search, where at each iteration the actual value of k varies depending on which value of k 

gives the best improvement (Rego and Glover ,2002). 

3.6.1 Sub-Tour Reversal Algorithm 

The sub-Tour Reversal Algorithm is a local improvement procedure of a TSP that adjusts 

the cities visited in the current trial solution by a subsequence of the cities of the current 

solution and simply reversing the order in which that subsequence of cities is visited.(The 

subsequence being reversed can consist of as few as two cities, but also can have more). It 

improves upon the current trial solution to obtain a local optimum. 

The Sub-tour reversal algorithm is implemented below 

1. Initialization: Start with any feasible tour as the initial trial solution 

2. Iteration: For the current trial solution, consider all possible ways of performing a 

sub tour reversal ( exclude the reversal of the entire tour). Select the one that 
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provides the largest decrease in the distance to the new trial solution. (Ties may be 

broken arbitrary) 

3. Stopping Rule: Stop when no sub-tour reversal will improve the current trial 

solution. Accept this solution as the final solution. Otherwise go to step  

The example shows the network of a traveling salesman problem with seven cities. City 1 

is the salesman‘s city. 

 

Figure 3.3: Travel Salesman Problem 

Therefore, starting from city1 the salesman must choose a route to visit each of the other 

cities exactly once before returning to city 1. The number next to each link between each 

pair of cities represents the distance (or cost or time) between these cities. We assume that 

the distance is the same in either direction. The objective is to determine which route will 

minimize the total distance that the salesman must travel. 

Let the initial trial solution for the network in figure 3.3 is to visit the cities in numerical 

order: 1-2-3-4-5-6-7-1 with d(i,j) representing the distance from cityi to cityj 

Trial solution:1-2-3-4-5-6-7-1 gives distance   
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Distance=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69  

If we select, say, the subsequence 3-4 and reverse it, we obtain the new trial solution: 

1-2-4-3-5-6-7 with distance  

Distance =d(1,2)+d(2,4)+d(4,3 )+d(3,5)+d(5,6)+d(6,7)+d(7,1)=65 

Thus, this particular sub-tour reversal has succeeded in reducing the distance for the 

complete tour from 69 to 65. 

Figure 3.4 below depicts this sub-tour reversal, which leads from the initial solution on the 

left to the new trial solution on the right. 

The dashed lines indicate the links that are deleted from the tour (on the left) or added to 

the tour (on the right). 

 

 

 

 

 

 

(a)Initial solution        (b):New solution 

Figure 3.4: A sub-tour reversal that replaces the tour on the left (the initial trial 

solution) by the tour on the right (the new trial solution) 

Applying the sub-tour reversal algorithm to this example starting with 1-2-3-4-5-6-7-1 as 

the initial solution, there are four possible sub-tour reversals that would improve upon this 
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solution. These sub-tour reversals are as listed in the second, third, fourth and fifth rows 

below. 1-2-3-4-5-6-7-1   

Distance =d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)= 69     (i) 

Reverse ii-iii:  1-3-2-4-5-6-7-1   

Distance =d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)= 68     (ii) 

Reverse iii-iv:  1-2-4-3-5-6-7-1   

Distance =d(1,2)+d(2,4)+d(4,3)+d(3,5)+d(5,6)+d(6,7)+d(7,1)= 65     (iii) 

Reverse iv-v:  1-2-3-5-4-6-7-1   

Distance =d(1,2)+d(2,3)+d(3,5)+d(5,4)+d(4,6)+d(6,7)+d(7,1)= 65    (iv) 

Reverse v-vi:  1-2-3-4-6-5-7-1   

Distance =d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,5)+d(5,7)d(7,1)= 66     (v) 

The two solutions with Distance = 65 tie for providing the largest decrease in the distance 

traveled, so suppose that the first of these, 1-2-4-3-5-6-7-1 (as shown on figure 2.5.2) is 

chosen arbitrarily to be the next trial solution. This completes the first iteration. 

The second iteration begins with the tour 1-2-4-3-5-6-7-1 as the current trial solution. For 

this solution, there is only one sub-tour reversal that will provide an improvement, as listed 

below in equation vi: 

   1-2-4-3-5-6-7-1   

Distance =d(1,2)+d(2,4)+d(4,3)+d(3,5)+d(5,6)+(6,7)+d(7,1)= 65 

Reverse iii-v-vi: 1-2-4-6-5-3-7-1   
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Distance =d(1,2)+d(2,4)+d(4,6)+d(6,5)+d(5,3)+d(3,7)+d(7,1)= 64     (vi) 

Figure 3.5 shows this sub-tour reversal, where the entire subsequence of cities 3-5-6 on the 

left row is visited in reverse order (6-5-3) on the right. 

 

 

 

 

 

 

 

 

(a) Initial solution       (b) New solution 

Figure 3.5: The sub-tour reversal of 3-5-6 that leads from the trial solution on the left 

to an improved trial solution on the right. 

Thus, the tour of equation 6 traverses the link 4-6 instead of 4-3, as well as the link 3-7 

instead of 6-7, in order to use the reverse order 6-5-3 between cities 4 and 7.  

But 1-2-4-6-5-3-7-1 is not the optimal solution. The optimal solution turns out to be 

  1-2-4-6-7-5-3-1   

Distance =d(1,2)+d(2,4)+d(4,6)+d(6,7)+d(7,5)+d(5,3)+d(3,1)= 63 

(or 1-3-5-7-6-4-2-1 by reversing the order of this entire tour). However, this solution 

cannot be reached by performing a sub-tour reversal that improves 1-2-4-6-7-5-3-1. In this 

case, the algorithm stops. 
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 The sub-tour, 1-2-4-6-7-5-3-1, is a local optimum solution because there is no better 

solution within its local neighborhood that can be reached by performing a sub-tour 

reversal. The solution is trapped in a local optimum. 

3.7 Tabu Search 

The concept of Tabu Search (TS) is derived from artificial intelligence where intelligent 

use of ―memory‖ helps in exploiting useful historical information. The memory concept of 

TS is quite crucial. Golden et al (1998) defines two types of memory: Short term and Long 

term memory. The short term memory is imposed to restrict the search from revisiting 

solutions that have already been considered and to discourage the search from cycling 

between subsets of solutions. On the other, the long term memory is used to diversify the 

search. 

3.7.1 The tabu search Algorithm 

The Tabu Search (TS) based algorithms continue the search even if a locally optimal 

solution is found. Briefly speaking, TS is a process of subsequent moves from one local 

optimum to another. The best local optimum found during this process is the resulting 

solution of TS. Thus, TS uses extended descent local search to escape. However, it has the 

mechanism of trapping local optima. Consequently, it explores much larger part of the 

solution space when compared with local search (LS). Hence, TS offers more 

opportunities for discovering high quality solutions than traditional LS ( 

http//itc.ktu.it/itc32/Misev32.pdf ). 

The central idea of the TS method is allowing climbing moves when no improving 

neighboring solution exists, i.e. a move is allowed even if a new solution s′ from the 

neighborhood of the current solution s is worse than the current one. Naturally, the return 

to the locally optimal solutions previously visited is to be forbidden in order to avoid 
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cycling of the search. Thus, TS is based on a methodology of prohibitions: some moves are 

"frozen" (become "tabu") from time to time ( http//itc.ktu.it/itc32/Misev32.pdf ) 

More formally, TS starts from an initial solution s° in S. The process is then continued in 

an iterative way moving from a solution s to a neighbouring one s′. At each step of the 

procedure, a certain subset Θ′(s) of the neighbouring solutions of the current solution is 

considered, and the move (to the solution s′  Θ′(s)   Θ(s)) that improves most the 

objective function value f is chosen. Naturally, s′ must not necessary be better than s: if 

there are no improving moves, the TS algorithm chooses one that least degrades 

(increases) the objective function. In order to eliminate an immediate returning to the 

solution just visited, the reverse move must be forbidden. This is done by storing the 

corresponding solution (move) (or its "attribute") in a memory (called a tabu list (T)). The 

tabu list keeps information on the last |T| moves which have been done during the search 

process (thus, a move from s to s′ is considered as tabu if s′, or its "attribute", is contained 

in T). This way of proceeding hinders the algorithm from going back to a solution reached 

in the last |T| steps. However, the straightforward prohibition may sometimes lessen the 

efficiency of the search. Moreover, it might be worth returning after a while to a solution 

visited previously to search in another promising direction. Consequently, an aspiration 

criterion is introduced to permit the tabu status to be dropped under certain favourable 

circumstances. Usually, a move from s to s′ (no matter its status) is permitted if the 

solution f (s′) at s′ is better than the solution f(s
∗
) at s

∗
 , where s

∗ 

is the best solution found 

so far. The resulting decision rule can thus be described as follows: replace the current 

solutions by the new solution s′ if f(s′) is better than f(s
∗
) 

The search process is stopped as soon as a termination criterion is satisfied (for example, a 

fixed a priori number of iterations (trials) have been performed .  
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The framework of the Tabu Search for the problem: Optimize ( ),f x x S where S is the 

solution space, consists of 

Step 1.  

 Initialization: A starting solution generated by choosing a random solution .x S the 

evaluating function f (x) is used to evaluate x. The solution is stored in the algorithm 

memory called the Tabu list. 

 Step 2..  

Neighborhood exploration: All possible neighbors N (s) of the solution x are generated 

and evaluated. Solutions in the Tabu list are unreachable neighbors; they are Taboo 

(Tabu). 

Step 3 

 New solution: A new solution is chosen from the explored neighborhood. This solution 

should not be found in the Tabu list before it is discovered and has to have the best move 

evaluation value of f (x) for all reachable neighbors of x. 

i.Do Tabu check on the new solution. If successful, replace the current solution and update 

the Tabu list and other Tabu attributes. Here the new solution evaluation can be worse 

compared with that of the current solution. This enables the procedure not to be trapped at 

a local optimum. 

ii.If the solution is in the Tabu list, then check the aspiration level. If successful replace the 

current solution and update the Tabu list and other Tabu attributes. 

iii.If checks (i) and (ii) are not successful, then keep the current solution, otherwise replace 

the current solution by the new solution. 



66 

iv.Compare the best to the current solution. If the current solution is better than the best 

solution, then replace the best solution. 

v.Until loop condition is satisfied, go to Step 2. 

vi.Until termination condition is satisfied, go to Step 1 

 

3.6.1.1 Prototype Example 

Using the matrix representing a complete graph of figure 3.6, we find the optimal value by 

applying the Tabu Search algorithm. 

 1 2 3 4 5 6 7 

1 0 12 10 21 13 21 12

2 12 0 8 12 11 17 17

3 10 8 0 11 3 9 9

4 21 12 11 0 11 10 18

5 13 11 3 11 0 6 7

6 21 17 9 10 6 0 7

7 12 17 9 18 7 7 0

 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.6: Tabu Search algorithm. 

First iteration 

Tabu List = [9, 9, 9] 

Tabu position = [0, 0, 0, 0, 0, 0, 0, 0] 

Tabu state = [0, 0, 0, 0, 0, 0, 0, 0, 3] 

We randomly take the initial solution (0)x =[1,2,3,4,5,6,7,1] 

Objective value ( (0)x ) =d ( (0)x ) 
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d( (0)x )=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69 

We find the move values by applying the method 

( , ) [ ( 1, ) ( , ) ( , 1)] [ ( 1, 1) ( , ) ( , 1)]i j d i j d j i d i j d i j d i j d j j            

Where i and j  are the move values. 

We check the move values of (2,3),(3,4),(4,5),(5,6) by using the matrix 

(2,3)   2, 3i j   

(2,3) [ (1,3) (3,2) (2,4)] [ (1,2) (2,3) (3,4)]d d d d d d      =10+8+12-12-8-11= -1 

(3,4) 3, 4i j    

 

(3,4) [ (2,4) (4,3) (3,5)] [ (2,3) (3,4) (4,5)]d d d d d d      =12+11+3-8-11-11= -4 

(4,5) 4, 5i j    

(4,5) [ (3,5) (5,4) (4,6)] [ (3,4) (4,5) (5,6)]d d d d d d      =3+11+10-11-11-6= -4 

(5,6) 5, 6i j    

(5,6) [ (4,6) (6,5) (5,7)] [ (4,5) (5,6) (6,7)]d d d d d d      =10+6+7-11-6-9= -3 

We break tie arbitrary by considering the least move value (3, 4) 

Thus d ( (0)x ) + the move value (3, 4) =69-4=65. 

By swapping (3,4 ) we get the new solution (1)x =[1,2,4,3,5,6,7,1] and the objective value 

d( (1)x )= (1,2) (2,4) (4,3) (3,5) (5,6) (6,7) (7,1)d d d d d d d      =65 
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Since d ( (1)x ) <d ( (0)x ), we assign (0) (1)x x  

Second Iteration 

Then new solution is (0)x = [1, 2, 4, 3, 5, 6, 7, 1] 

Tabu List = [4, 9, 9] 

Tabu position= [0, 0, 0, 0, 0, 0, 0, 1] 

Tabu state= [0, 0, 0, 1, 0, 0, 0, 0, 2] 

We find the move values (2, 4), (3, 5), (5, 6) 

(2,4) 2, 4i j    

(2,4) [ (1,4) (4,2) (2,5)] [ (1,2) (2,4) (4,5)]d d d d d d      = 21+12+11-12-12-12=9 

(3,5) 3, 5i j    

(3,5) [ (2,5) (5,3) (3,6)] [ (2,3) (3,5) (5,6)]d d d d d d      =11+3+9-8-3-6=6 

(5,6) 5, 6i j    

(5,6) [ (4,6) (6,5) (5,7)] [ (4,5) (5,6) (6,7)]d d d d d d      =10+6+7-11-6-9= -3 

The least move value is (5, 6) 

Thus d ( (0)x ) + the move value (5, 6) =65-3=62 

By swapping (5, 6) we obtain the solution (1)x = [1, 2, 4, 3, 6, 5, 7, 1]. 

d( (1)x )= (1,2) (2,4) (4,3) (3,6) (6,5) (5,7) (7,1) 62d d d d d d d        

Since d ( (1)x ) <d ( (0)x ), we assign (0) (1)x x  
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Third Iteration 

The new solution is (0)x = [1, 2, 4, 3, 6, 5, 7, 1]. 

Tabu List = [6, 4, 9] 

Tabu position= [0, 0, 0, 0, 0, 0, 1, 1] 

Tabu state= [0, 0, 0, 1, 0, 1, 0, 0, 1] 

We find the move values (2, 4), (3, 6) 

(2,4) 2, 4i j    

(2,4) [ (1,4) (4,2) (2,5)] [ (1,2) (2,4) (4,5)]d d d d d d      = 21+12+11-12-12-11=9 

(3,6) 3, 6i j    

(3,6) [ (2,6) (6,3) (3,7)] [ (2,3) (3,6) (6,7)]d d d d d d      =17+9+9-8-9-9= 9 

We break tie arbitrary by taking the move value (3, 6) 

Thus d ( (0)x ) + the move value (3, 6) =65+9=74 

(1)x =[1,2,4,6,3,5,7,1] 

d ( (1)x ) =65 

The process continues until the optimal solution is obtained. 

3.8 Simulated Annealing 

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global 

optimization problem of applied mathematics, namely locating a good approximation to 

the global minimum of a given function in a large search space. It is often used when the 

search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, 
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simulated annealing may be more effective than exhaustive enumeration — provided that 

the goal is merely to find an acceptably good solution in a fixed amount of time, rather 

than the best possible solution. 

The name and inspiration come from annealing in metallurgy, a technique involving 

heating and controlled cooling of a material to increase the size of its crystals and reduce 

their defects. The heat causes the atoms to become unstuck from their initial positions (a 

local minimum of the internal energy) and wander randomly through states of higher 

energy; the slow cooling gives them more chances of finding configurations with lower 

internal energy than the initial one. 

By analogy with this physical process, each step of the SA algorithm replaces the current 

solution by a random "nearby" solution, chosen with a probability that depends on the 

difference between the corresponding function values and on a global parameter T (called 

the temperature), that is gradually decreased during the process. The dependency is such 

that the current solution changes almost randomly when T is large, but increasingly 

"downhill" as T goes to zero. The allowance for "uphill" moves saves the method from 

becoming stuck at local minima—which are the bane of greedier methods. 

The method was independently described by Kirkpatrick et al in 1983 and by V. Černý in 

1985 . The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo 

method to generate sample states of a thermodynamic system, invented by N. Metropolis 

et al. in 1953 . 

3.8.1 Using simulated Annealing to solve TSP 

The TSP was one of the first problems to which simulated annealing was applied, serving 

as an example for both Kirkpatrick et al, (1983), and Cerny, (1985)., Since then the TSP 
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has continued to be a prime test bed for the approach and its variants. Most adaptations 

have been based on the simple schema presented in Figure below, with implementations 

differing as to their methods for generating starting solutions (tours) and for handling 

temperatures, as well as in their definitions of equilibrium, frozen, neighbor, and random. 

Note that the test in Step 6 is designed so that large steps uphill are unlikely to be taken 

except at high temperatures t. The probability that an uphill move of a given cost will be 

accepted declines as the temperature is lowered. In the limiting case, when T =0, the 

algorithm reduces to a randomized version of iterative improvement, where no uphill 

moves are allowed at all. 

3.8.1.1 General schema for a simulated annealing algorithm 

 Step 1. Generate a starting solution S and set the initial solution S * S. 

Step 2. . Determine a starting temperature T. 

Step 3. While not yet at equilibrium for this temperature, do the following: 

 Step 4. Choose a random neighbor Sof the current solution. 

Step 5 . Set Length(S) Length(S). 

Step6.. If 0 (downhill move): 

Set S S. 

.If Length(S) Length(S *), set S * S. 

 Else (uphill move): 

Step 7 .Choose a random number r uniformly from [0, 1 ]. 
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If r  Te


 , set S S. 

Step 8. End ‗‗While not yet at equilibrium‘‘ loop. 

Step 9. Lower the temperature T. 

Step 10. End the when the improved solution is obtained else return to S *. 

3.8.1.2 Prototype Example 

Considering Figure 3.5 

Taking the initial solution to be in the tour in the order: 1-2-3-4-5-6-7-1  

We use the parameters; 

0 20T    1k kT T    0.5    

Stop when 0.1T   

  

First Iteration 

Assuming 0x =1-2-3-4-5-6-7-1 

d( 0x )=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69 

Using the subtour reversal as local search to generate the new solution 1x =1-3-2-4-5-6-7-1 

d( 1x )=d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=68 

 

 1 0( ) ( )d x d x   =68-69=-1 

Since 0   then we set 0 1x x  

We then update the temperature 1 0T T =0.5(20)=10 
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Second Iteration 

d( 0x )=68 

By sing the subtour reversal as local search to generate the new solution 1-2-3-5-4-6-7-1 

1x =1-2-3-5-4-6-7-1 

d( 1x )=d(1,2)+d(2,3)+d(3,5)+d(5,4)+d(4,6)+d(6,7)+d(7,1)=65 

1 0( ) ( )d x d x   =65-68=-3 

Since 0   then we set 0 1x x  

Updating the temperature , 
2T =0.5(10)=5 

 

Third Iteration 

d( 0x )=65 

Using the subtour reversal as local search to generate the new solution 1-2-3-4-6-5-7-1 

1x =1-2-3-4-6-5-7-1 

d( 1x )=d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,5)+d(5,7)+d(7,1)=66 

1 0( ) ( )d x d x   =66-65=1 

Since 0   we the apply Boltzmann‘s condition 2T
m e



 =0.81 

A random number would be generated from a computer say   

If m>  then we set 0 1x x  otherwise 1 0x x  

Updating the temperature, 3 0.5(5) 2.5T    

The process will continue until the final temperature is obtained. 
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3.9 The Ant Colony Optimization 

The Ant Colony Optimization (ACO) algorithm is a nature-inspired cybernetic method in 

artificial intelligence. ACO can be considered to be a cognitive informatics (CI) model of 

social animals like ants rather than the CI model of humans .The idea of ACO comes from 

the ants‘ behavior, which is different from traditional mathematics-based cybernetic 

techniques. The ACO algorithm does a surprisingly successful performance in the solution 

of NP-hard problems, which draws more and more attention on ACO research, particularly 

to the study of its theoretical foundation. 

3.9.1 Variations of ACO 

 Different ACO algorithms are discussed subsequently: 

3.9.2 ANT SYSTEM (AS) 

In AS, K artificial ants probabilistically construct tours in parallel exploiting a given 

pheromone model. Initially, all ants are placed on randomly chosen cities. At each 

iteration, each ant moves from one city to another, keeping track of the partial solution it 

has constructed so far. The algorithm has two fundamental components: 

(i) the amount of pheromone on arc (i, j), ij  

(ii) desirability of arc (i, j), ij  

where arc (i, j) denotes the connection between cities i and j. 

At the start of the algorithm an initial amount of pheromone 0  is deposited on each arc:
 

0 O

K
ij L
    , where L0 is the length of an initial feasible tour and K is the number of ants. 

In AS, the initial tour is constructed using the nearest-neighbor algorithm; however, 

another TSP heuristic may be utilized as well. The desirability value (also referred to as 
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visibility or heuristic information) between a pair of cities is the inverse of their distance 

1

ijij d
   where di j is the distance between cities i and j. So, if the distance on the arc (i, j) is 

long, visiting city j after city i (or vice-versa) will be less desirable. 

Each ant constructs its own tour utilizing a transition probability: an ant k positioned 

at a city i selects the next city j to visit with a probability given by 

[ ] .[ ]
,

[ ] .[ ]

0 ,otherwise

k
i

ij ij k

i
k

ik ik
ij

l N

j N

p

 

 

 

 





 





         (3.17)  

where, k

iN denotes the set of not yet visited cities;  and   are positive parameters to 

control the relative weight of pheromone information 
ij and heuristic information 

ij . 

After each ant has completed its tour, the pheromone levels are updated. The pheromone 

update consists of the pheromone evaporation and pheromone reinforcement. The 

pheromone evaporation refers to uniformly decreasing the pheromone values on all arcs. 

The aim is to prevent the rapid convergence of the algorithm to a local optimal solution by 

reducing the probability of repeatedly selecting certain cities. The pheromone 

reinforcement process, on the other hand, allows each ant to deposit a certain amount of 

pheromone on the arcs belonging to its tour. The aim is to increase the probability of 

selecting the arcs frequently used by the ants that construct short tours. The pheromone 

update rule is the following: 

1

(1 ). ( , )
K

k

ij ij ij

k

i j   


      .          (3.18) 

In this formulation (0 1)   is the pheromone evaporation parameter and k

ij  is the 

amount of pheromone deposited on arc (i, j) by ant k and is computed as follows:  
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th1
, if k  ant uses path ( , ) in its tour

0 , otherwise

k
kij

i j
L




  

        (3.19) 

 

where
kL is the tour length constructed by the k-th ant. 

3.9.3 Algorithm 1. Ants System Algorithm 

Input: a combinatorial optimization problem ( , , )S f  

Step 1.: Initializes the pheromone matrix (0), 0T t   

( ( )T t  is the pheromone matrix at time )t  

Step 2.: ( )bsS t Null  

( ( )bss t  is the best so-far solution at time )t  

While the termination condition is not satisfied do 

Step 3 1, ( )itert t S t    

( ( )iterS t  is the set solutions obtained by ants by at )t  

for 1,...j K  do 

Step 4 The j -th artificial builds solution s  

Step 5. if ( ( ) ( ( ))bsf s f s t  or ( ( ) )bss t NULL  then 

bss s  

Step 6  ( ) ( ) { }iter iterS t S t s  
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end while 

Output: the best-so-far solution ( )bss t  

3.9,4 IMPROVEMENT OF ANT SYSTEM  

The success of ant heuristic lie sorely on the door steps of the pheromone trial. A 

substantial research on ACO has focused on how to improve AS all in the aim of 

improving the tour length. Some of these AS improvement algorithms are 

(i) Elitist Ant System (EAS); 

(ii) Rank Based Ant System (A S Rank); 

(iii) Ant Colony System (ACS) and 

(iv) Max-Min Ant System (MMAS) 

3.9.5 ELITIST ANT SYSTEM (EAS) 

In the EAS an elitist strategy is implemented by further increasing the pheromone levels 

on the arcs belonging to the best tour achieved since the initiation of the algorithm. That 

best-so-far tour is referred to as the ―global-best‖ tour. The pheromone update rule is as 

follows: 

1

(1 ) ( , )
K

k gb

ij ij ij ij

k

w i j    


      
        (3.20) 

 

Here, w denotes the weight associated with the global-best tour and gb

ij  is the amount of 

pheromone deposited on arc (i, j) by the global-best ant and calculated by the following 

formula: 

1
, if the global best ant uses arc ( , ) in its tour

0, otherwise

gb gb
ij

i j
L




 



 

here gbL  is the length of global-best tour. 
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3.9.6 RANK BASED ANT SYSTEM (Rank AS) 

In the ASrank a rank-based elitist strategy is adopted in an attempt to prevent the algorithm 

from being trapped in a local minimum. In this strategy, w best ranked ants are used to 

update the pheromone levels and the amount of pheromone deposited by each ant 

decreases with its rank. Furthermore, at each iteration, the global-best ant is allowed to 

deposit the largest amount of pheromone. The pheromone update rule is given by: 

1

1

(1 ) ( ) ( , )
w

r gb

ij ij ij ij

k

w r w i j    




       
      (3.21) 

 

 

3.9.7 ANT COLONY SYSTEM (ACS) 

The ACS attempts to improve AS by increasing the importance of exploitation versus 

exploration of the search space. This is achieved by employing a strong elitist strategy to 

update pheromone levels and a pseudo-random proportional rule in selecting the next node 

to visit. The strong elitist strategy is applied by using the global-best ant only to increase 

the pheromone levels on the arcs that belong to the global-best tour: 

(1 ) ( , )gb

ij ij ij i j        
 

 

The mechanism of the pseudo-random proportional rule is as follows: an ant k located at 

customer i may either visit its most favorable city or randomly select a city. The selection 

rule is the following: 

0argmax

,           otherwise

k
i

ij ij ij
k

j N

k

z z

j

J

   


 


 



 

where z is a random variable drawn from a uniform distribution U[0,1] and 0 0(0 1)z z   

is a parameter to control exploitation versus exploration. 
kj  is selected according to the 
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probability distribution k

ijp . ACS also uses local pheromone updating while building 

solutions: as soon as an ant moves from city i to city j the pheromone level on arc (i, j) is 

reduced in an attempt to promote the exploration of other arcs by other ants. The local 

pheromone update is performed as follows: 

0(1 )ij ij       

where  is a positive parameter less than 1. 

Similar to ACS, uses either the global-best ant or the iteration-best ant alone to reinforce 

the pheromone. 

3.9.8 Max-Min Ant System (MMAS): 

 Stuuzle and Hoos, ( 2000), proposed the MMAS algorithm to have more control on the 

pheromone trail, so as to avoid the stagnation situation in which all ants are stuck within a 

local optimum. 

According to Stutzle et al, (200), local search is used to improve the algorithm, the 

importance of local heuristic information is replace by local search. Therefore, local 

heuristic information is ignored in this version of state transition rule.  

The state transition rule used is either the random-proportional rule or the pseudo-random-

proportional rule. The pheromone trail is updated when all ants complete their solution 

construction by 
new old e

ij ij ij   
, 

 
where either the best solution in this iteration and the best solution found so far is used 

for
e

ij  All ij are initialized as max and min maxij    . 

StUtzle et al, (1999), also proposed a variation of the state transition rule as
ij

ij

il

l u

P
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Algorithm 2: The algorithm MMAS*. 

Step 1. function MMAS* on G=(V,E) is  

Step 2. 1( ) , ;e e E
V

     where E is the of set edges and V  is the set of vertices 

Step 3. * ( );x construct   

Step 4  *( , );update x This is done by using the model 
1

(1 ) k

k
Qr

ij ij ij L
r

   


      

Step 5 while true do 

Step 6  ( );x construct   

Step 7  if *( ) ( )f x f x  then 

Step 8  * ;x x  

Step 9  *( , );update x   

 

3.9.9 Mathematical Formulation Of STSP Model 

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with 

vertices V, |V|=n, where n is the number of cities, and edges E with edge length dij for 

(i,j). We focus on the symmetric TSP case in which i j j iC C , for all (i,j). 

The problem PI is; 

Minimize i j i j

i v j v

Z c x
 

             (3.22) 



81 

1i j

j v
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             (3.23) 

1i j

i v

x j v

i j


 



             (3.24) 

| | 1 ,i j

i s j s

x s s v s
 

               (3.25) 

 

0 1 ,i jx or i j v           (3.26) 

The problem is an assignment problem with additional restrictions that guarantee the 

exclusion of subtours in the optimal solution. Recall that a subtour in V is a cycle that does 

not include all vertices (or cities). Equation (3.23) is the objective function, which 

minimizes the total distance to be traveled. 

Constraints (3.24) and (3.25) define a regular assignment problem, where (3.23) ensures 

that each city is entered from only one other city, while (3.24) ensures that each city is 

only departed to on other city. Constraint (3.25) eliminates subtours. Constraint (3.26) is a 

binary constraint, where i jx  = 1 if edge (i,j) in the solution and i jx  = 0, otherwise. 

3.10 ACO ALGORITHM FOR OUR PROPOSED WORK 

The construction graph G = (N, A), where the set A fully connects the components N, is 

identical to the problem graph, that is the set of states of the problem corresponds to the set 

of all possible partial tours. 
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An initial solution is first obtained using the nearest-neighbor heuristic: start at the depot 

and then select the not yet visited closest feasible customer as the next customer to be 

visited. 

Each artificial ant has a memory called tabu list. The tabu list forces the ant to make legal 

tours. It saves the cities already visited and forbids the ant to move already visited cities 

until a tour is completed.  

After all cities are visited, the tabu list of each ant will be full. The shortest path found is 

computed and saved. Then, tabu lists are emptied. This process is iterated for a user-

defined number of cycles.  

Suppose there are N  nodes and 
ib is the number of ants at city i. Consider the following 

notation:  

 1

n

i

i

K b


 : Total number of ants  

Step 1. Set the of cities to be visited by the Ants to be N . 

Step 2.  Add the city already visited by the Ant to the ;Tabu list of the k-th ant  

    tabu
k
(s) : s-th city visited by the k-th ant in the tour  

Step 3. ij  (t) : Intensity of trail on edge between city i and city j at time t This is done by 

    the use of the model 
1

(1 ) k

k
Qr

ij ij ij L
r

   


    
.

 

Step 4. Calculate the Visibility of edge between city i and city j to be 

1
ij

ijd
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ij is usually assumed as the inverse of the distance between city i and city j (
ijd ) Thus, 

1
ij

ijd
 

 

After K artificial ants are randomly placed on cities, the first element of each ant's tabu list 

is set to be equal to its starting city. Then, they move to unvisited cities. The probability of 

moving from city i to cityr j for the k-th ant is defined as: ( )k

ijp  

   

[ ] .[ ]
,  

[ ] .[ ]

0, otherwise

kij ij

i
k

ik ik
ij

j N

j
p

N
 

 

 

 





 





     (3.27)

 

 

where N is the set of neighboring cities , α and β are parameters that control the relative 

importance of pheromone trail versus visibility. 

3.10.1. HEURISTIC INFORMATION 

Generally in solving TSP, the visibility value between a pair of cities of the Ant is the 

inverse of their distance, thus
1

ij

ijd
  . 

3.10.2. INITIAL PHEROMONE TRIALS 

In most of the ant colony based algorithms to TSP, initial pheromone trails τ
0 

is set equal to 

the inverse of the best known route distances found for the particular problem. Thus. 

0

,

1

i jd
  . When the initial route is constructed, it is started at the initial point and the city 
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with the highest 
,i j value is selected as the first city to be visited. Then, the tour is 

constructed by selecting the not yet visited feasible city with the highest 
,i j  at each time.  

3.10.3 ROUTE CONSTRUCTION PROCESS  

It is assumed that the number of ants is equal to the number of directors, who are suppose 

to embark on the inspectional tour of the twelve main sales point of Ghacem ,Ghana. Thus 

serving as artificial Ants. Then, each ant constructs its own tour by successively selecting a 

not yet visited feasible customer. The choice of the next director to visit is based on 

proportional fitness (Roulette Wheel ie  the basic part of the selection process is to 

stochastically select from one generation to create the basis of the next generation, the 

requirement is that the fittest individuals have a greater chance of survival than weaker 

ones. This replicates nature in that fitter individuals will tend to have a better probability of 

survival and will go forward to form the mating pool for the next generation.) in 

conjunction with the information of both the pheromone trails and the visibility of that 

choice given in equation [ ]ij ij ij

   , τ
ij 

denotes the amount of pheromone on arc (i, j) 

and β is power weighting parameter that weights the consistency of arc (i , j).  

3.10.4 PHEROMONE UPDATE 

Our pheromone update consists of an improved ant system strategy. In this strategy our 

pheromone update rule is as follows:
1

(1 ) k

k
Qr

ij ij ij L
r

   


      

where Q is a constant ie the product of the longest distance between nodes 
,i j  and, where 

N  is the number of cities to be visited by an ant k . kL  is the distance ant k  has visited , 
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kL  is the length of tour of ant K and , 0 1   , is the evaporation factor, which 

determines the strength of an update.  

 

3. 11.0 Illustrative Example 

 In order to get more insight of the algorithm, we shall consider a five (5) node TSP 

problem. The objective is to find a minimum tour required to visit all the five (5) nodes.  

A connectivity matrix of figure 3.7 is given in Table 3.5. The values given in the table 

denotes the distance ‗‘d‘‘ between nodes and it is assumed to be a symmetric TSP 

problem, in which ij jid d
 

Figure 3.7: Road Network of the Five (5) Cities  

 

3.11.1 Distance Matrix for the five cities in Kilometers (km) 

The distance matrix was formulated from the network graph of figure 3.6 Where the cities 

have no direct link, the minimum distance along the edges are considered. The cells 

indicated zeros shows that there is no distance thus when 0i i j jC C   .It therefore 

represents a complete graph for the five cities. 
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3.11.2 Table 3.5 shows the connectivity matrix of the five cities which have been 

Degninated with alphabets The distance between the various are shown and the 

Zeros indicate that 
, ,

0
i j j id d   

Table 3.5: Connectivity matrix of TSP in Figure 3.6. 

 A B C D E 

A 0 100 125 100 75 

B 100 0 50 75 125 

C 125 50 0 100 125 

D 100 75 100 0 50 

E 75 125 125 50 0 

 

Each edge in the graph is given an initial pheromone value 0( ) . For the simplicity of this 

example 0  is set to be 1 

Where 5n  ,thus the number of cities to be visited by an Ant.  

The heuristic value 
1

ij

ijd
  , is the inverse the distance between city i and city j  . 

The probability of selecting an edge is then equal to 
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Where N is the set of neighboring cities, , 
,i j  is the initial pheromone and  
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,i j

  is the heuristic value , α and β are two parameters that control the relative weight of 

pheromone trail and heuristic value. 

In this example, for the sake of simplicity, the value of α and β are set equal to 1. 

 

3.11.3 The table 3.6 shows the Heuristic value ((η) between nodes of the five in table  

3.5 above .These values were obtained through the use of the model 
1

ij

ijd
  .  

Table 3.6: Heuristic value ((η) for each edge in Figure 3.6. 

 A B C D E 

A 0.000 0.010 0.008 0.010 0.013 

B 0.010 0.000 0.020 0.013 0.0008 

C 0.008 0.020 0.000 0.010 0.008 

D 0.010 0.013 0.010 0.000 0.020 

E 0.013 0.008 0.008 0.020 0.000 

 

Since there are 5 cities, assume that the size of the colony of ant is 5. Each ant will start its 

tour from different city. For example, the first ant starts from city A, the second ant starts 

from city B, and so on. 

Iteration 1: Ant 1 at node 1(A) 
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1 1

1

1,2

[1.0] *[0.010] 0.01
  (1)    0.2439024     

(1.0*0.01) ... (1.0*0.013) 0.041
P   

 
 

     
1 1

1

1,3 1 1

[1.00] *[0.008] 0.008
(1) 0.1951219

[1.0*0.010] ... [1.0*0.013] 0.041
P   

 
 

     
1 1

1

1,4 1 1

[1.00] *[0.010] 0.01
(1) 0.24390

[1.0*0.010] ... [1.0*0.013] 0.041
P   

 
 

     
1 1

1

1,5 1 1

[1.00] *[0.013] 0.013
(1) 0.31707

[1.0*0.010] ... [1.0*0.013] 0.041
P   

 
   

  

 The first ant starts the tour from city A. There are four neighboring cities to be considered 

by the ant. 

 The probability of choosing any edge leading to certain city is calculated using the  

 Probability decision rule, ie 
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 Table 3.7 Shows the neighboring cities left for the Ant 1 to select from. 

 

 

 

B C D E 

0.24 0.19 0.24 0.32 
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Using a stochastic process, (Roulette Wheel), the ant chooses the next city. Assume that 

the ant takes city B as the next city to visit. 

 The ant will update its memory and put city B in its Tabu List (to add to A) 

When the ant arrives at city B, there are 3 cities left to visit. The probability of choosing 

these cities is given in the table.3.8. 

 Table 3.8 Shows the neighboring cities left for the Ant 1 to select from 

 

 

 

    

 
1 1

1

2,3 1 1 1

[1.00] *[0.02] 0.02
(1) 0.487804

[1.0*0.020] [1.0*0.013] [1.0*0.008] 0.041
P   

 
 

   
1 1

1

2,4 1 1 1

[1.00] *[0.013] 0.013
(1) 0.317073

[1.0*0.020] [1.0*0.013] [1.0*0.008] 0.041
P   

 
 

   
1 1

1

2,5 1 1 1

[1.00] *[0.008] 0.008
(1) 0.195121

[1.0*0.020] [1.0*0.013] [1.0*0.008] 0.041
P   

 
 

   

 

 

 

Assume that city D is taken. The ant will then update its Tabu List by adding city D. 

There are two neighbors of city D: C and E. The following table shows the probability of 

choosing each of these cities. 

C D E 

0.48 0.32 0.19 

C D E 

0.48 0.32 0.19 
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1 1

1

4,5 1 1

[1.00] *[0.010] 0.010
(1) 0.33333

[1.0*0.01] [1.0*0.020] 0.03
P   


 

     
1 1

1

5,5 1 1

[1.00] *[0.020] 0.02
(1) 0.6666

[1.0*0.01] [1.0*0.020] 0.03
P   


 

 Table 3.9 Shows the neighboring cities left for the Ant 1 to select from 

 

 

 

 

Assume that the ant selects city E. The content of its Tabu List is then: A, B, D, and E. 

Since there is one remaining city to visit, the next process will certainly take C. The path 

that was built by the ant is then: A  B  D  E  C. The length of this path is L = AB + 

BD + DE + EC = 100 + 75 + 50 + 125 = 350. 

The remaining ants will proceed according to the same procedure.  

 3.11.4; Table3.10 summarizes the solutions built by all ants. The last column in Table 

3.10  shows the gain obtained by each ant. Since the longest distance between cities is 125, 

the solution built by the ant must not exceed Q=4 *125 = 500. Thus, the gain of each ant 

can be formulated as 500/L, with L is the length of the path of the solution. 

C E 

0.33 0.66 
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Table 3.10 : Shows the Solutions built by all ants in the first iteration 

Ant Path Length of the path (L) ∆τ = 500/L 

ant1 A  B  D  E  C 350 1.43 

ant2 B  C  D  E  A 275 1.82 

ant3 C  B  D  E  A 250 2.00 

ant4 D  E  A  B  C 275 0.82 

ant5 E  A  B  C  D 325 1.54 

 

When all ants finish their tour, they will back track and update the pheromone along their 

path by putting additional pheromone (∆τ). Note that, the amount of ∆τ is proportional to 

the gain obtained by the ant. 

  
,

1

N
k

i j ij

k

 


               (iii) 

  Where k

ij  is the adding pheromone to the arcs in the tour ant k  has  

  visited,  

  ,i j

k

Q

L
  ,             (iv) 

 where Q  is constant, ie the product of the longest distance between nodes i  and j  where 

N  is the number of cities to be visited by an ant k . kL  is the distance ant k  has visited. 

For example 4*125 500Q    

  

 The new pheromone value is given by the following model 
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 ( 1) ( ) ( )t t t     .           (v) 

Consider, for example, edge AB was used by ant1, ant4 and ant5. The new pheromone 

value for edge AB is therefore equal to 1 + 1.43 + 1.82 + 1.54 = 5.79. 

Then, pheromone will evaporate according to the formula: 

      τ = (1 - ρ) * τ        (vi) 

       

Assume that ρ is equal to 0.2. Then the pheromone value on edge AB is equal to 

0.8 * 5.79 = 4.63. The calculation of pheromone value is performed for all edges. 

 (1 0,2)*5.79 4.632AB     ,where 1 1.43 1.82 1.54 5.79        

 1.0 0.0 1.0AC         , Since ant k  did not have direct link to C  

 0   

  0.8*1.0 0.8AC     

  0.8*1.0 0.8AD     

  0.8*(1 1.82 2.00 1.82 1.54) 6.544AE        , where  

  (1 1.82 2.00 1.82 1.54) 8.18           
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3.11.5; The Table 3.11 shows the new pheromone values on each edge at the end of 

iteration  

Table 3.11: Pheromone values for each edge after iteration 1. 

 initial pheromone value new pheromone value 

 A B C D E A B C D E 

A 0.00 1.00 1.00 1.00 1.00 0.00 4.63 0.80 0.80 6.54 

B 1.00 0.00 1.00 1.00 1.00 4.63 0.00 6.54 3.54 0.80 

C 1.00 1.00 0.00 1.00 1.00 0.80 6.54 0.00 0.80 0.80 

D 1.00 1.00 1.00 0.00 1.00 0.80 3.54 0.80 0.00 6.45 

E 1.00 1.00 0.80 1.00 0.00 6.54 0.80 0.80 6.45 0.00 

 

3,11,6 Figure 3.7 (a) shows the visualization of pheromone values on the edges. In this 

figure, the darker the edge, the higher the pheromone. The best solution found by the 

heuristic in the first iteration is shown in Figure 3.7 (b). 

 

Figure 3.7. shows the visualization of pheromone values on the edges 
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Iteration 2 

The same process that was performed in the first iteration is repeated in the second. 

However, the initial pheromone values on all edges have changed. Thus, the probability of 

selecting a certain edge will also change. The higher the pheromone on the edge, the more 

attractive the edge for an ant to choose. 

3.11.7 Assume that all ants have finished their tour construction. The table 3.12 

summarizes the solutions built by all ants. 

Table 3.12: Solutions built by the ant in the second iteration. 

Ant Path Length of the path (L) ∆τ =5 00/L 

ant1 AEDBC 250 2.00 

ant2 BCDEA 275 1.82 

ant3 CBDEA 250 2.00 

ant4 DEABC 275 1.82 

ant5 EADBC 300 1.67 

 

3.11.8 The pheromone update and pheromone evaporation procedures are then performed. 

This will change the value of pheromone on each edge. The new pheromone values for 

edge after iteration 2 are shown on table 3.13 

Table 3.13 Shows the Pheromone values for each edge after iteration 2. 

 initial pheromone value new pheromone value 

 A B C D E A B C D E 

A 0.00 4.63 0.80 0.80 6.54 0.00 6.45 0.80 2.47 15.84 
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B 4.63 0.00 6.54 3.54 0.80 6.45 0.00 15.84 9.21 0.80 

C 0.80 6.54 0.00 0.80 0.80 0.80 15.84 0.00 2.62 0.80 

D 0.80 3.54 0.80 0.00 6.45 2.47 9.21 2.62 0.00 14.09 

E 6.54 0.80 0.80 6.45 0.00 15.84 0.80 0.80 14.09 0.00 

 

3.11.9 Figure 3.7 (a) shows the visualization of pheromone values on the edges. As we can 

see, the lines representing edge AE, ED and BC are very thick. These lines are thicker than 

the corresponding ones in the previous iteration (see Figure 3.6). 

 

Figure 3.7 (a) shows the visualization of pheromone values on the edges. 

3.11.8: The thickness of these lines corresponds to their high pheromone values. On the 

other hand, the lines representing edge AC, BE and CE are very thin. Since no ant is using 

these edges, there is no additional pheromone given.  

In addition, pheromone evaporation reduces the intensity of pheromone values on these 

edges.  

From Figure 3.7(a), it can be seen that the best solution for the given TSP problem will 

likely be equal to the one illustrated in Figure 3.7 (b). 
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In the next chapter,we consider the use of an ACO algorithm called Min-Max Ant System 

(MMAS) to solve a symmetric TSP problem involving twelve cities.This is illustrated as 

Algorithm 2 of section 3.9.9. 
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CHAPTER FOUR 

DATA COLLECTION AND ANALYSIS 

4.0 Introduction 

In this chapter, we shall look at how the data for the work was obtained, how it was used 

for the intended analysis based on the method(s) discussed in the previous chapter  

4.1 Data Collection 

We considered a twelve city node graph (major sales point of Ghacem) with the nodes 

representing the twelve cities, and the edges representing the major roads linking the cities 

(figure 4.1). Based on this graph, we collected secondary data of the inter-city driving 

distances from the Ghana Highway Authority. In table 4.1 we have designated each city 

with a number for convenience.  

Table 4.1: Twelve major sales points of Ghacem in Ghana and their numerical 

 

 representation 

 City Allocated number 

Tema 1 

Accra 2 

Cape Coast 3 

Takoradi 4 

Obuasi 5 

Kumasi 6 

Koforidua 7 

Sunyani 8 

Wa 9 

Bolgatanga 10 

Tamale 11 

Ho 12 
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4.2 Data Analysis 

The figure 4.1 below shows the Road Network of the twelve (12) major sales points of 

Ghacem and their geographical locations on the map of Ghana.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Road Network of the twelve (12) major sales points of Ghacem  
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Table 4.2: Data from the Ghana Highways Authority indicating the matrix for the 

weighted graph of the major roads linking twelve major Sales of points of Ghacem in 

Ghana in Kilometers 

City/cityj Tema Accra C-coast Takoradi Obuasi Kumasi Koforidua Sunyani Wa Bolga Tamale Ho 

Tema 0 29 inf Inf Inf Inf Inf inf inf Inf inf 136 

Accra 29 0 144 Inf Inf 270 85 inf inf Inf inf 165 

C-coast inf 144 0 74 133 221 Inf inf inf Inf inf inf 

Takoradi inf Inf 74 0 Inf 242 Inf inf inf Inf inf inf 

Obuasi inf Inf 133 Inf 0 88 Inf inf inf Inf inf inf 

Kumasi inf 270 221 242 88 0 194 130 inf Inf 388 inf 

Koforidua inf 85 inf Inf Inf 194 0 inf inf Inf inf inf 

Sunyani inf Inf inf Inf Inf 130 Inf 0 378 Inf 388 inf 

Wa inf Inf inf Inf Inf Inf Inf 378 0 368 314 inf 

Bolga inf Inf inf Inf Inf Inf Inf inf 368 0 170 614 

Tamale inf Inf inf Inf Inf 388 Inf 300 314 170 0 476 

Ho 136 165 Inf Inf Inf Inf 163 inf inf 614 476 0 

ijC The cost matrix representing the distance from city i to city j . 

  Where 0
ij jic c   .ie no direct link from one city to the other. 
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4.3: Connectivity matrix for the twelve major sales points cities of Ghacem in 

Kilometers (Km) 

 (4.3 The distance matrix was formulated from the connectivity graph of figure4.2 .Where 

the cities have no direct link ,the minimum distance along the edges are considered .The 

cells indicated inf shows that there is no direct distance ,thus 0
ij jic c   

 Table 4.3: Connectivity matrix for the twelve major sales points cities of Ghacem in 

Kilometers (Km) (All pair shortest path from table 4.2 by Floyd Warshall’s 

Algorithm)  

City/cityj 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 29 173 247 352 299 114 429 816 750 612 136 

2 29 0 144 218 358 270 85 400 778 770 641 165 

3 173 144 0 74 133 221 229 351 729 779 609 309 

4 247 218 74 0 213 242 303 372 750 800 630 383 

5 352 358 133 213 0 88 282 218 596 646 476 445 

6 299 270 221 242 88 0 194 130 508 558 388 357 

7 114 85 229 303 282 194 0 324 702 752 582 163 

8 429 400 351 372 218 130 324 0 378 470 300 487 

9 816 778 729 750 596 508 702 378 0 368 314 790 

10 750 770 779 800 646 558 752 470 368 0 170 615 

11 612 641 609 630 476 388 582 300 314 170 0 476 

12 136 165 309 383 445 357 163 487 790 615 476 0 

 

4.4 In this study each edge in the graph is given an initial pheromone value 

0

1 1
0.0833

12n
    .where 12n  . Let heuristic value (η) be equal to the reciprocal of the 
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distance, ie .
1

ij

ijd
  . where 

ijd  is the distance between city(i) to city(j). The probability of 

selecting an edge is given by 
[ ] [ ]

[ ] [ ]

ij ijk

ij

il il

l N

p

 

 

 

 






,      (4.1)  

where N = 12 (the set of neighboring Cities (nodes) to be visited by the artificial Ants (The 

inspectional Team of Ghacem,Ghana)  and  are parameters that control the relative 

weight of pheromone trial and heuristic value. In this study, the values of  and  are set 

be 1. Again Max  and 
Min  are set to be 1.0 and 0.01  

 respectively. In this work, we considered several values for the evaporation rate such as 

0.1, 0.02, 0.1,0.2, …  
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4.4 Heuristic value ((η) between nodes of the twelve major Sales of points of Ghacem 

in Ghana in table 

 The table 4.4 shows the Heuristic value ((η) between nodes of the twelve major Sales 

of points of Ghacem in Ghana in table 4.3 above, These values were obtained through 

the use of the model 
1

ij

ijd
  .  

Table 4.4 shows the heuristic value (η) for each edge in Figure 4.1 

City/cityj 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.000 .0.034 0.006 0.004 0.003 0.004 0.009 0.002 0.001 0.001 0.002 0.007 

2 0.034 0.000 0.007 0.005 0-003 0.004 0.012 0.003 0.001 0.001 0.002 0.006 

3 0.006 0.007 0.000 0.014 0.008 0.005 0.004 0.003 0.001 0.001 0.002 0.003 

4 0.004 0.005 0.014 0.000 0.005 0.004 0.003 0.003 0.001 0.001 0.002 0.003 

5 0.003 0.003 0.008 0.005 0.000 0.011 0.004 0.005 0.002 0.002 0.002 0.002 

6 0.004 0.004 0.005 0.004 0.011 0.000 0.005 0.008 0.002 0.002 0.003 0.003 

7 0.009 0.012 0.004 0.003 0.004 0.005 0.000 0.003 0.001 0.001 0.002 0.006 

8 0.002 0.003 0.003 0.003 0.005 0.008 0.003 0.000 0.003 0.002 0.003 0.002 

9 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.003 0.000 0.003 0.003 0.001 

10 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.003 0.000 0.006 0.002 

11 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.003 0.006 0.000 0.002 

12 0.007 0.006 0.003 0.003 0.002 0.003 0.006 0.002 0.001 0.002 0.002 0.000 

 

 4.6 The table 4.5 shows the :initial pheromone value 0( ) for each edge. In this study each 

edge in the graph is given an initial pheromone value 
0

1 1
0.0833

12n
    .where n  is the 

number of cities to be visited by the Ants. 
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Table 4.5: Initial pheromone value 0( ) for each edge is as shown in Figure 4.1.  

City/cityj 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

2 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

3 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

4 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

5 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

6 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 0.083 

7 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 0.083 

8 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 0.083 

9 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 0.083 

10 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 0.083 

11 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 0.083 

12 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0 
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4.5 Mathematical Formulation Of TSP Model 

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with 

vertices V, |V|=n, where n is the number of cities, and edges E with edge length dij for 

(i,j). We focus on the symmetric TSP case in which i j j iC C , for all (i,j). 

The problem PI is; 

 Minimize i j i j

i v j v

Z c x
 

             (4.2) 

Subject to 

   1i j

j v

j i

x i v




             (4.3) 

   1i j

i v

x j v

i j


 



          (4.4) 

   | | 1 ,i j

i s j s

x s s v s
 

             (4.5) 

    0 1 ,i jx or i j v           (4.6) 

 

The problem is an assignment problem with additional restrictions that guarantee the 

exclusion of subtours in the optimal solution. Recall that a subtour in V is a cycle that does 

not include all vertices (or cities). Equation (4.2) is the objective function, which 

minimizes the total distance to be traveled. 

Constraints (4.3) and (4.4) define a regular assignment problem, where (4,3) ensures that 

each city is entered from only one other city, while (4.3) ensures that each city is only 



105 

departed to on other city. Constraint (4.5) eliminates subtours. Constraint (4,6) is a binary 

constraint, where i jx  = 1 if edge (i,j) in the solution and i jx  = 0, otherwise. 

Algorithm  

 Table 3.6: Shows the Pseudo-code of the algorithm applied to solve the MMAS          

 Procedure of MMAS 

Step 1 

The Directors Inspectional Tour (DIT), whose serve as Artificial Ants in 

this study, graph was transformed into a TSP graph 

Step2 

The initial pheromone matrix was computed in Table 3.5. 

Set 
gL best   ,iterate=TRUE, i=0 

While iterate = TRUE 

Set i=i+1 

For h =1 to m 

Set tabu _h=   

Step 3 

A city , ijC  was randomly selected by ant k as the starting point of the path 

ijC  was added to tabu_h 

For j=I to n-1 
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 Step 4 

The next city ,C, was selected according to probability decision rule in (4.2) 

City C was added to tabu_h 

End-for  

 Step 5 

Compute the length of the path L(h) 

If 
gL _best >Lb 

Set 
gL _best >Lb=Lb 

 If 
gL _best has not been improved during the last 15 iterations 

Set iterate = FALSE 

end -if 

If ,Lx Ly  ,1 ,
y

y x y m
x
    

 Step 6 

Reset the pheromone matrix trails to the value Max  

 else 

update the pheromone matrix according to the expression in (4.5) 

 end-if    

 end while              
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Step 7 

The TSP solution was then transformed into DIT solution. 

 

4.6 .Computational Method 

 The MMAS proposed by Stuuzle and Hoos, ( 2000) was coded in Matlab language. The 

tests were performed on a personal computer, Dell core 5 Dua processor, 3.0GHZ with 

RAM 2G memory and working on Window7 Operating system.  

 

4.7 Results  

The MMAS algorithm was coded used to find the minimum tour of each ant and then 

selected the best ant tour. After performing 6652800 iterations the result for each ant is 

shown in table 4.7 
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Table 4.7 Shows both the tour of an individual Ant and their various distance 

covered 

Ant 

tour 
 

Dist. 

Cov. 

By 

ant 

Ant 

1  9 12 2 1 7 4 3 5 6 8 11 10  1874 

Ant 

2  9 10 11 8 6 5 3 4 7 2 1 12  2238 

Ant 

3 10 5 6 8 4 3 1 2 7 12 11 9  2272 

Ant 

4 10 8 6 5 7 2 1 12 3 4 11 9  2445 

Ant 

5 12 3 4 6 5 11 10 8 9 7 1 2  2908 

Ant 

6  5 9 10 11 6 4 3 1 2 7 12 8  2397 

Ant 

7  9 7 2 1 12 11 10 8 6 5 3 4  2541 

Ant 

8 12 1 2 7 6 5 3 4 10 11 8 9  3041 

Ant 

9  9 6 5 4 3 1 2 7 12 11 10 8  2319 

Ant 

10  8 4 3 5 6 1 2 7 12 10 11 9  2348 

Ant 

11  9 11 10 8 6 4 3 5 7 2 1 12  2541 

Ant 

12 12 2 1 7 3 4 5 6 8 11 10 9  2505 

 

4.8. Discussions 

Considering the total distances covered by the individual Ants, the optimal tour came out 

to be 12 2 1 7 4 3 5 6 8 11 10 9            

This was obtained by Ant 1.Thus the total tour distance came out to be optimal solution. 

 ie 1874km  

Representing the tour 

    lg

Ho Accra Tema Koforidua Takoradi Cape Coast

Obuasi Kumasi Sunyani Temale Bo a Wa
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.0 Introduction 

 This chapter basically talks about the conclusion and recommendation of the work 

 5.1. Conclusion. 

 We conclude that the objective of finding the minimum tour from the 

symmetric TSP model by using Max-Min Ants System (MMAS) Algorithm 

was successfully achieved. 

 We therefore suggested that plying the routes that came out the MMAS 

model would be of help to minimize their cost since those routes gave the 

optimal cost of 1874km .  

The optimal route is represented as  

lg

Tema Accra Ho Koforidua Takoradi Cape Coast

Obuasi Kumasi Sunyani Temale Bo a Wa

     

     
 

The total cost distance of their usual tour is 2319KM . Thus 

 

 

5.2 Recommendation 

After thorough study of TSP and Maxi-Min Ants System algorithm the following 

recommendation were made: 

lg

Tema Accra Cape Coast Takoradi Obuasi

Kumasi Sunyani Wa Bo a Temale Ho Tema
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 The company are therefore advise to make use the of programme to obtain the 

optimal tour in the event of cities to be visit being perturbed  

 In using the MMAS programme, we therefore advise the company to employ 

mathematicians who are very good in programming to update the model in 

event of cities to be visited are charged 

 This shows that for the inspectional team of Ghacem ,Ghana to minimized 

cost in order maximized profit, must seize using their usual route and stick to 

the new one that came out of model. 

 We once again recommend further research into this study by researchers. 
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APPENDIX 

Matlab Programme 

function ACOtest(inputMatrix) 

clc 

%% START declare of own Variable for testing 

global ASAdded 

[row,col] = size(inputMatrix); 

if row > col || col > row 

end 

 

ASAdded.inputMatrix = inputMatrix; 

ASAdded.row = row; 

ASAdded.col = col - 1; 

ASAdded.MaxDist = max(max(inputMatrix)) * ASAdded.col; 

Dimension = ASAdded.row; 

 

 

NodeWeight = []; 

 

 

disp(['AS start at ',datestr(now)]); 

%%%%%%%%%%%%% the key parameters of Ant System %%%%%%%%% 

 

data_input = ASAdded.inputMatrix 

 

 

MaxITime=1e3; 

AntNum=Dimension; %depends on # of nodes 

alpha=1; 

beta=5; 

rho=0.65; 

%%%%%%%%%%%%% the key parameters of Ant System %%%%%%%%% 

fprintf('Showing Iterative Best Solution:\n'); 

 

 

finalOutput = ... 

AS(NodeWeight,AntNum,MaxITime,alpha,beta,rho);  

 

disp(['AS stop at ',datestr(now)]); 

 

function 

[GBTour,GBLength,Option,IBRecord]=AS(WeightMatrix,AntNum,Max

ITime,alpha,beta,rho) 

%% (Ant System) date:070427  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

% Referenceï¿½ï¿½ 
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% Dorigo M, Maniezzo Vittorio, Colorni Alberto.  

% The Ant System: Optimization by a colony of cooperating 

agents [J].  

% IEEE Transactions on Systems, Man, and Cybernetics--Part 

B,1996, 26(1) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

global ASOption Problem AntSystem ASAdded 

ASOption = InitParameter(AntNum,alpha,beta,rho,MaxITime); 

Problem = InitProblem(WeightMatrix); 

AntSystem = InitAntSystem(); 

 

ITime = 0; 

ASAdded.ITime = ITime; 

IBRecord = []; 

 

while 1 

 InitStartPoint(); 

 for step = 2:ASOption.n 

 for ant = 1:ASOption.m 

  P = CaculateShiftProb(step,ant); 

  nextnode = Roulette(P,1); 

  RefreshTabu(step,ant,nextnode);  

 end 

 end 

  

 ITime = ITime + 1; 

 CaculateToursLength(); 

 

 GlobleRefreshPheromone(); 

 ANB = CaculateANB(); 

 [GBTour,GBLength,IBRecord(:,ITime)] = 

GetResults(ITime,ANB); 

  

 %================================================== 

 deltaTau = (ASAdded.MaxDist)./(AntSystem.lengths); 

 [deltaMax_val,deltaMax_indx] = max(deltaTau); 

 ASAdded.deltaMax_tour = AntSystem.tours(deltaMax_indx,:); 

%update InitStartPoint 

 %================================================== 

  

 

 if Terminate(ITime,ANB) 

 Ant_Tour = AntSystem.tours 

 format bank 

 Ant_Tour_Delta = [AntSystem.tours, deltaTau] 

 format short 

 Distance_Covered_By_Ant = AntSystem.lengths 

 [BestVal,BestIdx] = max(Ant_Tour_Delta(:,end)); 

 BestTour = AntSystem.tours(BestIdx,:) 

 break; 
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 end 

 

end 

Option = ASOption; 

%% ---------------------------------------------------------

----- 

function ASOption = 

InitParameter(AntNum,alpha,beta,rho,MaxITime) 

global ASAdded 

ASOption.n = ASAdded.row; 

ASOption.m = AntNum; 

ASOption.alpha = alpha; 

ASOption.beta = beta; 

ASOption.rho = rho; 

ASOption.MaxITime = MaxITime; 

ASOption.OptITime = 1; 

ASOption.Q = 10; 

ASOption.C = 100; 

ASOption.lambda = 0.15; 

ASOption.ANBmin = 2;  

ASOption.GBLength = inf; 

ASOption.GBTour = zeros(ASAdded.row,1); 

ASOption.DispInterval = 10; 

rand('state',sum(100*clock)); 

%% ---------------------------------------------------------

----- 

function Problem = InitProblem(WeightMatrix) 

global ASOption 

n = ASOption.n; 

MatrixTau = (ones(n,n)-eye(n,n))*ASOption.C; 

Distances = WeightMatrix; 

SymmetryFlag = false; 

if isempty(WeightMatrix) 

 Distances = CalculateDistance; 

 SymmetryFlag = true; 

end 

Problem = 

struct('dis',Distances,'tau',MatrixTau,'symmetry',SymmetryFl

ag); 

%% ---------------------------------------------------------

----- 

function AntSystem = InitAntSystem() 

global ASOption 

AntTours = zeros(ASOption.m,ASOption.n); 

ToursLength = zeros(ASOption.m,1); 

AntSystem = struct('tours',AntTours,'lengths',ToursLength); 

%% ---------------------------------------------------------

----- 

function InitStartPoint() 

global AntSystem ASOption ASAdded 

AntSystem.tours = zeros(ASOption.m,ASOption.n); 
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rand('state',sum(100*clock)); 

if ASAdded.ITime == 0 

 AntSystem.tours(:,1) = randperm(ASAdded.row)';  

else 

  

 AntSystem.tours(:,1) = ASAdded.deltaMax_tour';  

end 

AntSystem.lengths = zeros(ASOption.m,1); 

%% ---------------------------------------------------------

----- 

function Probs = CaculateShiftProb(step_i, ant_k) 

global AntSystem ASOption Problem 

CurrentNode = AntSystem.tours(ant_k, step_i-1); 

VisitedNodes = AntSystem.tours(ant_k, 1:step_i-1); 

tau_i = Problem.tau(CurrentNode,:); 

tau_i(1,VisitedNodes) = 0; 

dis_i = Problem.dis(CurrentNode,:); 

dis_i(1,CurrentNode) = 1; 

Probs = 

(tau_i.^ASOption.alpha).*((1./dis_i).^ASOption.beta); 

if sum(Probs) ~= 0 

 Probs = Probs/sum(Probs); 

else  

 NoVisitedNodes = setdiff(1:ASOption.n,VisitedNodes); 

 Probs(1,NoVisitedNodes) = 1/length(NoVisitedNodes); 

end 

%% ---------------------------------------------------------

----- 

function Select = Roulette(P,num) 

m = length(P); 

flag = (1-sum(P)<=1e-5); 

Select = zeros(1,num); 

rand('state',sum(100*clock)); 

r = rand(1,num); 

for i=1:num 

 sumP = 0; 

 j = ceil(m*rand);  

 while (sumP<r(i)) && flag 

 sumP = sumP + P(mod(j-1,m)+1); 

 j = j+1; 

 end 

 Select(i) = mod(j-2,m)+1; 

end 

%% ---------------------------------------------------------

----- 

function RefreshTabu(step_i,ant_k,nextnode) 

global AntSystem 

AntSystem.tours(ant_k,step_i) = nextnode; 

%% ---------------------------------------------------------

----- 

function CaculateToursLength() 
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global ASOption AntSystem 

x = CalculateDistance; 

p = AntSystem.tours; 

 

Lengths = zeros(ASOption.m,1); 

 

for j=1:ASOption.n 

 pRow = p(j,:); 

 sumRow = 0; 

 for i=1:ASOption.n-1 

 sumRow = sumRow + x(pRow(i),pRow(i+1)); 

 end 

 Lengths(j) = sumRow; 

end 

 

AntSystem.lengths = Lengths; 

%% ---------------------------------------------------------

----- 

function [GBTour,GBLength,Record] = GetResults(ITime,ANB) 

global AntSystem ASOption 

[IBLength,AntIndex] = min(AntSystem.lengths); 

IBTour = AntSystem.tours(AntIndex,:); 

if IBLength<=ASOption.GBLength  

 ASOption.GBLength = IBLength; 

 ASOption.GBTour = IBTour; 

 ASOption.OptITime = ITime; 

end 

GBTour = ASOption.GBTour'; 

GBLength = ASOption.GBLength; 

Record = [IBLength,ANB,IBTour]'; 

%% ---------------------------------------------------------

----- 

function GlobleRefreshPheromone() 

global AntSystem ASOption Problem 

AT = AntSystem.tours; 

TL = AntSystem.lengths; 

sumdtau=zeros(ASOption.n,ASOption.n);  

for k=1:ASOption.m 

 for i=1:ASOption.n  

 

sumdtau(AT(k,i),AT(k,i))=sumdtau(AT(k,i),AT(k,i))+ASOption.Q

/TL(k); 

 if Problem.symmetry 

  sumdtau(AT(k,i),AT(k,i))=sumdtau(AT(k,i),AT(k,i));  

 end 

 end 

end 

Problem.tau=Problem.tau*(1-ASOption.rho)+sumdtau; 

%% ---------------------------------------------------------

----- 

function flag = Terminate(ITime,ANB) 
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global ASOption 

flag = false; 

if ANB<=ASOption.ANBmin || ITime>=ASOption.MaxITime 

 flag = true; 

end 

%% ---------------------------------------------------------

----- 

function ANB = CaculateANB() 

global ASOption Problem 

mintau = 

min(Problem.tau+ASOption.C*eye(ASOption.n,ASOption.n)); 

sigma = max(Problem.tau) - mintau; 

dis = Problem.tau - 

repmat(sigma*ASOption.lambda+mintau,ASOption.n,1); 

NB = sum(dis>=0,1); 

ANB = sum(NB)/ASOption.n; 

%% ---------------------------------------------------------

----- 

function Distances = CalculateDistance 

global ASAdded 

Distances = ASAdded.inputMatrix; 

%% ---------------------------------------------------------

----- 

 

 


