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Abstract

Max-plus algebra is an analogue of conventional linear algebra developed on the

operations⊕ and⊗. The algebraic structure is a semi-ring whose elements are the

usual real numbers along with ε = −∞ and e = 0, where ⊕ represents taking the

maximum and ⊗ is the standard addition. In this thesis we use the discrepancy

method of max-plus to solve n × n and m × n system of linear equations where

m < n. We apply the above concept to solve a real-life problem in a synchronised

event. We also apply max-plus algebra in solving linear programming problem

involving linear equations and inequalities.
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Chapter 1

Introduction

1.1 Background

It is seen that a lot of attention has been given to the study of simple systems of

linear equations in the form A⊗x = b, where A is a matrix, b and x are vectors of

suitable dimensions. This has led us to present a work that solves linear systems

of equations in max-plus algebra. We develop a method called the discrepancy to

solve such a system. This discrepancy method solves linear systems of equations

in just a three steps irrespective of the size of the equations. This method is able

to determine the nature of solution to any system of equations by what we call

the reduced discrepancy matrix. This reduced discrepancy matrix is developed

from the discrepancy matrix. Unique solution, infinitely many solutions or no

solution is the nature of solution that a system of linear equations in max-plus

can have.

Systems of linear equations over max-plus algebra are used in several branches of

applied mathematics. These can assist in modeling and analysis of discrete event

systems. We present an application of max-plus to a real-life problem in a syn-

chronise event which deals with the preparation of a shop before sales. Max-plus

algebra has been applied to a lot of real-life problems, e.g., a large scale model

of Dutch railway network or synchronizing traffic lights in Delft by Olsder et al.

(1998).

We present a system of inequalities. An algorithm is then used to solve a max-
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linear program involving linear equations and inequalities. Max-plus algebra is

a semi-ring which is the set Rmax = {−∞}
⋃
R together with the operations

a ⊕ b = max(a, b) and a ⊗ b = a + b. The additive and multiplicative identities

are taken to be ∈= −∞ and e = 0 respectively. Its operations are associative,

commutative and distributive as in conventional algebra. This has made it useful

in various areas.

Cunningham-Green (1979) showed that the problem A ⊗ x = b can be solved

using residuation. That is the equality in A⊗ x = b be relaxed so that the set of

its sub-solutions is studied. It was shown that the greatest solution of A⊗ x ≤ b

is given by x̄ where

x̄j = mini∈M(bi ⊗ a−1ij )forallj ∈ N

The equation A ⊗ x = b is also solved using the above results as follows: the

equation A⊗ x = b has solution if and only if A⊗ x̄ = b.

Zimmermann (1976) developed a method for solving A ⊗ x = b by set cover-

ing and also presented an algorithm for solving max-linear programs with one

sided constraints. This method is proved to has a computational complexity of

O(mn), where m and n are the number of rows and columns of input matrices

respectively. Akian et al. (2005) extended Zimmermann’s solution method by set

covering to the case of functional Galois connections.

Butkovic (2010) developed a max-algebraic method for finding all solutions to

a system of inequalities xi−xj > bij, i, j = 1, ..., n using n generators. Using this

method he developed a pseudopolynomial algorithm which either finds a bounded

mixed-integer solution or decides that no solution exists.

Cechla’rova’ and Diko (1999) also proposed a method for resolving infeasibility of

the system A⊗ x = b. The techniques presented in his method are to modify the

2



right-hand side as little as possible or to omit some equations. It was shown that

the problem of finding the minimum number of those equations is NP-complete.

1.2 Problem Statement

There has been severals ways of finding solutions to A⊗x = b in max-plus algebra.

One of such ways of solving is the discrepancy method. This discrepancy method

has only been used to solve a system of m × n equations (where m > n). We

seek to find out if this discrepancy method can be used to solve an n× n system

and also a system of m × n equations (where m < n). We will find out if the

discrepancy method over max-plus algebra can be applied to a real-life problem

in a synchronised event. Linear programming problems are solved by converting

inequalities to equations which increase the number of variables or constraints.

This therefore increases the computational complexity. We seek to find out if

there is a method that will not require any new variables or constraints.

1.3 Objectives

The main objectives of this thesis is to:

1. use the discrepancy method to solve an n × n systems of linear equations

and m× n systems of linear equations where m < n.

2. use max-plus algebra to solve a synchronised event problem.

3. solve a linear programming problem involving a linear equations and in-

equalities.

1.4 Methodology

Discrepancy method was modified to solve n×n and m×n (where m < n) system

of max-plus equations. A reduced discrepancy, RA.b, is develop from the discrep-
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ancy matrix to determine whether the system has a unique solution, infinitely

many solutions or no solution. This method is use to solve a synchronised event

problem.

An algorithm is use to solve a linear programming problem consisting of linear

equations and inequalities.

1.5 Justification

Discrepancy method was proposed to solve m × n systems of linear equations

where m > n in max-plus algebra. There is the need to modify the discrepancy

method to solve other systems such as n × n and m × n (where m < n). This

is because the method solves linear systems of equations in only three steps irre-

spective of the size of the systems. This is the only method that determines the

nature of solution to a system of equations in max-plus.

Systems of linear equations over max-plus can assist in modeling and analysis

of discrete event systems. We solve a real-life problem in a synchronised event

where much attention is not given.

We also present a polynomial algorithm which solves a linear programming prob-

lem whose constraints are linear equations and inequalities. This algorithm avoids

the situation where you will require new constraints or variables which increases

the computational complexity.

1.6 Structure of the Thesis

This thesis is composed of five chapters. The first chapter is an introduction,

dealing with the background of the work, statement of problem, objectives of the

work, methodology, justification of the problem especially to the benefit of the

society. Chapter two is the literature review.

Chapter three is where theorems are explained in a way that can easily be under-
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stood. Here, we were able to explain how we arrived at a simplified matrix called

the discrepancy matrix (DA.b) which is used to solve a system of max-plus equa-

tions. Applications of the theorems were done in chapter four. Finally, chapter

five comprises of discussion of results and conclusion.
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Chapter 2

Literature Review

The first use of the max-plus semiring can be traced back at least to the late

fifties and it grew in the sixties, with works of Cunninghame-Green, Vorobgev,

Romanovskii, and more generally of the Operations Research community (on

path algebra). The first enterprise of systematic study of this algebra seems to

be seminal ”Minimax algebra” by Cunningham-Green (1979). The theory of lin-

ear independence using bideterminants, which is the ancestor of symmetrization

was initiated by Gordran and Minoux ( following Kuutzmann). The last chapter

of ”Operatorial Methods” of Maslov (1987) inaugurated the max-plus operator

and measure theory (motivated by semiclassical asymptotics). There is an ”ex-

tremal algebra” tradition, mostly in East Europe, oriented towards algorithms

and computational complexity. Results in this spirit can be found in the book of

U. Zimmermann (1981). This tradition has been pursued by Butkovic (1994).

In max-plus algebra we work with the max-plus semi-ring which is the set Rmax =

{−∞}
⋃
R together with the operations a ⊕ b = max(a, b) and a ⊗ b = a + b.

The additive and multiplicative identities are taken to be ∈= −∞ and e = 0

respectively. Its operations are associative, commutative and distributive as in

conventional algebra, Farlow (2009).

Max-plus algebra emerged in the late 1950s, soon after the field of Operations

Research began to developed. The field of Operations Research is a scientific

approach to decision making. Most problems in Operations Research involve a

”search for optimality”, by Andersen (2002). Many problems that arise in the
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field of Operation Research have been solved by the development of algorithmic

procedures that lead to optimal solutions.

Max-plus algebra is one of many idempotent semi-rings which have been con-

sidered in various fields of mathematics. It first appeared in 1956 in Kleene’s

paper on nerve sets and automata. It has found applications in many areas

such as combinatorics, optimization, mathematical physics and algebraic geom-

etry, Halburd and Southall (2007). It is also used in control theory, machine

scheduling, discrete event processes, manufacturing systems, telecommunication

networks, parallel processing systems and traffic control. Many equations that

are used to describe the behaviour of these applications are nonlinear in conven-

tional algebra but become linear in max-plus algebra. This is a primary reason

for its utility in various areas, Shutter (2000).

Many of the theorems and techniques we use in classical linear algebra have

analogues in the max-plus semi-ring. Cunninghame-Green, Gaubert, Gondran

and Minoux are among the researchers who have devoted a lot of time creating

much of the max-plus linear algebra theory we have today, Farlow (2009). Al-

though many individuals some of which mentioned above have researched into

some of the possible uses and theories regarding max-plus, the first attempt of

a complete study, Minimax Algebra, by Cunninghame-Green, was not published

until 1979. Many of these initial studies were limited to what are now called path

algebras. More recently, the usage of max-plus has been extended to consider

Discrete Event Systems and Dynamic Programming, Gaubert (1997).

To illustrate the usefulness of max-plus algebra in a simple example, let’s look

at a railroad network between two cities. A similar example can be found in

Heidergott et al. (2006). This is an example of how max-plus algebra can be
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applied to a discrete event system. Assume we have two cities such that S1 is

the station in the first city, and S2 is the station in the second city. This system

contains 4 trains. The time it takes a train to go from S1 to S2 is 3 hours where

the train travels along track 1. It takes 2 hours to go from S2 to S1 where the

train travels along track 2. These tracks can be referred to as the long distance

tracks. There are two more tracks in this network, one which runs through city 1

and one which runs through city 2. We can refer to these as the inner city tracks.

Call them tracks 3 and 4 respectively. We can picture track 3 as a loop beginning

and ending at S1. Similarly track 4 starts and ends at S2. The time it takes to

traverse the loop on track 3 is 2 hours. The times it takes to travel from S2 to S2

on track 4 is 4 hours. Track 3 and track 4 each contain a train. There are trains

that circulate along the two long distance tracks. In this network we also have

the following criteria:

1. The travel times along each track indicated above are fixed.

2. The frequency of the trains must be the same on all four tracks.

3. Two trains must leave a station simultaneously in order to wait for the

change over of passengers.

4. the two (k+ 1)st trains leaving Si can not leave until the kth train that left

the other station arrives at Si.

xi(k − 1) will denote the kth departure time for the two trains from station i.

Therefore x1(k) denotes the departure time of the pair of k + 1 trains from S1

and S2. So x1(0) denotes the departure time of the first pair of trains from station

1 and likewise x2(0) denotes the departure time of the first pair of trains from

station 2.

Let’s say we want to determine the departure time of the kth trains from station

1. We can see that

x1(k + 1) ≥ x1(k) + a11 + δ
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and

x1(k + 1) ≥ x2(k) + a12 + δ

where aij denotes the travel time from station j to station i and δ is the time

allowed for the passengers to get on and off the train. So in our situation we have

a12 = 2, a11 = 2, a22 = 4 and a21 = 3. We will assume δ = 0 in this example. So

it follows that

x1(k + 1) = max{x1(k) + a11, x2(k) + a12}

Similarly we can see that

x2(k + 1) = max{x1(k) + a21, x2(k) + a22}.

In conventional algebra we would determine successive departure times by iter-

ating the nonlinear system

xi(k + 1) = maxj=1,2,...,n{aij + xj(k)}.

In max-plus we would express this as

xi(k + 1) =
n⊕
j=1

(aij ⊗ xj(k)), i = 1, 2, ..., n.

where
n⊕
j=1

(aij ⊗ xj) = (ai1 ⊗ xi)⊕ (ai2 ⊗ x2)⊕ ...(ain ⊗ xn)

for i = 1, 2, ..., n.

In the example we have x1(1) = 0⊕ 2 = 2 and x2(1) = 1⊕ 4 = 4 provided we are

given x1(0) = −2 and x2(0) = 0.

We can create a matrix A using the values aij such that A =

2 2

3 4

 and

x(0) =

−2

0

.
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We can also express this system using matrices and vectors such that

x(k) = A⊗ x(k − 1):

x(1) = A⊗ x(0),

x(2) = A⊗ x(1) = A⊗ A⊗ x(0) = A⊗k ⊗ x(0).

Continuing in this fashion we see that x(k) = A⊗k ⊗ x(0). This gives us a simple

example of how a system of equations which is not linear in conventional algebra

becomes linear in max-plus algebra.

Exotic semiring such as the (max, +) semiring (R
⋃
{−∞},max,+), or the tropi-

cal semiring (N
⋃
{+∞},min,+) have been invented and reinvented many times

since the late fifties. This is in relation to various fields such as performance

evaluation of manufacturing systems and discrete event system theory, graph

theories (path algebra) and Markov decision processes, Hamilton-Jacobi theory,

asymptotic analysis (low temperature asymptotics in statistical physics, large de-

viations, WKB Method); language theory(automata with multiplicities), Gaubert

(2007).

Despite this apparent profusion, there is a small set of common, non-naive, ba-

sic results and problems in general not known outside the max-plus community

which seem to be useful in most applications. Gaubert (2007) therefore presented

on what is believe to be the minimal core of max-plus results , and to illustrate

their result by typical applications at the frontier of language theory, control, and

operations research (performance evaluation of discrete event systems, analysis

of Markov decision processes with average cost). He used basic techniques such

as solving all kinds of systems of linear equations, sometimes with exotic sym-

metrization and determinant techniques; using the max-plus Perron-Frobenius

theory to study the dynamics of max-plus linear maps.
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The Incline algebra introduced by Cao et al. (1984) are idempotent semirings

in which a ⊕ ab = a. Since the beginning of the eighties, Discrete Event Sys-

tems, which were previously considered by distinct communities (queuing net-

works scheduling), have been gathered into a common algebraic frame. ”Synchro-

nization and Linearity” by Baccelli et al. (1992) gives a comprehensive account

of deterministic and stochastic max-plus linear discrete event systems together

with recent algebraic results (such as symmetrization). Another recent text is the

collection of articles edited by Maslov and Samborskii (1992) which is only the

most visible part of the (considerable) work of the Idempotent Analysis School. A

theory of probabilities in max-plus algebra motivated by dynamic programming

and large deviations has been developed by Akian, Quadrat and Viot; and by

Moral and Salut (1988). Recently, the max-plus semiring has attracted attention

from the linear algebra community, Bapat et al. (1995).

There are a lot of concepts in conventional algebra that have been dealt with

in max-plus algebra. Some of such concepts are solving systems of linear equa-

tions, the eigenvalue problem and linear independence. Applications of max-plus

in infinite dimensional settings is an emerging area of research. Although this

work is limited to finite dimensional settings, we want to indicate what some of

the infinite dimensional issues are. Instead of vectors v ∈ Rmax this will involve

problems for Rmax- valued functions φ : x −→ Rmax defined on some domain. We

might call this max-plus functional analysis. Just as many finite dimensional op-

timization problems become linear from the max-plus perspective, the nonlinear

equations of continuous state optimization problems (such as optimal control)

likewise become linear in a max-plus context.

Imagine that we are considering optimization problems for a controlled system of
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ordinary differential equations,

ẋ(t) = f(x(t), u(t)),

where the control function u(t) takes values in some prescribed control set U.

Typical optimization problems involve some sort of running cost function L(x,u).

For instance a finite horizon problem would have a specified terminal time T and

terminal cost function φ(·). For a given initial state x(t) = x, t<T the goal would

be to maximize

J(x, t, u(·)) =

∫ T

t

L(x(s), u(s))ds+ φ(x(T ))

for a given intial condition x = x(t) over all allowed control functions u(·). In

other words we would want

V (x) = ST [φ](x),

where

ST [φ](x) = supu(·)

∫ T

0

L(x(s), u(s))ds+ φ(x(T ))

So ST is the solution operator. In other problems, like the nonlinear H∞ problem

of McEneaney (2008), the desired solution turns to be a fixed point: W = ST [W ].

In the conventional sense ST is a nonlinear operator (In fact ST : T > 0 forms a

nonlinear semigroup). However it is linear in the max-plus sense:

ST [c⊗ φ] = ST [c+ φ] = c+ ST [φ] = c⊗ ST [φ]

and

ST [φ⊗ ψ] = ST [max(φ, ψ)] = max(ST [φ], ST [ψ]) = ST [φ]⊕ ST [ψ].
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With this observation one naturally asks if it is possible to develop max-plus ana-

logues of eigenfunction expansions and something like the method of separation of

variables in the context of these nonlinear problems. The idea would be to make

an appropriate choice of basis functions: ψi:X −→ Rmax, use an approximation

ψ(x) ≈
N⊕
1

ai ⊗ ψi(x),

and then take advantage of the max-plus linearity to write

ST [ψ](x) ≈
N⊕
1

ai ⊗ ST [ψi](x).

If the ψi are chosen so that the expansion ST [ψi] ≈ ⊕jbijψj can be worked out,

then an approximation to the finite time optimization problems ST [φ] � ⊕N1 ci⊗ψi

where φ = ⊕ajψi would be given by a max-plus matrix product:

[ci] = B ⊗ [aj].

To do all this carefully one must choose the appropriate function spaces in which

to work, and carry out some sort of error analysis. This has in fact been done by

W.M. McEneaney for the H∞ problem in McEneaney (2008). Moreover methods

of this type offer the prospect of avoiding the so-called ”curse of dimensionality”.

But there are many questions about how to do this effectively in general cases.

For instance, what basis functions should one use? At present relatively little re-

search has been done in this direction, aside from the papers of McEneaney cited.

More than sixteen years after the beginning of a linear theory for certain dis-

crete event systems in which max-plus algebra and similar algebraic tools play a

central role, some papers attempt to summarize some of the main achievements

in an informal style based on examples. By comparison with classical linear sys-

tem theory, there are areas which are practically untouched, mostly because the
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corresponding mathematical tools are yet to be fabricated. This is the case of the

geometric approach of systems which is known, in the classical theory, to provide

another important insight to system-theoretic and control-synthesis problems,

beside the algebraic machinery.

For what later became the Max-Plus working group at INRIA, the story about

discrete event systems (DES) and max-plus algebra began in August 1981, that is

more than sixteen and a half years ago, at the time of Cohen, Gaubert, Quadrat

(1998) was written. Actually, speaking of ’discrete event systems’ is somewhat

anachronistic for that time when this terminology was not even in use. Sixteen

years is not a short period of time as compared to the time it took for classical

linear system theory to emerge as a solid piece of science. On the other hand,

those who have been working in the field of max-plus linear systems have ben-

effited from the guidelines and concepts provided by that classical theory. On

the other hand, the number of researchers involved in this new area of system

theory for DES has remained rather small when compared with the hundreds of

their colleagues who contributed to the classical theory. In addition, while this

classical theory was based on relatively well established mathematical tools, and

in particular linear algebra and vector spaces, the situation is quite different with

max-plus algebra. This algebra and similar other algebraic structures sometimes

referred to as ’semirings’ or ’dioids’, were already studied by several researchers

when we started to base our system-theoretic work upon such tools. Today, a

very basic understanding of some fundamental mathematical issues in this area is

still lacking, which certainly contribute to slow down the progress in system the-

ory itself. This is why an account of the present situation in the field can hardly

separate the system-theoretic issues from the purely mathematical questions.

Indeed, the models and equations involved are not restricted to DES: connec-

tions with other fields (optimization and optimal decision processes, asymptotic
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in probability theory, to quote but a few) have been established since then, and

this has contributed to create a fruitful synergy in this area of mathematics. Yet,

some papers concentrate on DES applications. To be more specific, while classical

system theory deals with systems which evolve in time according to various phys-

ical, chemical or biological phenomena which are described by ordinary or partial

differential equations (or their discrete-time counterparts). Discrete Event Sys-

tems are referred to as ’man-made’ systems. The importance of which has been

constantly increasing with the emergence of new technologies. Computers, com-

puter networks, telecommunication network, modern manufacturing systems and

transportation system are typical examples of Discrete Event Systems. Among

the basic phenomena that characterize their dynamics, one may quote synchro-

nization and competition in the use of common resources. Competitions basically

call for decisions in order to solve the conflicts (whether at the design stage or

on line, through priority and scheduling policies). Through ’classical’ glasses,

synchronization looks like a very nonlinear and nonsmooth phenomenon. This is

probably why DES have been, for a long time, left apart by classical system and

control theory; they were considered rather in the realm of operations research

or computer science, although they are truly dynamical systems.

Linear models are the simplest abstraction (or ideal model) upon which a large

part of classical system and control theory have been based until the late sixties.

To handle more complex models, say, with smooth nonlinearities, it was neces-

sary to adapt the mathematical tools while keeping most of the concepts provided

by earlier developments. Differential geometry, power series in noncommutative

variables, differential algebra have been used to develop such models. This has

raised essential questions such as controllability and observability, stabilization

and feedback synthesis, etc., to be revisited. Max-plus, min-plus and other idem-

potent semiring structures turn out to be the right mathematical tools to bring

back linearity, in the best case, or at least a certain suitability with the nature of
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phenomena to be described, in this field of DES.

Cohen, Gaubert, Quadrat (1998) came out with a work to summarise some of

the most basic achievements in the last sixteen years in this new area of system

theory which turned towards DES performance related issues (as opposed to log-

ical aspects considered in the theory of Ramadge and Wonham (1989)). A lot

of works rely upon several surveys already devoted to the subject (Cohen et al.,

1989a; Cohen,1994; Quadrat and Max Plus, 1995; Gaubert and Max Plus, 1997)

in addition to the book (Baccelli et al., 1992). On the other hand, the other

works try to suggest new directions of developments. This essentially concerns

the understanding of geometric aspects of system theory in the max-plus algebra.

In many applications the models use operations of maximum and minimum to-

gether with further arithmetical operations. The max-plus algebra is useful for

investigations of discrete event systems and the sequence of states in discrete

time corresponds to powers of matrices in max-plus algebra. A typical applica-

tion of discrete events systems are production lines, where every machine must

wait while starting a new operation until the operations on other machines are

completed. The eigen problem for max-plus matrices describes the steady state

of a system. For special types of matrices such as Circulant, Toeplitz, Hankel or

Monge matrix, the computation can often be performed in the simpler way than

in the general case. Hence the investigation of special cases is important from

the computational point of view. In Tomášková (2011) the eigenspace structure

for a special case of so-called circulant matrices was studied. Circulant matrices

arises for example, in applications involving the discrete Fourier transform and

study of cyclic codes for error corrections.

Max-plus algebra is used in some special problems of the Operational Research

such as dealing with dynamic programming, finding ways to traffic problems, spe-

16



cial problem of planning, etc. Among the known applications, Max-plus algebra

can be classified as ”JobShop Scheduling”, that is the determination of steady

state behavior of a set of machines. This problem is often reduced to only finding

eigenvectors. With suitability of max-plus algebra to solve various problems that

occur or are expressed in discrete time such as synchronization or scheduling, it

is sometimes referred to as ”schedule algebra”, Tomášková (2011).
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Chapter 3

Preliminary Concepts of Max-plus Algebra

3.1 Max-Plus Algebra

Myśková (2009) defined max-plus algebra as the algebraic structure in which

classical addition and multiplication are replaced by a⊕b = max(a, b) and a⊗b =

a + b, respectively. Each system of linear equations in max-plus algebra can be

written in the matrix form A ⊗ x = b, where A is a matrix and b is a vector of

suitable size.

3.2 Definitions and Basic properties of Max-plus

Algebra

We look at the algebraic properties of max-plus algebra in this section. We

recall that in max-plus algebra for a, b ∈ Rmax = {−∞} ∪ R, we define the two

operations ⊕ and ⊗ by equation a⊕ b = max (a, b); a⊗ b = a+ b.

Multiplicative identity in max-plus algebra is e = 0 :

a⊗ e = e⊗ a = a+ 0 = a

for all a ∈ Rmax

The additive identity is ε = −∞ :

a⊕ ε = ε⊕ a = max(a,−∞) = a

for all a ∈ Rmax.

This shows that ⊕ and ⊗ are commutative which also satisfy other properties

19



similar to + and x in conventional algebra.

⊗ distributes over ⊕ for all a, b, c ∈ Rmax:

a⊗ (b⊕ c) = a+ max(b, c) = max(a+ b, a+ c) = (a⊗ b)⊕ (a⊗ c)

(a⊕ b)⊗ c = max(a, b) + c = max(a+ c, b+ c) = (a⊗ c)⊕ (b⊗ c)

The following lemma contains the other basic properties.

Lemma 3.1 For all x, y, z ∈ Rmax

1. Commutative

x⊕ y = y ⊕ x and x⊗ y = y ⊗ x

2. Associative

x⊕ (y ⊕ z) = (x⊕ y)⊕ z and x⊗ (y ⊗ z) = (x⊗ y)⊗ z

3. Distributive

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)

4. Zero Element

x⊕ ε = ε⊕ x = x

5. Unit Element

x⊗ e = e⊗ x = x

6. Multiplicative Inverse

if x 6= ε then there exists a unique y such that x⊗ y = e

7. Absorbing Element

x⊗ ε = ε⊗ x = ε

8. Idempotency of Addition

x⊕ x = x
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Definition 1 For x ∈ Rmax and n ∈ N

x⊗n = x⊗ x⊗ x⊗ ...⊗ x︸ ︷︷ ︸
n−times

.

In the max-plus algebra exponentiation reduces to the conventional multiplica-

tion, x⊗n = nx. It would be natural to extend max-plus exponentiation to more

general exponents as follows :

• if x 6= ε, x⊗0 = e = 0

• if α ∈ R, x⊗α = αx

• if k > 0 then ε⊗k = ε (k ≤ 0 is not defined)

Here are the laws of exponents in max-plus.

Lemma 3.2 For m,n ∈ N , x ∈ Rmax

1. x⊗m ⊗ x⊗n = mx+ nx = (m+ n)x = x⊗(m⊗n)

2. xm⊗n = (mx)⊗n = nmx = x⊗(m
⊗n)

3. x⊗1 = 1x = x

4. x⊗m ⊗ y⊗m = (x⊗ y)⊗m

Using ⊕ we can define the existence of order in the max-plus semi-ring.

Definition 2 We say that a ≤ b if a⊕ b = b, by Farlow(2009).

Definition 3 A monoid is a closed set under an associative binary operations

which has a multiplicative identity.

Definition 4 Upper bound is an element greater than or equal to all the elements

in a given set: 3 and 4 are upper bound of the set consisting of 1, 2 and 3.

Definition 5 A ring is an algebraic structure on which are defined two binary

operations which satisfy the following conditions:

1. closure under addition
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2. associativity of addition

3. commutativity of addition

4. identity element for addition, i.e. the zero element

5. inverse elements for addition, i.e. negative elements

6. closure under multiplication

7. associativity of multiplication

8. multiplication is distributive over addition

These criteria are called the ring axioms.

Definition 6 A semi-ring is a set S equipped with two internal composition laws,

called addition and multiplication, respectively, that satisfy the following axioms:

1. S is a commutative monoid for addition

2. S is a monoid for multiplication

3. multiplication distributes over addition

4. the neutral element for addition is absorbing for multiplication.

Two important aspects of max-plus algebra are that it does not have additive

inverses and it is idempotent. This is why max-plus algebra is considered a semi-

ring and not a ring.

All idempotent semi-rings have been generalised by the following Lemma by Hei-

dergott et al. (2006)

Lemma 3.3 The idempotency of ⊕ in the max-plus semi-ring implies that for

every a ∈ Rmax\{ε}, a does not have an additive inverse.
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Proof

Suppose a ∈ Rmax such that a 6= ε has an inverse with respect to ⊕ . Let b be

the inverse of a, then we would have

a⊕ b = ε

By adding a to the left of both sides of the equation we get

a⊕ (a⊕ b) = a⊕ ε = a

Using the associativity property and the idempotency property of ⊕,

a = a⊕ (a⊕ b) = (a⊕ a)⊕ b = a⊕ b = ε

which is a contradiction since we assumed a 6= ε.

3.3 Matrices in Max-Plus Algebra

Definition 7 A matrix (designated by an uppercase boldface letter) is a rectan-

gular array of elements arranged in horizontal rows and vertical columns.

Matrix addition in max-plus can only be performed on matrices of the same

dimensions. The results from the matrix sum A ⊕ B is the maximum from the

corresponding entries.

In max-plus, multiplication of matrices is defined as

(A⊗B)ij =
⊕n

k=1Aik ⊗Bkj, for all (Rmax)
nxn in Rmax.

Whilst the scalar multiplication of a matrix in max-plus is where each entry of

the matrix is increased by the scalar.

A zero matrix is a matrix that has all the entries being −∞, which is being

denoted by ε.

An identity matrix has its diagonal as a 0 and the other entries being −∞. For
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any matrix A and I of the same dimensions I ⊗ A = A⊗ I

3.3.1 Numerical examples of operations on matrices

Let X =

 3 0

−2 4

, Y =

 6 1

−∞ 9

 and α = 2, where X, Y ∈ Rn×n
max

3.3.2 Matrix Addition

X ⊕ Y =

 3 0

−2 4

⊕
 6 1

−∞ 9



X ⊕ Y =

 3⊕ 6 0⊕ 1

−2⊕−∞ 4⊕ 9



X ⊕ Y =

 6 1

−2 9



3.3.3 Scalar Multiplication

α⊗X = 2⊗

 3 0

−2 4



α⊗X =

 2⊗ 3 2⊗ 0

2⊗−2 2⊗ 4



α⊗X =

5 2

0 6



3.3.4 Multiplication of Two Matrices

X ⊗ Y =

 3 0

−2 4

⊗
 6 1

−∞ 9


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X ⊗ Y =

 (3⊗ 6)⊕ (0⊗−∞) (3⊗ 1)⊕ (0⊗ 9)

(−2⊗ 6)⊕ (4⊗−∞) (−2⊗ 1)⊕ (4⊗ 9)



X ⊗ Y =

9⊕−∞ 4⊕ 9

4⊕−∞ −1⊕ 13



X ⊗ Y =

9 9

4 13


Multiplication of matrices in (Rmax,⊕,⊗) is associative, that is, A ⊗ (B ⊗ C)=

(A ⊗ B) ⊗ C but not commutative , thus, A ⊗ B 6= B ⊗ A. It is only commutative

when A = B or when one of them is a unit matrix. This is where A, B and C are

matrices with entries from Rmax.

3.4 Solving Systems of Equations in Max-plus

Algebra

Definition 8 Simultaneous equations is a set of independent equations in two or

more variables. Example is

5⊗ x1 ⊕ −4⊗ x2 ⊕ 3⊗ x3 = −4

−10⊗ x1 ⊕ 8⊗ x2 ⊕ −6⊗ x3 = 8

15⊗ x1 ⊕ −12⊗ x2 ⊕ 9⊗ x3 = −12

We develop the theory of linear systems of equations for max-plus in this section.

We consider the solution to the matrix equation A⊗x = b, in general, where A is

an n×n matrix, x is an n×1 vector and b is an n×1 vector. To first get an idea

for how to go about solving the system of equations, it will be helpful if we look

at the equivalent system in the usual arithmetic. Ax = b can be rewritten as the

following detailed matrix equation and then the equivalent system of max-plus
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equations:

A⊗ x = b



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


⊗



x1

x2
...

xn


=



b1

b2
...

bn


(a11 ⊗ x1) ⊕ (a12 ⊗ x2) ⊕ · · · ⊕ (a1n ⊗ xn) = b1

(a21 ⊗ x1) ⊕ (a22 ⊗ x2) ⊕ · · · ⊕ (a2n ⊗ xn) = b2
...

...
...

...
...

(an1 ⊗ x1) ⊕ (an2 ⊗ x2) ⊕ · · · ⊕ (ann ⊗ xn) = bn

We have

max{(a11 + x1),(a12 + x2), · · · , (a1n + xn)} = b1

max{(a21 + x1),(a22 + x2), · · · , (a2n + xn)} = b2

...

max{(an1 + x1),(an2 + x2), · · · , (ann + xn)} = bn

We first consider the case that a solution exists and some of the entries of b is

−∞. Without loss of generality, we can reorder the equations so that the finite

entries of b occur first:



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


⊗



x1

x2
...

xn


=



b1
...

bk

−∞
...

−∞


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Which is

max(a11 + x1, a12 + x2, · · · , a1n + xn) = b1

...

max(ak1 + x1, ak2 + x2, · · · , akn + xn) = bk

max(ak+1,1 + x1, ak+1,2 + x2, · · · , ak+1,n + xn) = −∞
...

max(an1 + x1, an2 + x2, · · · , ann + xn) = −∞

We let the finite part of A be A1 with dimensions k× l, that of b be b′ =


b1
...

bk



and that of x be x′ =


x1
...

xl


You have to note that if A ⊗ x = b has a solution , then xk+1 = xn = −∞, and

A ⊗ x′ = b′. Thus, A ⊗ x = b has a solution if and only if x′ is a solution to

A1 ⊗ x′ = b′ and solutions to A⊗ x = b are x =



x′

−∞
...

−∞


The solvability of a system with infinite entries in b can therefore be reduced to

that of a system where all the entries in b are finite. Therefore our attention will

be restricted to systems A ⊗ x = b where all the entries of b are finite. If there

is to be a solution to the system of max-plus equations, then aij + xj ≤ b for all

i ∈ {1, ..., n} and j ∈ {1, ..., n}. To find a solution to the system, we first consider

each component of x separately, when we consider x1 for example. If there is a

solution to the system, then ai1 + x1 ≤ bi for i = 1, 2, 3, ..., n. Thus x1 ≤ bi − ai1
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for each i leading us to the following system of upper bounds on x1:

x1 ≤ b1 − a11

x1 ≤ b2 − a21
...

x1 ≤ bn − an1

If this system of inequalities has a solution, then it satisfies

x1 ≤ min{(b1 − a11), (b2 − a21), ..., (bn − an1)}

Similarly, we can find the possible solutions for x2, · · · , xn, giving us the following

system of inequalities on the entries of x:

x1 ≤ min{(b1 − a11), (b2 − a21), · · · , (bn − an1)}

x2 ≤ min{(b1 − a12), (b2 − a22), · · · , (bn − an2)}
...

xn ≤ min{(b1 − a1n), (b2 − a2n), · · · , (bn − ann)}

This leads us to the candidate for the solution to A⊗x = b, which we will denote

by x′.

x′ =



x1

x2
...

xn


where

x1 ≤ min{(b1 − a11), (b2 − a21), ..., (bn − an1)}

x2 ≤ min{(b1 − a12), (b2 − a22), ..., (bn − an2)}
...

xn ≤ min{(b1 − a1n), (b2 − a2n), ..., (bn − ann)}
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Let us introduce another matrix to simplify the process of solving a system of

max-plus equations. We define the discrepancy matrix, DA.b as follows:



b1 − a11 b1 − a12 · · · b1 − a1n

b2 − a21 b2 − a22 · · · b2 − a2n
...

...
. . .

...

bn − an1 bn − an2 · · · bn − ann


Note that DA.b is simply a matrix with all the upper bounds of the xj’s and that

each xj can be found by taking the minimum of the jth column of DA.b.

Another matrix is formed from DA.b called reduced discrepancy matrix, RA.b:

RA.b = (rij) where

rij =

 1 if dij=mininum of column j

0 otherwise

RA.b is useful in predicting the number of solutions to the matrix equation A⊗x =

b.

Theorem 3.4.1 Let A⊗ x = b be a matrix equation in (Rmax,⊕,⊗) where A is

an n× n matrix, and b is a n× 1 vector with all entries finite.

1. If there is a zero-row in the reduced discrepancy matrix, RA.b, then there is

no solution to the matrix equation.

2. If there is at least one (1) in each row of the reduced discrepancy matrix,

RA.b, then x′ is a solution A⊗ x = b.

Proof

1. Without loss of generality, denote the zero-row of RA.b by row k. Suppose
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to the contrary that x̃ is a solution of A⊗ x = b. Then

x̃j ≤ min
l

(bl − alj) < bk − akj.

Thus x̃j + akj < bk for all j. Hence, x̃ does not satisfy the kth equation and

is not a solution to A⊗ x = b.

2. We prove the contrapositive. Suppose x’ is not a solution to the matrix

equation. By definition, x′j ≤ bk−akj for all j,k. Hence maxj(akj +x′j) ≤ bk

and if x’ is not a solution then there is a k with maxj(akj + x′j) < bk. This

is equivalent to x′j < bk − akj for all j. Since x′j = min(bl − ail) for some l,

there is no entry in row k of RA.b that is 1.

Now, provided we know that a solution to A ⊗ x = b exists, how can we tell

the number of solutions to this equation? We need to define the concept of fixed

entries in RA.b.

Definition 9 The 1 in a row of RA.b is a variable-fixing entry if either

1. It is the only 1 in that row (a lone-one), or

2. It is in the same column as a lone-one.

The remaining 1’s are called slack entries.

A 1 in the jth column of RA.b signifies the minimum of all the upper bounds for

xj. If there are no other ones in the row where a one occur, then the only way

that the equation corresponding to that row can be solved is to have xj achieve

the bound. This causes the value of xj to be fixed at a specific value, i.e. it is a

variable-fixing entry.

There must be a lone-one in each column for A⊗x = b to have a unique solution.

The following theorem shows that in order for A⊗x = b to have a unique solution,

each component of x must be fixed, i.e. there can be no slack entries ( a slack

entry can only exist if there are no variable-fixing entries in that column).
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Theorem 3.4.2 Let A⊗ x = b be a matrix equation in (Rmax,⊕,⊗) where A is

an n × n matrix, b is an n × 1 vector with finite entries, and a solution to the

equation exists.

1. If each column of RA.b has a lone-one, then the solution to the matrix equa-

tion is unique.

2. If there are slack entries in RA.b, then there are infinite solutions to the

matrix equation.

Proof

1. If there is a lone-one in each column of RA.b, then there is a variable-fixing

entry in each column of RA.b. There can be no slack entries since all the

columns contain a variable-fixing entry. All the components of x are fixed

and thus the solution is unique.

2. Let rij be one of the slack entries in RA.b and let x̃ be a solution to the

equation A ⊗ x = b. Since rij is not fixed, then there are no fixed entries

in the jth column of RA.b. Thus, equality can be achieved for each row

equation without using the x̃j component. Thus, while the value of x̃j does

indicate the maximum value possible for this component, any smaller value

will not alter the existence of equalities in the row equations.

3.5 System of inequalities

In this part of our work, we are going to show how a one-sided system of inequal-

ities can be solved.

A system of the form

A⊗ x ≤ b

where A = (aij) ∈ Rm×n and b = (b1, ..., bm)T ∈ R, is called a one-sided max-

linear system of inequalities or in short as one-sided system of inequalities. Here,

31



we will only present a result which shows that the principal solution, x̄(A, b) is

the greatest solution to the system. Here we mean that if A⊗x ≤ b has a solution

then x̄(A, b) is the greatest of all the solutions. Let as denote the solution set of

the system by S(A, b,≤), where

S(A, b,≤) = {x ∈ Rn;A⊗ x ≤ b}

Theorem 3.5.1 x ∈ S(A, b,≤) if and only if x ≤ x̄(A, b)

Proof

Suppose x ∈ S(A, b,≤). Then we have

A⊗ x ≤ b

maxj(aij + xj) ≤ bi, foralli

aij + xj ≤ bi, foralli, j

xj ≤ bi ⊗ a−1ij , foralli, j

xj ≤ mini(bi ⊗ a−1ij ), foralli, j

x ≤ x̄(A, b)

Hence the proof.

A system of inequalities

A⊗ x ≤ b

C ⊗ x ≥ d

Which is discussed in Cechla’rova’ (2001) where the following result was pre-

sented.

Lemma 3.4 A system of inequalities

A⊗ x ≤ b
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C ⊗ x ≥ d

has a solution if and only if C ⊗ x̄(A, b) ≥ d.

3.6 A system which contains both equations and

inequalities

In this part of our work, we will consider a system containing both equations and

inequalities where the results were taken from Aminu (2011). Let A = (aij) ∈

Rk×n, C = (cij) ∈ Rr×n, b = (b1, ..., bk)
T ∈ Rk and d = (d1, ..., dr)

T ∈ Rr.

A one-sided max-linear system containing both equations and inequalities is of

the form:

A⊗ x = b

C ⊗ x ≤ d

These are the notations we shall use throughout our work:

R = {1, 2, ..., r}

S(A,C, b, d) = {x ∈ Rn, A⊗ x = bandC ⊗ x ≤ d}

S(C, d,≤) = {x ∈ Rn, C ⊗ x ≤ d}

x̄j(C, d) = mini∈R(di ⊗ C−1ij )forallj ∈ N

K = {1, 2, ..., k}

Kj = {k ∈ K; bk ⊗ a−1kj = mini∈k(bi ⊗ a−1ij )}forallj ∈ N

x̄j(A, b) = mini∈K(bi ⊗ a−1ij )forallj ∈ N

x̄ = (x̄1, ..., x̄n)T

J = {j ∈ N; x̄j(C, d) ≥ x̄j(A, b)}and

L = N \ J
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We also defined the vector x̂ = (x̂1, x̂2, ..., x̂n)T , where

x̂j(A,C, b, d) =

 x̄j(A, b) if j ∈ J

x̄j(C, d) if j ∈ L

and Nx̂ = {j ∈ N; x̂j = x̄j}

Theorem 3.6.1 Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, ..., bk)
T ∈ Rk

and d = (d1, ..., dr)
T ∈ Rr. Then the following three statements are equivalent:

i. S(A,C, b, d) 6= ∅

ii. x̂(A,C, b, d) ∈ S(A,C, b, d)

iii.
⋃
j∈J Kj = K

Proof:

(i) =⇒ (ii). Let x ∈ S(A,C, b, d), therefore x ∈ S(A, b) and x ∈ S(C, d,≤).

Since x ∈ S(C, d,≤), it follows from Theorem 3.5.1 that x ≤ x̄(C, d). Now that

x ∈ S(A, b) and also x ∈ S(C, d,≤), we need to show that x̄j(C, d) ≥ x̄j(A, b) for

all j ∈ Nx (that is Nx ⊆ J). Let j ∈ Nx then xj = x̄j(A, b). Since x ∈ S(C, d,≤)

we have x ≤ x̄(C, d) and therefore x̄j(A, b) ≤ x̄j(C, d) thus j ∈ J . Hence, Nx ⊆ J

and therefore
⋃
j∈J Kj = K. This proves (i) =⇒ (iii).

(iii) =⇒ (i). Suppose
⋃
j∈J Kj = K. Since x̂(A,C, b, d) ≤ x̄(C, d) we have

x̂(A,C, b, d) ∈ S(C, d,≤). Also x̂(A,C, b, d) ≤ x̄(A, b) and Nx̂ ⊇ J gives
⋃
j∈Nx̂(A,C,b,d)

Kj ⊇⋃
j∈J Kj = K, Hence

⋃
j∈Nx̂(A,C,b,d)

Kj = K, therefore x̂(A,C, b, d) ∈ S(A, b) and

x̂(A,C, b, d) ∈ S(C, d,≤). Hence x̂(A,C, b, d) ∈ S(A,C, b, d) (that is S(A,C, b, d) 6=

∅) and this proves (iii) =⇒ (ii).

Theorem 3.6.2 Let A = (aij) ∈ Rk×n, C = (cij) ∈ Rr×n, b = (b1, ..., bk)
T ∈ Rk

and d = (d1, ..., dr)
T ∈ Rr. Then x ∈ S(A,C, b, d) if and only if

i. x ∈ x̂(A,C, b, d) and

ii.
⋃
j∈Nx

Kj = K where Nx = {j ∈ N;xj = x̄j(A, b)}

Proof:

(=⇒) Let x ∈ x̂(A,C, b, d), then x ≤ x̂(A, b) and x ≤ x̂(C, d). Since x̂(A,C, b, d) =
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x̄(A, b) ⊕′ x̄(C, d) we have x ≤ x̂(A,C, b, d). Also, x ∈ S(A,C, b, d) implies that

x ∈ S(C, d,≤). It follows from Theorem 3.6.1 that
⋃
j∈Nx

Kj = K.

(⇐=) Suppose that x ∈ x̂(A,C, b, d) = x̄(A, b) ⊕′ x̄(C, d) and
⋃
j∈Nx

Kj = K. It

follows from Theorem 3.6.1 that x ∈ S(A, b), also by Theorem 3.6.1 x ∈ S(C, d,≤

). Thus x ∈ S(A, b)
⋂
S(C, d,≤) = S(A,C, b, d).

The vector x̂(A,C, b, d) plays an important role in the solution of one-sided system

containing both equations and inequalities.

3.7 Max-linear program with equation and in-

equality constraints

Let f = (f1, f2, ..., fn)T ∈ Rn be a given vector. The tasks of minimising [max-

imising] the function f(x) = fT ⊗ x = max(f1 + x1, f2 + x2, ..., fn + xn)

subject to

A⊗ x = b

C ⊗ x ≤ d

is called max-linear program with one-sided equations and inequalities which is

denoted by MLPmin
≤ and MLPmax

≤ . Let Smin(A,C, b, d) and Smax(A,C, b, d) be

the set of optimal solutions respectively.

Lemma 3.5 (Aminu (2009)) Suppose f ∈ Rn and let f(x) = fT ⊗ x be defined

on Rn. Then,

1. f(x) is max-linear, i.e. f(α ⊗ x ⊕ β ⊗ y) = α ⊗ f(x) ⊕ β ⊗ f(y) for every

x, y ∈ Rn, .

2. f(x) is isotone, i.e. f(x) ≤ f(y) for every x, y ∈ Rn, x ≤ y.

Proof:
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1. Let α, β ∈ R. Then we have

f(α⊗ x⊕ β ⊗ y) = fT ⊗ α⊗ x⊕ fT ⊗ β ⊗ y

= α⊗ fT ⊗ x⊕ β ⊗ fT ⊗ y

= α⊗ f(x)⊕ β ⊗ f(y)

2. Let x, y ∈ Rn such that x ≤ y. Since x ≤ y, we have

max(x) ≤ max(y)

fT ⊗ x ≤ fT ⊗ y, foranyf ∈ Rn

f(x) ≤ f(y)

It is possible to convert equations to inequalities and otherwise, but this is go-

ing to increase the number of constraints or variables and therefore increases the

computational complexity. The method we present here does not require any new

constraints or variables.

It follows from Theorem 3.6.2 and Lemma 3.5 that x̂ ∈ Smax(A,C, b, d). Aminu

(2009) present a polynomial algorithm which finds x ∈ Smin(A,C, b, d) or recog-

nises that Smin(A,C, b, d) = ∅. From Theorem 3.6.1 either x̂ = S(A,C, b, d)

or S(A,C, b, d) = ∅. It was therefore assumed in the algorithm below that

S(A,C, b, d) 6= ∅ and also Smin(A,C, b, d) 6= ∅.

Given f = (f1, f2, ..., fn)T ∈ Rn, b = (b1, b2, ..., bk)
T ∈ Rk, d = (d1, d2, ..., dr)

T ∈

Rr, A = (aij) ∈ Rk×n and C = (cij) ∈ Rr×n.

1. Find x̄(A, b), x̄(C, d), x̂(A,C, b, d), Kj, j ∈ J ; J = {j ∈ N; x̄j(C, d) ≥

x̄j(A, b)}

2. x := x̂(A,C, b, d)

3. H(x) := {j ∈ N; fj + xj = f(x)}

4. J := J \H(x)
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5. If ⋃
j∈J

Kj 6= K

then stop (x ∈ Smin(A,C, b, d))

6. set xj small enough (so that it not active on any equation or inequality) for

every j ∈ H(x)

7. Go to 3
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Chapter 4

Some Max-plus Applications

4.1 Solutions to Systems of Equations in Max-

algebra

Example 4.1.1 Max-plus system with unique solution

To solve A⊗ x = b, where A =


1 −9 4

−4 18 −8

2 1 −4

, X =


x1

x2

x3

, and b =


1

−6

−3



Calculate the discrepancy matrix: DA.b =


0 10 −3

−2 −24 2

−5 −4 1


Taking the minimum of each column of DA.b gives the solution

x′1 = min(0,−2,−5) = −5

x′2 = min(10,−24,−4) = −24

x′3 = min(−3, 2, 1) = −3

The candidate solution to A⊗x = b becomes x′ = (−5,−24,−3)T . We can verify

that this is the only solution to A⊗ x = b by substituting it back in:


1 −9 4

−4 18 −8

2 1 −4

⊗

−5

−24

−3

 =


max(−4,−33, 1)

max(−9,−6,−11)

max(−3,−23,−7)

 =


1

−6

−3



This will therefore be the only solution to the matrix equation as we show later.
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Example 4.1.2 Max-plus system with infinitely many solutions

To solve A⊗ x = b, where A =


1 1 3

2 −1 0

4 0 −1

, X =


x1

x2

x3

, and b =


6

3

2



Calculate the discrepancy matrix: DA.b =


5 5 3

1 4 3

−2 2 3


Taking the minimum of each column of DA.b gives the solution

x′1 = min(5, 1,−2) = −2

x′2 = min(5, 4, 2) = 2

x′3 = min(3, 3, 3) = 3

The candidate solution to A⊗ x = b becomes x′ = (−2, 2, 3)T . This solution can

be verified by substituting it back in


1 1 3

2 −1 0

4 0 −1

⊗

−2

2

3

 =


max(−1, 3, 6)

max(0, 1, 3)

max(2, 2, 2)

 =


6

3

2


X’ this therefore a solution to the given matrix equation. It can be seen that

there are other solution that also work. Any x of the form {x : x = (u, v, 3)T

where u ≤ −2 and v ≤ 2} is also a solution to the given matrix equation.

Example 4.1.3 Max-plus system with no solution

To solve A⊗ x = b, where A =


2 −1 −1

0 4 3

1 2 0

, X =


x1

x2

x3

, and b =


5

5

7


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The discrepancy matrix: DA.b =


3 6 6

5 1 2

6 5 7


Which gives the solution of x′ = (3, 1, 2)T .

x’ is verified to see that it is not a solution.
2 −1 −1

0 4 3

1 2 0

⊗


3

1

2

 =


max(5, 0, 1)

max(3, 5, 5)

max(4, 3, 2)

 =


5

5

4

 6= b =


5

5

7


It is observed that the underlined entry does not correspond the entry of b. We

know that a solution x must satisfy x1 ≤ 3, x2 ≤ 1, and x3 ≤ 2 because the

components of x′ are the upper bounds. It is seen from the third row that

max(x1 + 1, x2 + 2, x3 + 0) ≤ 4 < 7.

A reduced discrepancy matrix RA.b is use to predict the number of solutions to

the matrix equation A ⊗ x = b. The table below shows the various examples

and their DA.b and RA.b. Where the minimum occurs in each column of DA.b

has been underlined for each entries. Note that they are the ’one’ entries of each

correspond RA.b.

40



Example DA.b RA.b

Unique Solution


0 10 −3

−2 −24 2

−5 −4 1




0 0 1

0 1 0

1 0 0



Infinitely Many Solutions


5 5 3

1 44 3

−2 2 3




0 0 1

0 0 1

1 1 1



No Solution


3 6 6

5 1 2

6 5 7




1 0 0

0 1 1

0 0 0



The minimum entry of the column, j, in the DA.b matrix is the maximum solution

to the system of inequalities for xj. To change this system of inequalities to a

system of equalities, we must have equality in each row inequality, i.e. there must

be at least one minimum in each row of DA.b i.e. there must be at least one (1)

in each row of RA.b for a solution to exist.

A one (1) in the jth column of RA.b signifies the minimum of the upper bounds

for xj. If there are no other ones in the row where a 1 occurs, the only way that

the equation corresponding to that row can be solved is to have xj achieve the

bound. This causes the value of xj to be fixed at a specific value, making it a

variable-fixing entry. We illustrate this by underlining the variable-fixing entries

for the examples in the table below.
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Example RA.b

Unique Solution


0 0 1

0 1 0

1 0 0



Infinitely Many Solutions


0 0 1

0 0 1

1 1 1



No Solution


1 0 0

0 1 1

0 0 0



From the table above, to consider the RA.b for One Solution, all of the non-zero

entries are variable-fixing entries. The first row equation fixes the x3 compo-

nent where x3 = −3. The second row equation fixes the x2 component where

x3 = −24. Finally, the third row equation fixes the x1 component where x3 = −5

making all the components of x to be fixed.

There are slack entries in RA.b for Infintely Many Solutions. The first row equa-

tion fixes the x3 component, x3 = 3. The component solution to the second row

equation has already been fixed by the first row equation. In the third row equa-

tion, there are three possible ways for equality to be achieved, is either x1 = −2,

x2 = 2 or x3 = 3. But x3 which is 3, has already been fixed. As long as x1 ≤ −2

and x2 ≤ 2, no problem can be caused.

For RA.b in the example of No Solution, because there is a third row of RA.b con-
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taining zeros (or no 1’s), there is no solution for the system of equations which

does not satisfy the condition that there must be at least one minimum in each

row of DA.b, i.e. there must be at least a one (1) in each row of RA.b for a solution

to exist.

We did not only apply the discrepancy method to a 3-by-3 system of equations

but also to a 4-by-4 systems. This is to further explain that the method works

for all n× n system of equations.

Example 4.1.4 Max-plus systems with unique solution

To solve Ax = b, where A =



5 −1 −1 −1

−1 4 −1 −1

−1 −1 3 −1

−1 −1 −1 4


, X =



x1

x2

x3

x4


, and b =



1

1

1

1



The discrepancy matrix: DA.b =



−4 2 2 2

2 −3 2 2

2 2 −2 2

2 2 2 −3


Taking the minimum of each column of DA.b gives the solution

x′1 = min(−4, 2, 2, 2) = −4

x′2 = min(2,−3, 2, 2) = −3

x′3 = min(2, 2,−2, 2) = −2

x′4 = min(2, 2, 2,−3) = −3

The candidate solution to Ax = b becomes x′ = (−4,−3,−2,−3)T .
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This solution can be verified by substituting it back in



5 −1 −1 −1

−1 4 −1 −1

−1 −1 3 −1

−1 −1 −1 4


⊗



−4

−3

−2

−3


=



max(1,−4,−3,−4)

max(−5, 1,−3,−4)

max(−5,−4, 1,−4)

max(−5,−4,−3, 1)


=



1

1

1

1


This will be the only solution to the matrix equation which we will show later by

the reduced discrepancy (RA.b).

Example 4.1.5 Max-plus system with infinitely many solutions

To solve Ax = b, where A =



4 −1 1 1

−1 3 −1 −1

−1 0 −3 −1

1 1 0 −2


, X =



x1

x2

x3

x4


, and b =



1

0

−1

0



Calculate the discrepancy matrix: DA.b =



−3 2 0 0

1 −3 1 1

0 −1 2 0

−1 −1 0 2


which gives the solution of x′ = (−3,−3, 0, 0)T . This solution can be verified

by substituting it back in



4 −1 1 1

−1 3 −1 −1

−1 0 −3 −1

1 1 0 −2


⊗



−3

−3

0

0


=



max(1,−4, 1, 1)

max(−4, 0,−1,−1)

max(−4,−3,−3,−1)

max(−2,−2, 0,−2)


=



1

0

−1

0


x′ is therefore a solution to the given matrix equation. There are other solutions

that also work. Any x of the form {x : x = (u,−3, 0, 0)T , where u ≤ −3} is also

a solution to the given matrix equation.
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Example 4.1.6 Max-plus system with no solution

To solve Ax = b, where A =



1 1 1 1

1 2 2 4

−1 1 −1 −1

−1 3 1 −1


, X =



x1

x2

x3

x4


, and b =



2

1

−6

−2



The discrepancy matrix: DA.b =



1 1 1 1

0 −1 −1 −3

−5 −7 −5 −5

−1 −5 −3 −1


which gives the solution of

x′ = (−5,−7,−5,−5)T .

x′ is verified to see that it is not a solution



1 1 1 1

1 2 2 4

−1 1 −1 −1

−1 3 1 −1


⊗



−5

−7

−5

−5


=



max(−4,−6,−4,−4)

max(−4,−5,−3,−1)

max(−6,−6,−6,−6)

max(−6,−4,−4,−6)


=



−1

−1

−6

−4


6= b =



2

1

−6

−2


It is observed that the underlined entries do not correspond the entry of b.

We know that a solution X must satisfy x1 ≤ −5, x2 ≤ −7, x3 ≤ −5 and

x4 ≤ −5 because the components of X ′ are the upper bounds. It is seen from the

first, second and fourth row that max(x1 + 1, x2 + 1, x3 + 1, x4 + 1) ≤ −1 < 2,

max(x1+1, x2+2, x3+2, x4+4) ≤ −1 < 1, and max(x1−1, x2+3, x3+1, x4−1) ≤

−4 < −2 respectively. The matrix equation has therefore no solution.

The table below shows the various examples and their DA.b and RA.b.
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Example DA.b RA.b

Unique Solution



−4 2 2 2

2 −3 2 2

2 2 −2 2

2 2 2 −3





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Infinitely Many Solutions



−3 2 0 0

1 −3 1 1

0 −1 2 0

−1 −1 0 2





1 0 1 1

0 1 0 0

0 0 0 1

0 0 1 0



No Solution



1 1 1 1

0 −1 −1 −3

−5 −7 −5 −5

−1 −5 −3 −1





0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0



To consider RA.b for Unique Solution, all the non-zero entries are variable-fixing

entries. The first row equation fixes the x1 component where x1 = −4. The

second row equation also fixes x2, where x2 = −3. The third row also fixes x3,

where x3 = −2. Finally, the fourth row equation fixes x4, where x4 = −3. This

has made all the x components to be fixed.

There are slack entries in RA.b for Infinitely Many Solutions. The first row has

three possible solutions to achieve equality, is either x1 = −3, x3 = 0 or x4 = 0.

We choose x3 component, where x3 = 0. The second row fixes x2, where x2 = −3.

The third row equation fixes the x4 component, where x4 = 0. The component
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solution to the fourth row equation has already been fixed by the first row.

For the RA.b in No Solution, there are three rows i.e., the first, second and fourth

containing zeros ( no 1’s ). This does not satisfy the condition for a solution to

exist. Therefore the system of equations has no solution.

We also applied this discrepancy method to a system of m × n equations where

m < n. Examples of such a system that we considered were 3-by-4 and 4-by-6

systems of equations.

Example 4.1.7 Max-plus system with infinitely Many solutions

To solve Ax = b, where A =


0 −1 1 1

1 2 2 −1

1 3 1 0

, X =



x1

x2

x3

x4


, and b =


2

3

2



The discrepancy matrix: DA.b =


2 3 1 1

2 1 1 4

1 −1 1 2

 which gives the solution of

x′ = (1,−1, 1, 1)T .

X’ is therefore a solution to the given matrix equation.


0 −1 1 1

1 2 2 −1

1 3 1 0

⊗


1

−1

1

1


=


max(1,−2, 2, 2)

max(2, 1, 3, 0)

max(2, 2, 2, 1)

 =


2

3

2



It can be seen that there are other solutions that also work. Any x of the form

{x : x = (u, v, 1, w)T , where u ≤ 1, v ≤ −1, and w ≤ 1} is also a solution to the

given matrix equation.
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Example 4.1.8 Max-plus system with no solution

To solve Ax = b, where A =


−3 2 1 4

0 5 3 −1

−1 6 0 8

, X =



x1

x2

x3

x4


, and b =


10

14

9



The discrepancy matrix: DA.b =


13 8 9 6

14 9 11 15

10 3 9 1

 which gives the solution of

x′ = (10, 3, 9, 1)T . x′ is verified to show that it is not a solution


−3 2 1 4

0 5 3 −1

−1 6 0 8

⊗


10

3

9

1


=


max(7, 5, 10, 5)

max(10, 8, 12, 0)

max(9, 9, 9, 9)

 =


10

12

9

 6= b =


10

14

9



The underlined entry does not correspond the entry of b. A solution x must

satisfy x1 ≤ 10, x2 ≤ 3, x3 ≤ 9, and x4 ≤ 1 since the components of x′ are the

upper bounds. From the second row max(x1 +0, x2 +5, x3 +3, x4−1) ≤ 12 < 14.

This makes the matrix equation to have no solution.

The table below shows the various examples and their DA.b and RA.b.

48



Example DA.b RA.b

Infinitely Many Solutions


2 3 1 1

2 1 1 4

1 −1 1 2




0 0 1 1

0 0 1 0

1 1 1 0



No Solution


13 8 9 6

14 9 11 15

10 3 9 1




0 0 1 0

0 0 0 0

1 1 1 1



From the RA.b in the Infinitely Many Solutions, there are slack entries. In the first

row equation, there are two possible ways for equality to be achieved, is either

x3 = 1 or x4 = 1. We fix the x3 component, where x3 = 1 for the first row. The

second row has already been fixed by the first row. The third row also has either

x1 = 1, x2 = −1 or x3 = 1 for equality to be achieved. But x3 which is 1 has

already been fixed.

To consider RA.b in No Solution, there is the second row which is having all zeros

( no 1’s ). Therefore the system of equations has no solution.

Example 4.1.9 Max-plus system with infinitely many solutions for a 4-by-6

equations.
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To solve Ax = b, where A =



1 6 3 1 −2 0

−1 −1 −3 1 2 3

−9 −5 2 2 −8 −7

4 1 −2 1 3 2


, X =



x1

x2

x3

x4

x5

x6


, and

b =



0

−2

−11

1



The discrepancy matrix: DA.b =



−1 −6 −3 −1 2 0

−1 −1 1 −3 −4 −5

−2 −6 −13 −13 −3 −4

−3 0 3 0 −2 −1


which gives the solution of x′ = (−3,−6,−13,−13,−4,−5)T .

X’ is therefore a solution to the given matrix equation.



1 6 3 1 −2 0

−1 −1 −3 1 2 3

−9 −5 2 2 −8 −7

4 1 −2 1 3 2


⊗



−3

−6

−13

−13

−4

−5


=



max(−2, 0,−10,−12,−6,−5)

max(−4,−7,−16,−12,−2,−2)

max(−12,−11,−11,−11,−12,−12)

max(1,−5,−15,−12,−1,−3)


=



0

−2

−11

1



It can be seen that there are other solutions that also work. Any x of the form

{x : x = (−3,−6, p, q, r, s)T , where p ≤ −13, q ≤ −13, r ≤ −4, and s ≤ −5} is

also a solution to the given matrix equation.
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Example 4.1.10 Max-plus system with no solution for a 4-by-6 equations.

To solve Ax = b, where A =



1 1 −2 −1 3 1

1 −1 1 2 0 4

2 1 −1 −1 4 6

1 −1 2 1 1 2


, X =



x1

x2

x3

x4

x5

x6


, and b =



4

3

7

2



The discrepancy matrix: DA.b =



3 3 6 5 1 3

2 4 2 1 3 −1

5 6 8 8 3 1

1 3 0 1 1 0


which gives the solution

of x′ = (1, 3, 0, 1, 1,−1)T .

X’ is therefore a solution to the given matrix equation.



1 1 −2 −1 3 1

1 −1 1 2 0 4

2 1 −1 −1 4 6

1 −1 2 1 1 2


⊗



1

3

0

1

1

−1


=



max(2, 4,−2, 0, 4, 0)

max(2, 2, 1, 3, 1, 3)

max(3, 4,−1, 0, 5, 5)

max(2, 2, 2, 2, 2, 1)


=



4

3

5

2


6= b =



4

3

7

2



The underlined entry does not correspond the entry of b. A solution x must

satisfy x1 ≤ 1, x2 ≤ 3, x3 ≤ 0, x4 ≤ 1, x5 ≤ 1 and x6 ≤ −1 since the components

of x′ are the upper bounds. From the third row max(x1 + 2, x2 + 1, x3 − 1, x4 −

1, x5 + 4, x6 + 6) ≤ 5 < 7. This makes the matrix equation to have no solution.

The table below shows the various examples and their DA.b and RA.b.
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Example DA.b RA.b

Infinitely Many Solutions



−1 −6 −3 −1 2 0

−1 −1 1 −3 −4 −5

−2 −6 −13 −13 −3 −4

−3 0 3 0 −2 −1





0 1 0 0 0 0

0 0 0 0 1 1

0 1 1 1 0 0

1 0 0 0 0 0



No Solution



3 3 6 5 1 3

2 4 2 1 3 −1

5 6 8 8 3 1

1 3 0 1 1 0





0 1 0 0 1 0

0 0 0 1 0 1

0 0 0 0 0 0

1 1 1 1 1 0



From the RA.b for Infinitely Many Solutions, there are slack entries. In the first

row we fix the x2 component, where x2 = −6. There are two possible ways to

achieve equality in the second row, is either x5 = −4 or x6 = −5. We fix the

x5 component, where x5 = −4 for the second row. In the third row equation,

there are three possible ways to achieve equality, is either x2 = −6, x3 = −13, or

x4 = −13. But third row has already been fixed by the first row. The fourth row

fixes the x1 component, where x1 = −3

RA.b for No Solution in the table above, there is no one(1) in the third row (i.e.

all zeros). The system of equations has therefore no solution.

It is seen from the various examples in max-plus algebra that n × n systems

of linear equations have three nature of solutions. They are either a unique so-

lution, infinitely many solutions or no solution. Examples for m × n systems in

max-plus also have two nature of solutions. It is either infinitely many solutions

or no solution.
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The same applies to systems of linear equations in conventional algebra.

4.2 Synchronised Event Problem

Synchronised Event Problem is a problem in which an event is schedule to meet

a deadline. There are two aspects of this problem:

1. the events run simultaneously

2. the completion of the longest event must occur exactly at the deadline

These are events that often occur with a very time-sensitive deadlines. Examples

for such events are the preparation of a plane for a set takeoff time, the coordina-

tion of system checks for a Space Shuttle Launch, the preparation of an athlete

before an Olympic Event, or the preparation of a shop before sales.

Four shops which are within the same market but are located at some metres

from each other were studied. The four shops find out that customers start buy-

ing at 7:00am. They all decided to open their shops for customers at exactly

7:00am. Since the shops want to meet that deadline, the Sale Representatives

(reps) for each product for each shop are to start restocking before the set time.

This will enable the shops to serve their customers on time and other consumers

to make more profit because of the competitions. The four shops A, B, C, and

D sell four mineral water products Voltic (V), Special Ice (S), Acquafresh (A),

and Mobile (M). The shops work six days within the week, that is from Monday

to Saturday. For the shops to avoid losses, each product has one Representative.

The time available to the Sale Representatives to restock the shops depend on

when the shop are opened to them before the set time 7am. The time available

for reps and the time each rep spent on each product were taken on each of the

6days for each of the four shops. The average time of the 6days for each shop

was taken.

Suppose we only coordinate the events of a single deadline, then we can find the
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latest start times by taking the difference of the finish time and individual event

duration times. If we are to take shop A for example, when the shop is opened to

the reps for V, S, A, and M. The time each rep took was 31 min, 32 min, 33 min,

and 32 min respectively, where they were to finish within 48 min. Taking the

difference shows that the latest starting time for each event is 17 min, 16 min, 15

min, and 16 min respectively. After considering the events of all the four shops,

we will get a multiple deadlines. When we consider the case where we have four

shops, each shop will have different time available to the reps for their respective

products. This will depend on the size of the shop, quantity of products available

to the reps to restock, time the reps report at work, and also the time the shops

are opened to the reps to start restock. Below is the table for the various shops.

Table 4.1: SHOP A
Voltic Special Ice Aquafresh Mobile Time Available

Mon 25 30 20 25 40
Tue 36 40 35 30 45
Wed 15 25 30 28 50
Thur 32 28 40 34 50
Fri 45 40 35 40 55
Sat 35 30 40 35 50

Total 188 193 200 192 290
Average Time 31 32 33 32 48

Table 4.2: SHOP B
Voltic Special Ice Aquafresh Mobile Time Available

Mon 35 20 40 35 50
Tue 40 30 32 30 45
Wed 25 35 30 38 40
Thur 30 40 35 25 50
Fri 28 45 34 40 55
Sat 35 25 45 30 60

Total 193 195 216 198 300
Average Time 32 33 36 33 50
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Table 4.3: SHOP C
Voltic Special Ice Aquafresh Mobile Time Available

Mon 45 30 50 35 55
Tue 30 40 35 25 50
Wed 32 35 45 50 60
Thur 25 38 42 40 55
Fri 35 34 32 38 45
Sat 50 45 38 30 50

Total 217 222 242 218 315
Average Time 36 37 40 36 53

Table 4.4: SHOP D
Voltic Special Ice Aquafresh Mobile Time Available

Mon 30 25 20 35 45
Tue 20 32 15 30 40
Wed 15 30 34 25 50
Thur 25 35 25 20 45
Fri 28 32 35 40 55
Sat 35 38 40 35 50

Total 153 192 169 185 285
Average Time 26 32 28 31 48

Below is a matrix to show the preparation before the shops are opened to cus-

tomers (event times are in minutes).

V S A M

Shop A

Shop B

Shop C

Shop D



31 32 33 32

32 33 36 33

36 37 40 36

26 32 28 31


and the corresponding vector of the time avail-

able to the shops is



48

50

53

48


Example 4.2.1 We want to find the latest starting times for the various products

Voltic, Special Ice, Aquafresh, and Mobile where the events are completed at 7am

when the Shops are opened to customers. The problem is formulated as a max-plus
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matrix equation, where we solve for t:



31 32 33 32

32 33 36 33

36 37 40 36

26 32 28 31


⊗



t1

t2

t3

t4


=



48

50

53

48


The Discrepancy matrix, Ds is calculated:

Ds =



17 16 15 16

18 17 14 17

17 16 13 17

22 16 20 17


The candidate solution t’ is calculated:

t′ =



17

16

13

16


The Reduced discrepancy matrix, Rs is also calculated:

Rs =



1 1 0 1

0 0 0 0

1 1 1 0

0 1 0 0


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The Rs shows that there is no solution to the problem because of the all-zero of

the second row. We can indeed verify that t’ is not a solution:



31 32 33 32

32 33 36 33

36 37 40 36

26 32 28 31


⊗



17

16

13

16


=



48

49

53

48


The solution failed because of the underlined entry. As t’ is not a strict solution

to the system of equations, it does not result in a delay of the deadline of 7am.

This shows that rep at Shop B finished their work earlier than expected.

When a candidate solution is not a strict solution to a system of equations, but

it does not result in a delay of any of the deadline it is refer to as a non-ideal

solution.

These are the daily data taken for the various Shops for the second week:

Table 4.5: SHOP A
Voltic Special Ice Aquafresh Mobile Time Available

Mon 15 25 20 35 45
Tue 30 34 42 28 50
Wed 28 36 25 40 42
Thur 35 40 42 38 55
Fri 20 30 15 18 45
Sat 40 35 28 25 48

Total 168 200 172 184 285
Average Time 28 33 29 31 48

Table 4.6: SHOP B
Voltic Special Ice Aquafresh Mobile Time Available

Mon 45 30 38 40 50
Tue 28 35 40 30 45
Wed 30 20 35 28 40
Thur 20 30 30 25 45
Fri 40 36 25 30 55
Sat 35 25 30 34 40

Total 198 176 198 187 275
Average Time 33 29 33 31 46
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Table 4.7: SHOP C
Voltic Special Ice Aquafresh Mobile Time Available

Mon 35 25 30 24 40
Tue 40 30 28 35 50
Wed 25 32 36 40 55
Thur 30 35 15 25 45
Fri 20 18 30 34 40
Sat 15 30 20 25 45

Total 165 170 159 183 275
Average Time 26 28 27 31 46

Table 4.8: SHOP D
Voltic Special Ice Aquafresh Mobile Time Available

Mon 20 32 38 35 45
Tue 25 35 30 22 50
Wed 38 20 35 25 48
Thur 22 34 28 36 40
Fri 35 30 20 25 45
Sat 15 22 26 30 35

Total 155 173 177 173 263
Average Time 26 29 30 29 44

Below is a matrix formed from the averages to show the preparation before a

shop is opened to customers and the vector of the time available to the shops:

V S A M

Shop A

Shop B

Shop C

Shop D



28 33 29 31

33 29 33 31

26 28 27 31

26 29 30 29


and the corresponding vector of the time avail-

able to the shops is



48

46

46

44


Example 4.2.2 At the end of the second week, these were the systems of equa-

tions formed from the averages of the daily data collected. We have also calculated

for the discrepancy matrix, reduced discrepancy matrix, and the candidate solu-
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tion: 

28 33 29 31

33 29 33 31

26 28 27 31

26 29 30 29


⊗



t1

t2

t3

t4


=



48

46

46

44



Ds =



20 15 19 17

13 17 13 15

20 16 19 15

18 15 14 15


, Rs =



0 1 0 0

1 0 1 1

0 0 0 1

0 1 0 1


, and t′ =



13

15

13

15


The reduced discrepancy matrix shows that the candidate solution, t’, is a solu-

tion to the system of equations.

The times available to Voltic and Aquafresh reps could be earlier without affect-

ing the strict solution. We can also tell from the second and fourth row in Rs that

the preparation for the products except Special Ice in Shop B ended simultane-

ously. Also the preparation for Special Ice and Mobile Water in Shop D ended

simultaneously. This is because of the presence of many ones in the second and

fourth rows.

4.3 Examples on a system of Max-linear Pro-

gram

Example 4.3.1 Given a system of max-linear program in which f = (9, 5, 2, 7)T

for

A⊗ x = b

C ⊗ x ≤ d
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where

A =


0 −1 1 1

1 2 2 −1

1 3 1 0

 , b =


2

3

2



C =


−3 2 1 4

0 5 3 −1

−1 6 0 8

 , d =


10

14

9


This is the solution:

DA.b =


2 3 1 1

2 1 1 4

1 −1 1 2



x̄(A, b) =



min (2, 2, 1)

min (3, 1,−1)

min (1, 1, 1)

min (1, 4, 2)


=



1

−1

1

1



DC.d =


13 8 9 6

14 9 11 15

10 3 9 1



x̄(C, d) =



min (13, 14, 10)

min (8, 9, 3)

min (9, 11, 9)

min (6, 15, 1)


=



10

3

9

1



60



Compare x̄(A, b) and x̄(C, d), and pick the least corresponding elements to form

x̂(A,C, b, d)

x̂(A,C, b, d) =



1

−1

1

1


We let

x = x̂(A,C, b, d) =



1

−1

1

1


Compare the corresponding elements of x̄(A, b) and x̄(C, d) that satisfy x̄j(C, d) ≥

x̄j(A, b) and pick their positions (in the row), making J = {1, 2, 3, 4}

From Kj, where j ∈ J

K1 = {3},

K2 = {3},

K3 = {1, 2, 3}, and

K4 = {1}

f(x) = fj + xj

= ((9 + 1), (5 +−1), (2 + 1), (7 + 1))

= (10, 4, 3, 8)T

H(x) = {1}

J : J \H(x) = {2, 3, 4}

K = {1, 2, 3}

K2 ∪K3 ∪K4 = {1, 2, 3} = K
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set x1 = 10−5 (say), we get a new x = (10−5,−1, 1, 1)T

Going for a new H(x)

f(x) = fj + xj

= ((9 + 10−5), (5 +−1), (2 + 1), (7 + 1))

= (9.00001, 4, 3, 8)T

H(x) = {4}

J : J \H(x) = {2, 3}

K2 ∪K3 = {1, 2, 3} = K

set x4 = 10−5 (say), we get a new x = (10−5,−1, 1, 10−5)T

Going for a new H(x)

f(x) = fj + xj

= ((9 + 10−5), (5 + 10−5), (2 + 1), (7 + 10−5))

= (9.00001, 5.00001, 3, 7.00001)T

H(x) = {3}

J : J \H(x) = {2}

K2 6= K

We stop, the optimal solution is x = (10−5, 10−5, 1, 10−5)T

fmin = minf(x) = min(9.00001, 5.00001, 3, 7.00001)T

Therefore fmin = 3

We went further to solved another example:

Example 4.3.2 Given a system of max-linear program in which f = (5, 6, 1, 4,−1)T
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for

A⊗ x = b

C ⊗ x ≤ d

where

A =


3 8 4 0 1

0 6 2 2 1

0 1 −2 4 8

 , b =


7

5

7



C =


−1 2 −3 0 6

3 4 −2 2 1

1 3 −2 3 4

 , d =


5

5

6


This is the solution:

DA.b =


4 −1 3 7 6

5 −1 3 3 4

7 6 9 3 −1



x̄(A, b) =



min (4, 5, 7)

min (−1,−1, 6)

min (3, 3, 9)

min (7, 3, 3)

min (6, 4,−1)


=



4

−1

3

3

−1



DC.d =


6 3 8 5 −1

2 1 7 3 4

5 3 8 3 2


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x̄(C, d) =



min (6, 2, 5)

min (3, 1, 3)

min (8, 7, 8)

min (5, 3, 3)

min (−1, 4, 2)


=



2

1

7

3

−1


Compare x̄(A, b) and x̄(C, d), and pick the least corresponding elements to form

x̂(A,C, b, d)

x̂(A,C, b, d) =



2

−1

3

3

−1


We let

x = x̂(A,C, b, d) =



2

−1

3

3

−1


Compare the corresponding elements of x̄(A, b) and x̄(C, d) that satisfy x̄j(C, d) ≥

x̄j(A, b) and pick their positions (in the row), making J = {2, 3, 4, 5}

From Kj, where j ∈ J

K2 = {1, 2},

K3 = {1, 2},

K4 = {2, 3} and
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K5 = {3}

f(x) = fj + xj

= ((5 + 2), (6 +−1), (1 + 3), (4 + 3)), (−1 +−1)

= (7, 5, 4, 7,−2)T

H(x) = {1, 4}

J : J \H(x) = {2, 3, 5}

K = {1, 2, 3}

K2 ∪K3 ∪K5 = {1, 2, 3} = K

set x1 = x4 = 10−4 (say), we get a new x = (10−4,−1, 3, 10−4,−1)T

Going for a new H(x)

f(x) = fj + xj

= ((5 + 10−4), (6 +−1), (1 + 3), (4 + 10−4)), (−1 +−1)

= (5.0001, 5, 4, 4.0001,−2)T

H(x) = {2}

J : J \H(x) = {3, 5}

K3 ∪K5 = {1, 2, 3} = K

set x2 = 10−4 (say), we get a new x = (10−4, 10−4, 3, 10−4,−1)T

Going for a new H(x)

f(x) = fj + xj

= ((5 + 10−4), (6 + 10−4), (1 + 3), (4 + 10−4)), (−1 +−1)

= (5.0001, 6.0001, 4, 4.0001,−2)T
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H(x) = {3}

J : J \H(x) = {5}

K3 ∪K5 = {1, 2, 3} = K

sinceK5 = {3} 6= K, we stop and the optimal solution is x = (10−4, 10−4, 3, 10−4,−1)T

fmin = minf(x) = min(5.0001, 6.0001, 4, 4.0001,−2)T

Therefore fmin = 4.
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Chapter 5

Conclusion

We have seen from our work that the discrepancy method of max-plus can be

used to solve an n×n and m×n system of linear equations and a real-life problem

in a synchronised event.

It is also interesting to note that an n×n system of linear equations has either a

unique solution, an infinitely many solutions or no solution whiles m× n system

of linear equations (where m < n) has either an infinitely many solutions or no

solution in (Rmax,⊕,⊗).

Linear programming problem involving linear equations and inequalities has also

been solved in max-plus.

From the applications, we have seen that max-plus provide interesting tools that

can be used to formulate and solve many problems of optimization.
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Myśková, H. (2009). Interval systems of max-separable linear equations. Linear

Algebra and its Applications, 403.

Olsder, G., Baccelli, F., Cohen, G., and Quadrat, J. (1998). Course notes: Max-

algebra approach to discrete event systems. Algebres Max-plus et Applications

an Informatique et Automatique, INRIA, pages 147–196.

Ramadge, P. and Wonham, W. (1989). The control of discrete event systems.

Proc. of the IEEE, 77(1):81–97.

Shutter, B. (2000). On the ultimate behaviour of the sequence of consecutive

powers of a matrix in the max-plus algebra. Linear Algebra and its Applications,

30:103–117.
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Appendix A

QUESTIONNAIRE FOR SALE REPRESENTATIVES OF A SHOP

Dear sale representatives, this questionnaire is designed to take the time various

representative spend on restocking before sales begin and also the time available

for restocking.

Your response will be treated confidential and used for academic purposes. I am

a Master of Philosophy student of Kwame Nkrumah University of Science and

Technology.

Please fill in the spaces provided below.

Table 5.1: NAME OF THE SHOP ........
Voltic Special Ice Aquafresh Mobile Time Available

Mon
Tue
Wed
Thur
Fri
Sat

Total
Average Time
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