

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY, KUMASI, GHANA.

APPLICATION OF RESIDUE NUMBER SYSTEM TO

SMITH - WATERMAN ALGORITHM

BY

BAAGYERE, YELLAKUOR EDWARD, BSc. COMPUTER

SCIENCE(HONS)

MAY, 2011

APPLICATION OF RESIDUE NUMBER SYSTEM TO SMITH

- WATERMAN

ALGORITHM

BY

BAAGYERE, YELLAKUOR EDWARD, BSC. COMPUTER

SCIENCE (HONS)

A THESIS SUBMITTED TO THE DEPARTMENT OF

COMPUTER ENGINEERING, KWAME NKRUMAH

UNIVERSITY OF SCIENCE AND TECHNOLOGY IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE

OF

MASTER OF PHILOSOPHY IN COMPUTER ENGINEERING

COLLEGE OF ENGINEERING

MAY, 2011.

ii

Declaration

I, EDWARD YELLAKUOR BAAGYERE, hereby declare that this thesis is my own

work and to the best of my knowledge it contains no academic material previously

published or written by another person or group of persons, nor work which to a

substantial extent has been accepted for the award of any other degree or diploma at

Kwame Nkrumah University of Science and Technology (KNUST) or elsewhere or

published in any academic journal, except where due acknowledgments are made in

the thesis.

I therefore declare that the intellectual content of this thesis is the product of my own

work, under the keen supervision of Dr. K. O. Boateng, except to the extent that

assistance from others in the project’s design and conception or in style, presentation

and linguistic expression is acknowledged.

.....................................

Student Name & ID

Certified by:

Signature Date

......................................

Supervisor’s Name

Certified by:

Signature Date

.....................................

Name of Head of Department Signature Date

Dedication

This thesis is dedicated to GOD ALMIGHTY, to all the members of

the

BAAGYERE family and to my lovely Wife, MARY NARTEY.

iii

Acknowledgements

First of all, I would like to express my deepest gratitude to my Supervisor, Dr. K. O.

Boateng, who as a great mentor had inspired me to be a better person both in life and

engineering science. He has exposed me to the basics of computer engineering, critical

analysis of scientific issues, and the art of neat technical writing. Dr. Boateng, I can

hardly forget the six (6) hours we spent on the other day trying to get a design pattern

for the RNS forward converter. What more can I say better than to ask for GOD’s

blessing and favor to be on you in all your endeavors.

Next, I especially would like to express millions of thanks and gratitude to Dr. K. A.

Gbolagade, the Head of Department of Computer Science, University for Development

Studies, Navrongo Campus, for the coaching and inspirations he had bestowed on my

academic life. The concepts of “Residue Number System” (RNS) you brought on my

way is bearing fruits. Bravo Dr.

I own a thank you and appreciation to the Head of Department of the Computer

Engineering, KNUST, and the staff for all the administrative and academic support.

I’m very much grateful to Prof. dr. Sagary Nokoe, the immediate past Vice-Chancellor

of the University for Development Studies (UDS), for his moral, administrative, and

academic supports. He has been a great mentor in my academic life. I wish to also

express my sincere appreciation to Dr. Elkanah Oyetunji, the Dean of the faculty of

Mathematical Sciences, UDS, for his constant advice and encouragement to close my

open questions. Dr. Oyetunji, I have closed all the open question now.

I’m thankful to Mr. and Mrs. Isaac Baagyere, Mr. and Mrs. Jonas Baagyere, Francisca

Baagyere, the entire Baagyere sons and daughters, and the entire An-yir family for the

dozen of love, support and encouragement throughout all the years. May the Good

Lord give you long live to enjoy the fruits of your labor.

I would specially like to thank my dear wife, Mary Nartey, a lovely lady God brought

alone my way to be eyes and help meet unto me in the “wilderness” of my life. Millions

kudos “Paaristic”.

iv

Finally, I am thankful to these people, Evans Alhassan, Patience Alhassan, Benjamin

Weyori, Sampson, Daniel Ngala, Salifu Abdul - Mumin (Megabyte), Stephen Akobre,

Juanita Pokuaa, Vida Ademin, Joshua Akanbasiam, too numerous to mention because

of time and space constraints, that have helped me in one way or the other. Joshua

Akanbasiam gets an extra acknowledgments for your brotherly love and care. For your

love and care are unparallel.

 Edward Baagyere KNUST, 2011

v

Contents

Title Page i

Declaration ii

Dedication iii

Acknowledgments iv

List of Tables viii

List of Figures ix

List of Acronyms xi

Abstract xiii

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 4

1.3 Objective of Study . 4

1.4 Specific Objective . 5

1.5 Justification . 5

1.6 Scope of Study . 6

1.7 Design Methodology . 6

1.8 Organization of Thesis . 7

2 Review of Literature 8

2.1 Bioinformatics . 8

2.1.1 The Smith - Waterman Algorithm. 10

2.1.2 Various Attempts to Accelerate the SWA in Hardware 12

2.2 Computer Number System and Arithmetics. 15

2.2.1 Conventional Radix Number System. 16

2.2.2 Conversion of Radix Numbers. 17

2.2.3 Representation of Signed Numbers 18

2.2.4 The Residue Number System. 22

2.2.5 Definition of Residue Number System. 24

vi

2.2.6 Data Conversion . 26

2.2.7 Forward Conversion . 27

2.2.8 The Reverse Conversion . 28

2.2.9 The Chinese Remainder Theorem 28

2.2.10 The Mixed Radix Conversion. 29

2.2.11 Moduli Selection . 31

2.2.12 Unrestricted Moduli selection 31

2.2.13 Restricted moduli Selection 32

2.2.14 Expected Features of the Moduli Sets. 32

2.2.15 Application of Residue Number System to Bioinformatics. . . 33

3 Design and Simulation 34

3.1 Digital System Implementation Process 34

3.1.1 Datapath . 35

3.1.2 Control Unit . 35

3.1.3 The Module Design Flow 36

3.2 Hardware Implementation of the RNS - SWA Architecture 39

3.2.1 The Smith - Waterman Algorithm 39

3.2.2 The RNS-SWA Forward Converter 41

3.2.3 Selection of Moduli Set . 42

3.2.4 The Memoryless RNS - SWA Forward Converter 42

3.2.5 The RNS Based Smith - Waterman Processor 49

3.2.6 Residue Number System Comparator 52

3.2.7 The Implementation Strategy of the RNS - SWA Comparator . 60

4 Simulation Results and Discussion 63

4.1 Simulation Results . 64

4.1.1 The Simulation Results of the RNS Forward converter 64

4.1.2 The Simulation Results of RNS - SWA microprocessor 65

4.1.3 The Simulation Results of the RNS Comparator 66

4.1.4 The Simulation Results of the Complete RNS - SWA Archi-

 tecture . 68

vii

4.1.5 Performance Evaluation of the RNS - SWA Processor 69

5 Conclusion and Future Research Directions 75

5.1 Conclusion . 75

5.2 Future Research Directions . 77

Appendices 85

A VHDL Codes implantation of the complete RNS - SWA Architecture 86

B VHDL Codes implantation of the RNS - SWA Comparator 90

List of Tables

2.1 The DP matrix and the trace back path.

3.1 The Residues Table for Mod 16 and Mod 15 for signed numbers in

11

 hexadecimals . 43

3.2 Control Unit Implementation Table and Excitation equations 50

3.3 Control and Output Signals of the RNS Comparator 57

3.4 The Next State and Implementation Tables of the Control Unit 58

3.5 The K - Map and Excitation Equations the Control Unit

3.6 The RNS - SWA Comparator Simulation status and circuit resource

59

 utilization table . 62

4.1 Timing Results of the mRNS Forward converter 65

4.2 The mRNS Simulation status and circuit resource utilization table . .

4.3 The RNS - SWA processor Simulation status and circuit resource uti-

66

lization table .

4.4 The RNS - SWA Comparator Simulation status and circuit resource

67

 utilization table .

4.5 Flow summary and circuit resource utilization table of the RNS - SWA

69

Architecture .

4.6 L. Hasan and Z. Al-rs Profiling Results for the Software implementa-

70

tion of the SWA . 71

List of Figures

viii

2.1 A typical RNS based Digital Signal Processor 26

2.2 A schematic diagram of the CRT . 29

2.3 A schematic diagram of the MRC 30

2.4 MRDs schematic diagram . 31

3.1 The Module Design Flow Diagram 37

3.2 The RNS-SWA Architecture . 41

3.3 The Memoryless RNS - SWA Forward Converter 44

3.4 The Schematic Diagram of RNS - SWA processor 52

3.5 The Schematic Diagram of RNS Comparator 53

3.6 Simulation results of the RNS Comparator 61

4.1 Simulation result of the mRNS Forward Converter 65

4.2 Simulation results of the RNS - SWA Processor 67

4.3 Simulation results of the RNS Comparator 68

List of Acronyms

SWA Smith - Waterman Algorithm

DNA Deoxyribonucleic Acid

RSFC RNS - SWA Forward Converter

WNS Weighted Number System

ASIC Application-Specific Integrated Circuit

GCD Greatest Common Divisor

DSP Digital Signal Processing

FFT Fast Fourier Transform

LSB Least Significant Bit

MSB Most Significant Bit

RNS Residue Number System

CRT Chinese Remainder Theorem

MRC Mixed Radix Conversion

RRNS Redundant Residue Number System

ix

DCT Discrete Cosine Transform

FCT Fast Cosine Transform

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

ROM Read Only Memory

MRD Mixed Radix Digit

GCF Greatest Common Factor

MR Mixed Radix

MCRT Modified Chinese Remainder Theorem

MATR Matrix Method

CMOS Complementary Meta Oxide Semiconductor

VHDL VHSIC Hardware Description Language

CSA Carry Save Adder

CPA Carry Propagate Adder

EAC End Around Carry

IMRC Improved Mixed Radix Conversion

PE Processing Element

LCM Lowest Common Multiple

CLA Carry Lookahead Adder

RSD Redundant Signed Digit

BLAST Basic Local Alignment Search Tool

FASTA Fast Alignment Search Tool - All

MGAP Micro Grained Array Processor

FSM Finite State Machine

PLD Programmable Logic Device

CPLD Complex Programmable Logic Device

HDL Hardware Description Language

BRC Binary to RNS Converter

x

MUX Multiplexer

GPU Graphics Processing Units

CI Custom Instruction

KCUPS Kilo Cell Updates Per Second

LMB Left - most bit

LUT Look Up Table

Application of Residue Number System
to Smith - Waterman Algorithm

Edward Yellakuor Baagyere

Abstract

n this thesis, we propose a hardware implementation of the Smith - Waterman

Algorithm using Residue Number System (RNS).

One of the biggest challenges confronting the bioinformatics community as at now is

fast and accurate sequence alignment. The Smith - Waterman algorithm (SWA) is one

of the several algorithms used in addressing some of these challenges. Though very

sensitive in doing sequence alignment, the SWA is not used in real life applications

due to the computational cost involve in using this algorithm. Hence heuristics

methods such as BLAST and FASTA are used though they do not guarantee accurate

sequence alignments. We seek to address the computational challenge associated with

the SWA by using the inherent arithmetic advantages of RNS. The RNS is such an

integer system exhibiting the capabilities that support parallel computation, carry free

addition, borrow-free subtraction, and single step multiplication without partial

product. Base on some of these properties, a hardware implementation of the SWA is

done in VHDL, a hardware description Language. In order to be able to use moduli set

with a small dynamic range, matrix partitioning has been used on the fact that the

comparison of two long strings of DNA can be done in a divide - and - conquer

I

xi

approach. A sample 4 - bit system implementation improves the overall speed of the

SWA. The implementation was on FPGA device EP2S15F484C3, a Stratix II family,

and it consumes 189 logic cells. The worst - case clock - to - output delay (tco) between

the specified source and destination points is 6.006 ns. These outstanding results when

compared with what is in literature shows that the implementation is both area and

speed efficient and thereby improve the speed constraints of the SWA. When

compared with the work of L. Hasan and Z. Al-lrs (2007) this implementation has

improves the computational time 243%, when calcualted in terms of percentage ratio,

thereby making this implementation better than the state of the art hardware

implementation of the SWA. In terms of comparison with the hardware

implementation done by [1], our hardware implementation is superior by 143%.

Also, comparing our hardware implementation result with it’s software equivalent

shows a tremendous improvement of 871029%, that is 8710.29 times faster.

What these outstanding results mean is that there is hope for the bioinformatics

community so far as accurate sequence alignment is concern. The total time that will

be needed to alignment two strings of DNA using the RNS - SWA architecture will be

improved by 8710.29 times more than it’s software equivalent implementation.

These results also support the fact that RNS is a good platform to implement the SWA,

since it has a high prospect of improving the overall computational cost and the

hardware foot print of the algorithm.

Chapter 1 Introduction

1.1 Background

ioinformatics is a field in life science that is gaining much attention in recent

times and advances are made daily in this area of research. The social

consequences of progress in this area are very enormous as the promise of finding cure

to hitherto incurable diseases, prolonging life, and understanding the beginning and

end of life are becoming more and more probable [2]. These prospects are achievable

by the technique of sequence alignments.

The biological sequence alignments for sequence of Deoxyribonucleic Acid (DNA) or

protein present an insight into the natural mutations occurring in the strings [3]. Also,

similarities between two sequences might suggest evolution from the same genetic tree

or mutations over time that occurred in one of the sequences in the given pair of

sequences. Biological information from these sources are of significant importance to

researchers in the field of bioinformatics, and therefore research in that direction

cannot be over emphasized.

All organisms have cells and these cells consist of genetic information that make a

particular organism different and unique from another organism. These genetic

informations are carried by a chemical known as DNA in the nucleus of the cell. The

DNA

1

of an organism consists of an interwoven strands that forms a “double helix”. Each

strand is built from residues of molecules called nucleotide.

A nucleotide consists of two parts viz: a phosphate group and a sugar group called

deoxyribose, these two parts form the ribbon-like backbone of the DNA strand and are

identical in all nucleotides. There are four different kinds of bases, which define the

four different nucleotides viz: Adenine (A), Cytosine (C), Guanine (G) and, Thymine

B

2 CHAPTER 1. INTRODUCTION

(T). The complete human genome contains approximately 3 million of these base pairs

[4]. In order to discover the functional, structural and evolutionary relationship

between two or more sequences of DNA, it is necessary to find the similarity between

the sequences. This is done by finding the edit distance between the said sequence in

question and the process is called Sequence Alignment.

There are several algorithms for doing sequence alignment. The commonly used ones

are Fast Alignment Search Tool - All (FASTA) and Basic Local Alignment Search

Tool (BLAST) [5]. FASTA and BLAST are fast algorithms which prune the search

involved in a sequence alignment using heuristic methods, but they are not sensitive,

that is, they don’t guarantee exact alignments.

The Smith - Waterman Algorithm (SWA) [6] is very sensitive algorithm but it has a

very high computational cost. Due to this high computational cost, the real life

application of the SWA is much limited and the benefits that would have accrued from

the field of bioinformatics are yet to come to the fore. For an example, the time and

space complexity of this algorithm for comparing two sequences is O(nm), where m

and n are the lengths of the two sequences being compared. Although this

computational complexity may not seem threatening, the growth in the genetic bio -

sequence database is exponential. Thus the complexity that concerns the real world

applications is really O(knm), where k represents the exponential growth of the size in

genetic databases [1].

The high computational cost of the SWA has a direct link with the carry propagation

chains inherent to the Weighted Number Systems (WNS), e.g., binary number systems,

decimal number systems. Because of this intrinsic performance limiter for arithmetic

units and processors built based on WNS, several attempts have been made to over-

1.1. BACKGROUND

come the speed limitations by following two main research avenues as follows:

The carry propagation through the conventional ripple-carry adders, which is the main

contributor to the addition delay, can be accelerated by using fast addition techniques

[7]. Those make use of specialized circuitry able to de - serialize the carries calculation

3

via methods like carry look ahead (CLA), carry-skip, prefix calculation, anticipated

calculation, etc. These fast addition techniques are very important in improving

arithmetic units performance because other arithmetic operations such as

multiplication and division are based on addition, thus their delay heavily depends on

the addition delay. For non redundant number systems, e.g., traditional binary and

decimal number systems, the delay of such fast adders is logarithmically bounded by

the number of operand digits [8].

An alternative way to speed up the addition process is to make use of number system

with specialized carry characteristics, i.e., proposing alternative number representation

systems, e.g., Redundant Signed Digit (RSD) number representation systems [9–15]

and Residue Number Systems (RNS) [14]. The sought characteristic of such

alternative number systems is the capability to provide support for carry-free addition

as this directly results in high-speed arithmetic units.

The RNS has many inherent interesting features. The RNS [8,16,17] is such an integer

system exhibiting the capabilities to support parallel, carry-free addition, borrow-free

subtraction, and single step multiplication without partial product. Moreover, it

provides support for fault tolerance [18–20], which is becoming a crucial aspect as it

is getting more and more expensive/difficult to fabricate perfect (predictable) devices

in the context of deep sub-micron fabrication technology [21].

Due to some of these inherent features of RNS, it had wide spread application in Digital

Signal Processing (DSP) applications, e.g., Digital Filtering [22–25], Convolutions,

Correlations, Discrete Cosine Transform (DCT) [26, 27], Discrete Fourier Transform

(DFT) [28–31], Fast Fourier Transform (FFT) [16, 24, 32, 33]. Additionally, RNS has

also been applied in low power design [14,34–41], number theory [42–44], and digital

communications [45–48].

With the increase in computing power and the rigorous research into computer number

system, Residue Number System, and computer arithmetic, coupled with the decrease

in the cost of memory, analyzing the enormous datasets generated by genome

sequencing is becoming practicable in ways never thought possible. Even though such

advances are encouraging and much needed, we are still several years away from the

4 CHAPTER 1. INTRODUCTION

immense amount of computing power that would be required to analyze these datasets

completely, thus the need for further research in this field.

The RNS can be used to improve the performance of SWA. The SWA involves the

basic RNS supported arithmetic operations such as addition, subtraction and

multiplication. Since it has been shown in literature both theoretically and

experimentally that using these basic arithmetic operations, RNS is faster than the

conventional binary number system, we suggest RNS as an alternative candidate for

improving the performance of the SWA.

1.2Problem Statement

The SWA is the most accurate sequence alignment algorithm available, but it is also

the most expensive computationally, in particular for long sequences of DNA or

protein [6]. Thus it guarantees exact matches between sequences, at the cost of long

processing time. For example, when profiled on the MOLEN platform, a specific

function within the SWA consumed 78% of the total run time [49]. Faster algorithms

like FASTA and BLAST are available, but they achieve high speed at the cost of

accuracy. The uncompromising computational cost of the SWA calls for a hardware

acceleration of this algorithm using the inherent arithmetic advantages of Residue

Number System (RNS) and that is what this research seeks to address.

1.3Objective of Study

The objectives of the research are the following under listed:

1.4. SPECIFIC OBJECTIVE

1. To solve the computational cost associated with the SWA by using computer

arithmetics and RNS.

2. To further simplify the SWA and build a RNS-based SWA architecture with

lower area footprint.

5

1.4 Specific Objective

To construct a RNS - based SWA processor using appropriate computer arithmetics

techniques and RNS properties to solve the computational and area footprint associated

with the SWA.

1.5 Justification

The SWA is a well-known algorithm for performing local sequence alignment; that is,

for determining similar regions between two nucleotide or protein sequences. Instead

of looking at the total sequence, the Smith-Waterman algorithm compares segments of

all possible lengths and optimizes the similarity measure.

One motivation for local alignment is the difficulty of obtaining correct alignments in

regions of low similarity between distantly related biological sequences, because

mutations have added too much “noise” over evolutionary time to allow for a

meaningful comparison of those regions. Local alignment avoids such regions

altogether and focuses on those with a positive score. Another motivation for using

local alignments is that there is a reliable statistical model for optimal local

alignments.

However, the SWA algorithm is fairly demanding of time and memory resources; in

order to align two sequences of lengths m and n, O(kmn) time and space are required.

As a result, it has largely been replaced in practical use by the BLAST algorithm;

although not guaranteed to find optimal alignments. These limitations therefore call

for the hardware acceleration of this algorithm using the inherent arithmetic

advantages of RNS, in order to explore the full potentials that the SWA has to offer to

the bioinformatics community.

6 CHAPTER 1. INTRODUCTION

1.6Scope of Study

This research involves using RNS and computer arithmetics capabilities to solve the

computational and space footprint that limits the real life application of the SWA.

1.7Design Methodology

The main objective of the research is to construct a RNS - based SWA processor to

solve the computational and area footprint associate with the SWA.

This objective is achieved by using appropriate computer arithmetics and RNS

properties. Further, the hardware implementation of the design is done using Very

High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), a

hardware programming language.

VHDL is a general - purpose hardware description language which can be used to

describe and simulate the operation of a wide variety of digital systems, ranging in

complexity from a few gates to an interconnection of many complex integrated

circuits. Also VHDL can describe a digital system at several different levels -

behavioral, data flow and structural.

The results from the implementation are used to calculate the speed and area cost of

the SWA and comparison is then made with the non - RNS based implementations in

literature.

1.8. ORGANIZATION OF THESIS

1.8 Organization of Thesis

This chapter provides an overview of the research undertaken in this thesis. The

remainder of the work is organized as follows:

7

Chapter two, titled “Review of Literature”, summarizes works that have been done in

the area of bioinformatics, sequence alignment algorithms, computer arithmetics,

Residue Number System and, Data conversions types.

Chapter three, “Design and Simulation”, gives a detail description of the use of RNS

and computer arithmetics to solve the computational and area cost associated with the

SWA. The chapter further presents a hardware implementation of the RNS - based

SWA architecture using VHDL and using Quartus II version 4.0 VHDL to compile

and simulate the codes.

The next chapter is chapter four. It titled “Discussion of Simulation Results”, which

deals with discussion of simulation results and then comparison between the RNS

based SWA implementation and the non - RNS based is made. The thesis is completed

with “Conclusion and Recommendation” which is captured under chapter five. This

chapter gives a brief summary of the thesis findings and further research directions.

Chapter 2

Review of Literature

n this section, we seek to review literature on bioinformatics with key reference to

sequence alignment methods, Smith - Waterman Algorithm (SWA), and the

available hardware acceleration methods used to speed up the SWA. We shall also

review literature on computer arithmetics, Residue Number System (RNS), and Data

conversions types.

2.1 Bioinformatics

Bioinformatics is the application of information technology and computer science to

the field of molecular biology. The term bioinformatics was coined by Paulien

Hogeweg in 1979 [50] for the study of informatics processes in biotic systems. Its

primary use since at least the late 1980s has been in genomics and genetics, particularly

in those areas of genomics involving large-scale DNA sequencing.

Now, Bioinformatics entails the creation and advancement of databases, algorithms,

computational and statistical techniques, and theory to solve formal and practical

problems arising from the management and analysis of biological data. Over the past

few decades rapid developments in genomics and other molecular research

technologies and developments in information technologies have combined to produce

a tremendous amount of information related to molecular biology. It is the name given

to these

8

mathematical and computing approaches used to glean understanding of biological

processes. Common activities in bioinformatics include mapping and analyzing DNA

I

 2.1. BIOINFORMATICS 9

and protein sequences, aligning different DNA and protein sequences to compare them

and creating and viewing 3-D models of protein structures.

The primary goal of bioinformatics is to increase our understanding of biological

processes. What sets it apart from other approaches, however, is its focus on

developing and applying computationally intensive techniques (e.g., pattern

recognition, data mining, machine learning algorithms, and visualization) to achieve

this goal. Major research efforts in the field include sequence alignment, gene finding,

genome assembly, protein structure alignment, protein structure prediction, prediction

of gene expression and protein-protein interactions, genome-wide association studies

and the modeling of evolution.

Bioinformatics was applied in the creation and maintenance of a database to store

biological information at the beginning of the “genomic revolution”, such as

nucleotide and amino acid sequences. Development of this type of database involved

not only design issues but the development of complex interfaces whereby researchers

could both access existing data as well as submit new or revised data.

In order to study how normal cellular activities are altered in different disease states,

the biological data must be combined to form a comprehensive picture of these

activities. Therefore, the field of bioinformatics has evolved such that the most

pressing task now involves the analysis and interpretation of various types of data,

including nucleotide and amino acid sequences, protein domains, and protein

structures. The actual process of analyzing and interpreting data is referred to as

computational biology.

Some major research areas in Bioinformatics include:

• Sequence analysis

• Analysis of gene expression

• Analysis of regulation

• Analysis of protein expression

10 CHAPTER 2. REVIEW OF LITERATURE

• Analysis of mutations in cancer

• Prediction of protein structure

• Comparative genomics

• Modeling biological systems

• Protein-protein docking

2.1.1 The Smith - Waterman Algorithm.

In 1981, T. F. Smith and M. S. Waterman described a method, commonly known as

the Smith-Waterman(S-W) algorithm [6], for finding common regions of local

similarity. The algorithm is a modification of the N - W algorithm which is a type of

global sequence alignment. The algorithm is explained below:

In calculating the local alignment, matrix H(i, j) is used to keep track of the degree of

similarity between the two sequences to be aligned Ai, Each element of the matrix

H(i, j) is calculated according to the following equation:

H(i,0) = 0, for 0 ≥ i ≤ m

H(0, j) = 0, 0 for 0 ≥ j ≤ n

 0H(i−1, j−1)+S(i, j)

H(i, j)=max

match/mismatch in the diagonal

(2.1)

d deletion in sequence 1

d insertion in sequence 2

1 ≥ i ≤ m ,1 ≥ j ≤ n;

where:

H(i, j) is the maximum similarity score between the two sequences.

S(i, j) is the similarity score of comparing sequence Ai to sequence Bj and d is the gap

penalty of mismatch

 2.1. BIOINFORMATICS 11

The algorithm consists of main three steps viz:

Table 2.1: The DP matrix and the trace back path.

 C A G C G T T G

 0 0 0 0 0 0 0 0 0

A 0 0 2 0 0 0 0 0 0

G 0 0 0 4 2 2 0 0 2

G 0 0 0 2 3 4 2 0 2

T 0 0 0 0 1 2 6 4 2

A 0 0 2 0 0 0 4 5 3

C 0 2 0 1 2 0 2 3 4

1. Initialization step

2. Matrix fill step

3. Trace back step

The matrix is first initialized with H(0, j) = 0 and H(i,0) = 0,for all i and j· This is

referred to as the initialization step. After the initialization, a matrix fill step is carried

out using Equation 3.1, which fills out all entries in the matrix.

The third step is the trace back step, where the scores in the matrix are traced back to

inspect for optimal local alignment. The third step, which is the trace, starts at the cell

with the highest score in the matrix and continues up to the cell, where the score falls

down to a predefined minimum threshold. In order to execute the trace back, the

algorithm requires to find the cell with the maximum value, which is done by going

through the entire matrix.

Table 2.1 shows the similarity between two sequences and the trace back in deep black.

The time complexity of the initialization step is O(M +N), where N and M are sizes of

the two sequences. During the matrix fill step, the entire H(i, j) matrix needs to be

filled according to Equation 3.1, making its time complexity equal to the number of

cells in the matrix or O(MN). The time complexity of the traceback is also O(MN), as

the entire matrix needs to be traversed during this step. Thus the total time complexity

of the SWA is O(M +N)+O(MN)+O(MN) = O(MN). The total foot print of the

12 CHAPTER 2. REVIEW OF LITERATURE

SWA is also O(MN), as it fills a single matrix of size MN.

In order to reduce the O(MN) complexity of the matrix fill stage, multiple entries of

the H(i, j) matrix are calculated in parallel. This is however complicated by data

dependencies, whereby each (Hi, j) entry depends on the values of three neighboring

entries H(i, j − 1),H(i− 1, j) and H(i− 1, j − 1), with each of those entries in turn

depending on the values of three neighboring entries, which effectively means that this

dependency extends to every other entry in the region H(α,γ) : α ≤ i, γ ≤ j . This implies

that it is possible to simultaneously compute all the elements in each anti diagonal,

since they fall outside each others data dependency regions.

Apart from SWA, there are other local search methods such as FASTA (Fast

Alignment Search Tool - All) and BLAST (Basic Local Alignment Search Tool).

Based on heuristics, they are faster, although much less sensitive than the SWA.

2.1.2 Various Attempts to Accelerate the SWA in Hardware

Various approaches have been adopted to accelerate the SWA by implementing either

the whole algorithm or some part of it in hardware and compare the performance with

the software-only implementation.

Borah M. et al in 1994 [51] described the implementation of the SWA on a general

purpose fine-grained architecture, the Micro Grained Array Processor (MGAP). The

authors show that their implementation is about 5 times faster than the rapid

implementation of a genetic sequence comparator using filed programmable logic

arrays. Their work was compared with that done by Daniel P. Lopresti, 1991 [52]. The

work of Borah M. et al shows that parallel processor arrays, like MGAP, have the

potential to solve computationally intensive problems in bioinformatics efficiently and

less expensively.

In [53], the authors show the implementation of a fully custom processing unit to

realize the execution of the SWA. The authors claimed that for conducting

comparisons of multiple sequence pairs, using the same set of processing units, two

approaches can be taken e.g. synchronous and asynchronous. The authors show that

 2.1. BIOINFORMATICS 13

the asynchronous parallel approach is (k-1)*(m-1) time steps faster than the

synchronous parallel approach, where k represents the size of the existing sequences

in the database, which grows exponentially.

Schroder A. et al in 2006, [54] demonstrated that the streaming architecture of the

Graphics processing Units (GPUs) can be used for biological sequence database

scanning. GPUs are single-chip processors, used primarily for computing 3D

functions, but is also a good candidate for a bioinformatics applications such as

sequence alignments. To achieve an efficient mapping on this type of architecture, the

authors have formulated the SWA in terms of computer graphics primitives and

claimed that the evaluation of their implementation on a high-end graphics card shows

a speedup of almost sixteen compared to Pentium-IV, 3.0 GHz processor.

In 2005, Blas A. Di. et al [55] implemented the SWA on the Kestrel Parallel Processor

for efficient query sizes. The Kestrel Parallel Processor is a single-board coprocessor

with a 512-element linear array of 8-bit, SIMD processing elements. The performance

was compared with the implementation on a 500 MHz, Ultra SPARC-II. The relative

speed-up for a query size of 100 is reported to be seventeen. The other query sizes

considered were 250 and 500. The speed -up achieved for the query size of 250was 49

times, whereas that for the query size of 500 was 99 times.

Laiq Hasan and Zaid Al-Ars in 2007, [1] divided the SWA into a number of functions,

and then the time complexity of each function is measured, thus term known as code

profiling. A software-only implementation of the SWA is profiled on Pentium-IV, 3.2

GHz processor, using the GNU profiler. The profiling results identify the most time

consuming function. This function is then designed in VHDL. The processing run time

of a software -only implementation on Pentium-IV, 3.2 GHz processor and hardware

implementation on Virtex II Pro FPGA are compared to evaluate the percentage

runtime improvement. The results show that the hardware implementation is 35.82

times faster than its equivalent software-only implementation.

In [56], Steve Margem use the power of reconfigurable computing to accelerate

substantially the performance of the SWA. The percentage time spent on calculating

the elements of the matrix, Hi,j, was cut down by nearly a third and the absolute time

14 CHAPTER 2. REVIEW OF LITERATURE

spent on the algorithm dropped from 6,461 seconds to a little over 100 seconds,

approximately 64 times faster than the equivalent software-only implementation on

AMD Opteron processors.

Oliver T. et al in [57] showed a new approach to bio-sequence database scanning using

reconfigurable FPGA-based hardware platforms to gain high performance at low cost.

Their FPGA implementation achieves a speedup of approximately 170, as compared

to a Pentium-IV, 1.6GHz processor.

Chiang J. et al in [58] also studied the improvement of the computational processing

time of the SWA using Custom Instructions (CIs) on an FPGA board. This was done

by first writing the SWA in pure software and replacing the portion which was the

most computationally intensive with an FPGA custom instruction. Particularly, the

designed CIs was on an Altera Nios II integrated development environment. The Nios

II soft microprocessor was instantiate on an FPGA to allow rapid prototyping of new

designs. Finally, they compared the processing runtime between the “pure

software”and the “hardware acceleration”versions to calculate the percentage of

runtime improvement. The results showed that the hardware accelerated algorithm

improvement the processing runtime by an average of 287%. Thus using FPGA CIs is

a promising direction for further research in improving genomic sequence searching.

In 2002, Yamaguchi Y. et al [59] proposed a high speed sequence alignment using run-

time reconfigurable computing. With this approach, it is demonstrated that high

performance can be achieved using off-the-shelf FPGA boards. The performance is

almost comparable with dedicated hardware systems. The time for comparing a query

sequence of 2048 elements with a database sequence of 64 millions elements by the

SWA is about 34 seconds, which is about 330 times faster than a desktop computer

with a Pentium-III, 1.0 GHz processor.

Yang B.H.W in 2002 [60], presented the design of a small custom processing element,

called Proclet. This Proclet is used for a new VLSI implementation of the SWA. The

results show that the design achieves a performance of 976 Kilo Cell Updates Per

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 15

Second(KCUPS), but is not compare with any reference design.

In the next section, we discuss the application of RNS to sequence alignment, an

essential aspect of bioinformatics

2.2 Computer Number System and Arithmetics.

As the arithmetic applications grow rapidly, it is important for computer engineers to

be well informed of the essentials of computer number systems and arithmetic

processes.

With the remarkable progress in the very large scale integration (VLSI) circuit

technology, many hitherto complex circuits that were unthinkable yesteryears become

components easily realizable today. Algorithms that seemed impossible to implement

now have attractive implementation possibilities for the future. This means that not

only the conventional computer arithmetics, but also the unconventional ones are

worth investigation in new design.

Numbers play an important rule in computer systems. Numbers are the basis and object

of computer operations. Remarkably, the main task of computers is computing, which

deals with numbers all the time.

Humans have been familiar with numbers for thousands of years, whereas the

representation of these numbers in computer systems is a new issue. A computer can

provide only finite digits for a number representation (fixed word length), though a

real number may be composed infinite digits.

Because of the trade-offs between word length and hardware size, and between

propagation delay and accuracy, various types of number representation have been

proposed and adopted. In this section, we introduce the Conventional Radix Number

System and Signed-Digit Number System, both belonging to Fixed-Point Number

System, as well as Floating-Point Number System [14]. Additionally, the Residue

16 CHAPTER 2. REVIEW OF LITERATURE

Number System (RNS) will be described with emphasis on its arithmetic advantages

in real life application in bioinformatics.

2.2.1Conventional Radix Number System.

A conventional radix number N can be represented by a string of n digits such as

(dn−1dn−2...d1d0)r with r being the radix. di ≤ i ≤ n − 1, is a digit and di∈ {0,1,...,r−1},

where the position of di matters, because 23 is a different number from 32. Such a

number system is referred to as positional weighted system [9]. Mathematically,

n−1

N = dn−1·wn−1+dn−2·wn−2+...+d0·w0 = ∑ di·wi (2.2)

i=0

with di being the weight of position i. If r if fixed, as in the fixed - radix number system

in our further discussion, wi =ri. Hence

n−1

N = dn−1·rn−1+dn−2·rn−2+...+d0·r
0 = ∑ di·r

i (2.3)

i=0

If r is not fixed, the number becomes a mixed-radix number.

To include the fraction into a fixed number N, let “.” be a radix point with the integer

part on left of it and fraction part on the right of it. There are n digits in the integer and

k digits in fraction, such as (dn−1dn−2...d1d0·d−1...d−k)r.

Then

n−1

N = ∑ di·ri (2.4)

i=−k

In the string of weighted digits (dn−1...d0·d−1...d−k)r, dn−1 is called the most significant

digit (MSD), and dk the least significant digit (LSD). A binary digit is referred to as a

bit, and the above two digits are MSD and LSD, respectively. In an electric circuit,

there are two voltage levels, “high”and “low”, which can easily represent two digits,

“1”and “0 ”, in binary number system. More bits are required to represent a number in

binary than in other radix systems. The number of bits required to encode a number ρ

is blog2ρc+1.

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 17

Here the downstile or floor of x bxc, is the greatest integer that is not greater than x,

where x can be an integer or real. (Likewise, the upstile or ceiling of x dxe, is the

smallest integer that is not smaller than x).

2.2.2 Conversion of Radix Numbers.

Computer systems recognize the binary, octal and hexadecimal numbers, however,

humans who are mostly the end users of these numbers, are most familiar with the

decimal number systems. Numbers can be converted from one radix system to another

before, after or in the middle of arithmetic operations. We present below the algorithms

for such conversions.

Given an integer,

(dn−1dn−2···d1d0
)
r ,

with base r other than 10, such as r = 2 in binary, r = 8 in octal or r = 16 in hexadecimal,

according to Equation 2.3, the following equations provides a method to convert it to

the corresponding decimal number N1·

 N1 = dn−1·rn−1+dn−2·rn−2+···+d0·r
0 (2.5)

That is, N1 can be obtained by performing the multiplication of each given digit, the

weight it carries and summing all the products.

In the reversed way, given a decimal number we can obtain the corresponding digits

in its binary, octal or hexidecimal representation by division,using r as the divisor

equal to 2,8 or 16, respectively.

Dividing both sides of Equation 2.5 by r, we obtained at the right - hand side the

remainder d0 and the quotient

 dn−1·rn−2+dn−2·rn−3+···+d1, (2.6)

18 CHAPTER 2. REVIEW OF LITERATURE

since d0 < r and other terms on the right - hand side are integer times of r. if we divide

the above quotient again by r, we will obtain the d1, and so forth. After performing the

n−1 times, dn−1 will become the quotient. If we divide it by r again, we will have

quotient 0, since any di < r and the last remainder dn−1. The conversion procedure

stops there.

Thus, to convert a decimal integer to a radix r number, the decimal number is initialized

as the quotient. This quotient is repeatedly divided by r and the remainder is recorded

until the quotient is zero. It should be noted that the LSB is generated first and the

MSB is generated last.

On the other hand, for a radix r fraction number,

(0·d−1d−2···d−k
)
r ,

with r 6= 10, the corresponding decimal number N2 can be obtained by

N2 = d−1·r−1+d−2·r−2+···+d−k·r
−k· (2.7)

Also, a decimal fraction can be converted to a radix r number such as a binary, octal

or hexadecimal number with r being 2, 8, 16, respectively.

Multiplying both sides Equation 2.7 by r, we have on the right - hand side

d−1+d−2·r−1+···+d−k·r
−k+1,

where d−1 is the integer part and others add up to the fraction part. Multiply the fraction

part by r again, we have

d−2+d−3·r−1+···+d−k·r
−k+2,

where d−2 is the part. Continuing the multiplication process and retaining the digits in

the integer part, the radix r number corresponding to a particular decimal fraction can

be obtained. The conversion process is stopped when either the fraction part becomes

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 19

zero or a predefined precision is reached. The digits following the radix point from left

to right with the integer digits, the earliest obtained first.

2.2.3Representation of Signed Numbers

As the signs of numbers are important and necessary for scientific computing, the

representation of signed numbers is discussed below.

In the decimal number system the sign of a number is indicated by a + or − symbol to

the left of the most - significant digit (MSD). In the binary number system, the sign of

a number is denoted by the left - most bit (LMB), which is equal to 0 for a positive

number, and 1 for a negative number.

In a general representation, let a conventional radix number A be an n digit signed

number with the MSD representing the sign. That is,

A = (an−1an−2···a1a0)r,

and the sign digit an−1 is decided as follows:

an

if A ≥ 0

if A < 0

(2.8)

For an integer number, the radix point is on the right of a0, that is,

(an−1an−2···a1a0·),

and that of a fraction number, the radix point is on the left of aa−2 such as

(an−2·an−2···a1a0)·

In particular, when an−1 6= 0, we say that A is a normalized fraction.

20 CHAPTER 2. REVIEW OF LITERATURE

In this review, we shall assume that A is an integer for our illustration. Let the

magnitude of A be;

|A| = (mn−1···m1m0)·

If an−1 = 0, A is a positive number, then,

A = (0an−2···a1a0)r

= (0mn−2···m1m0)r·

That is, number A has the same value as its true magnitude. Thus

 n−2 n−2

A = ∑ air
i = ∑ mir

i

 i=0 i=0

If an−1 = r − 1, A is a negative number, then the representation of the number will

depend on which format to use.

There are three representation of negative numbers:

1. sign - magnitude,

2. diminished radix complement, and,

3. radix complement.

Sign - Magnitude Representation

In the familiar decimal representation, the magnitude of both positive and negative

numbers is expressed in the same way. The sign symbol distinguishes a number as

being positive or negative. This scheme is called the sign - and - magnitude represen-

tation.

The same scheme can be used with binary number system in which case the sign bit is

0 or 1 for positive or negative numbers, respectively. In general, the sign - magnitude

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 21

representation for a number A is (r−1)mn−2mn−3···m1m0, where r is the radix of the

number. For example, if we use four - bit numbers, then for r = 2, −5 = (1)101, and for

r = 10,−234 = (9)234. Because of its similarity to the decimal sign representation, the

sign - and - magnitude representation is easy to understand. However this

representation is not well suited for use in computer arithmetic. More suitable number

representations are discussed below.

Diminished Radix Complement

The general representation of the diminished radix complement is shown below;

(r−1)mn−2mn−3···m1m0,

where

mi = (r−1)−mi,0 ≤ i ≤ n−2·

The diminished radix complement representation is also known as (r-1)’s complement

denoted as

A = rn −1−|A|,

where n is the total number of digits including the sign digit. For example, given r =

2,

A = 2n −1−|A|,

and we have the 10s complement representation as follows: −1010 : (1)0101·

Given r = 10, A = 10n −1−|A|, we have the following 90s complement representation.

−760210 : (9)2397·

Radix Complement

22 CHAPTER 2. REVIEW OF LITERATURE

A general representation of a radix complement is ((r − 1)mn−2mn−3···m1m0)+ 1, where

m = (r − 1)−mi, 0 ≤ i ≤ n−2 The radix complement representation is also

called r’s complement, denoted as A = rn −|A|, For example, given r = 2, A = 2n −|A|,

and we have the 20s complement representation as follows: −10102 : (1)0110· Given

r = 10, A = 10n −|A|, and we have the following 100s complement representation:

−760210 : (9)2398·

In the next few lines we shall discuss the representation of a fractional number using

the radix complement format.

If B = (0·d−1d−2···d−k)r, B is a positive number. It has the same value as the true

magnitude of B. Thus

−1

B = |B| = ∑ dj·r
i,

j=−k

comparing with Equation 2.4

n−1

N = ∑ di·r
i,

i=−k

n = 0 here.

If B = ((r − 1)·d−1d−2···d−k)r, B is negative. Then B has the following representa-

tions:

1. Sign - magnitude

(r−1)·d−1d−2··· p−k,

2. Diminished radix complement

(r− 1)·d−1d−2···d−k, where dj = (r− 1)−dj, −k ≤ j ≤ −1. The diminished

radix complement representation of B can be found by B = r1−r−k −|B|.

3. Radix complement

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 23

((r−1)·d−1d−2···d−k)+r−k, where d j =

(r−1)−dj, −k ≤ j ≤ −1.

The radix complement representation of B can be found by B = r1−|B|.

2.2.4The Residue Number System.

History of The Residue Number System.

The origin of Residue Number System (RNS) can be traced to the puzzle given by Sun

Tzu [61], a Chinese Mathematician and is illustrated as follows: How can we determine

a number that has the remainders 2, 3, and 2 when divided by the numbers 7, 5, and 3,

respectively? This puzzle, written in the form of a verse in the third century book, Suan

-ching by the Chinese scholar Sun Tsu, is perhaps the first documented use of number

representation using multiple residues. The answer to this puzzle, 23, is outlined in Sun

Tzu’s historic work. The puzzle essentially asked us to convert the residues

(2|3|2)RNS(7|5|3) into its decimal equivalent. Sun Tsu formulated a method for

manipulating these remainders (also known as residues), into integers. This method is

regarded today as the Chinese Remainder Theorem (CRT). The CRT, as well as the

theory of residue numbers, was set forth in the 19th century by Carl Friedrich Gauss

in his celebrated Disquisitiones Arithmetical [61].

This over 1700 - year - old number system is making waves in computing recently.

Digital systems implemented on residue arithmetic units may play an important role

in ultra - speed, dedicated, real - time systems that support pure parallel processing of

integer - value data due to its inherent features such as carry free addition, borrow free

subtraction, single step multiplication without partial product, parallelisms, and fault

tolerant. These interesting properties of RNS have lead to its widespread usage in

Digital Signal Processing (DSP) applications such as digital filtering, convolution,

correlation, Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), image

processing, cryptography, communications, and other highly intensive arithmetic ap-

plications.

24 CHAPTER 2. REVIEW OF LITERATURE

In the following, we give brief explanations on the above stated interesting inherent

properties of RNS:

• RNS supports carry-free arithmetic operations. In the WNS, when performing

addition, carries propagate from the Least Significant Bit(LSB) to the Most

Significant Bit (MSB). Carries are also borrowed from the MSB to the LSB

when performing subtractions. However,in RNS, unlike the WNS, carry-free

additions and borrow-free subtractions are performed. Also, when multiplying

numbers in the WNS, partial products, which must be added in order to obtain

the final result, is generated whereas single step multiplication without partial

product is carried out in RNS.

• RNS supports fast, parallel arithmetic operations. In RNS, digit by digit

computations can be performed since there is no ordering significance between

the digits. Thus, RNS supports parallel computations. As stated earlier, in RNS

a weighted number is first broken down into a set of residues (also known as

remainders). Arithmetic operations such as addition, subtraction, and

multiplication are then performed on each of the residues simultaneously or, in

parallel independent of one another. This advantage becomes even more

apparent when the number of routine operations increases.

• RNS supports error detection and correction. The inherent properties of RNS

suggest that a Redundant RNS (RRNS) can be used for self checking, error

detection, and correction in digital processors. Error detection and correction is

usually achieved by adding one or more redundant residue digits. As discussed

earlier, there is no interaction between the residue digits, so any error that occurs

in a single arithmetic module has a local effect and errors can easily be detected

or corrected. In fact, the faulty module can be disconnected and the remaining

modules redistributed between non-redundant and redundant digits. Many

research work has been carried out on fault tolerance in RNS.

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 25

However, RNS has not found wide spread usage in general purpose processors due to

difficulties associated with magnitude comparison, sign representation, overflow

detection, data conversion, moduli selection, division, and other complex arithmetic

operations.

2.2.5Definition of Residue Number System.

RNS is defined in terms of a relatively - prime moduli set (m1,m2,...,mL) that is GCD

(mi,mj) = 1 for i 6= j , where GCD means greatest common divisor. A binary number

X can be represented by the residues (x1,x2,...,xL), where xi = Xmod mi ,0 ≤ xi < mi. Such

a representation is unique for any integer X ∈ [0,M − 1], where M mi is the

dynamic range of the system. For a signed number system, any integer in

(−M/2,M/2) has a RNS n - tuple representation where xi = Xmod mi if X > 0, and (M

−|X|) otherwise. The signed RNS system is often referred to as a symmetric system.

Addition, subtraction, and multiplication in RNS are very efficient since digit by digit

computations are allowed. Additionally, there is no ordering significance between the

digits. However, division in RNS is rather complex since it is not a closed operation.

For example, given that X, Y, and Z have RNS representations [16]:

X −→ (x1,x2,...,xL) (2.9)

Y −RNS→ (y1,y2,...,yL) (2.10)

Z −RNS→ (z1,z2,...,zL) and supposing that op denotes

the operation +, -, or *, then

Z = X op Y, means

(2.11)

Zi = (XiopYi)mod mi (2.12)

26 CHAPTER 2. REVIEW OF LITERATURE

RNS if Z

belongs to ZM.

This means that no carry information need be communicated between residue digits.

This explains why RNS is applicable in high performance computing and thus widely

used in highly intensive DSP applications. In order to fully exploit these RNS

parallelisms, arithmetic units that efficiently implement the modular statement must

be found.

Moduli selection and data conversion are one of the greatest challenges for RNS

hardware design since the moduli choice affects the representational efficiency and the

complexity of the arithmetic algorithms. To that end, a set of efficient moduli must be

chosen and the moduli must be made as small as possible since it is the magnitude of

the largest modulus that dictates the speed of the RNS arithmetic operations. Figure

2.1 shows that the n output words (corresponding to the number of moduli) that are

generated by the binary to RNS converter (the front-end) are processed by the n-

parallel processors in the RNS signal processor block producing n output words, which

are converted to a conventional binary number by the RNS to binary converter (the

back-end). Generally speaking, any RNS architecture must be interfaced efficiently

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 27

with a binary/decimal number system and for that purpose data conversions are

required. As shown in Figure 2.1, the input operands must be first converted to RNS

(forward conversion) and after the arithmetic operations have been performed, the

output must be presented in the same way as the input (reverse conversion).

Figure 2.1: A typical RNS based Digital Signal Processor

In the next subsection, we briefly present Data Conversion and how the challenges

associated with data conversion are addressed.

2.2.6Data Conversion

Data conversion is one of the greatest challenges of RNS because the input operands

are provided in either standard binary or decimal format and must be converted to RNS

before the computation can be performed. Similarly, the final results must be

represented in the same way as the input operands, thus RNS to binary/decimal

conversion is very essential to a successful RNS design.

This implies that RNS based processors make heavy use of data conversions, which

are slow processes. For an RNS processor to compete favorable with a conventional

processor efficient data converters must be developed so that the RNS speedup will

.

.

Convert

er

RN

S

to
Binar

y
RN

S t

o Binar

y Convert

er

Input

Binary Numb

er

X
Output

Binary Numb

er

Y

.

Processor

3

Residu

e

Processor

2

Residu

e

Processor

1

Residu

e

28 CHAPTER 2. REVIEW OF LITERATURE

not be nullified by the conversion overhead. Data conversion can be divided into two

categories, namely- forward and reverse conversion. Relatively, the reverse conversion

is more complex but the forward conversion is not simple either. In the next section,

we provide simple explanations on each of these two categories.

2.2.7 Forward Conversion

The input operands to the RNS processor are either in the decimal or binary format,

and therefore need to be converted into their respective residues before they are used

for the computation. This work of converting from decimal/binary to residue is done

by the forward converter.

For any n - bit nonnegative integer X in the range 0 ≤ X ≤ 2n − 1 can be represented in

the weighted binary system as

N−1

 X = ∑ bi2
i (2.13)

i=0

where b ∈ (0,1)

The binary value of X can be converted into a set of n residues as x , where xi =

X mod mi . The values of xi can be found by the following steps:

From equation 4,

N−1

 X = ∑ bi2
i (2.14)

i=0

 Let X mod mi = |X
|
mi (2.15)

This implies

mi (2.16) |X
|
mi

mi

The term mi can be pre - computed and stored in a Look Up Table (LUT). Also for

any n - bit signed integer X in the range 0 ≤ X ≤ 2n − 1 , the residues of X can be

represented in the 20s - complement form as;

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 29

n−1

X20scompl = (bnbn−1...b1b0) = −bn2n + ∑ bi2i

1=0

(2.17)

Let xi = X mod mi (2.18)
n

 Then xi bn mi −|2n|
mi mi (2.19)

1=0mi

Again the value of mi can be pre - computed and stored in a LUT.

2.2.8The Reverse Conversion

Several reverse conversion techniques have been proposed in literature based on either

the traditional Chinese Remainder Theorem (CRT) or the Mixed Radix Conversion

(MRC) which may or may not rely on LUTs. The CRT is desirable because the data

conversion can be parallelized while MRC is a sequential process by its very nature.

However, many up to date RNS to binary/decimal converters are based on MRC due

to the complex and slow modulo - M operation (where M is the system dynamic range,

thus a rather large constant) required by CRT. In the next subsection, we present some

necessary information about CRT.

30 CHAPTER 2. REVIEW OF LITERATURE

2.2.9The Chinese Remainder Theorem

The magnitude of RNS number can be obtained from the CRT formula:

X(2.20)

M

where si
=

m
M

i and s−
i

1 is the multiplicative inverse of |si
|
mi

which implies that

Figure 2.2 gives the schematic diagram of the CRT. This diagram clearly shows the

inherent parallelism feature of the CRT [16]. The traditional CRT can be further

simplified when certain moduli sets (whether relatively prime or not) are utilized [62–

64]. Recently, CRT that requires mod −s2s3...sL instead of mod −s1s2...sL required by

the traditional CRT has been reported. This is called the New CRT and is presented in

[65]. Based on the New CRT, many efficient reverse converters have been presented

[62–64].

We briefly review the New CRT as follows [66]:

Figure 2.2: A schematic diagram of the CRT

X

M Sum X X

X

m

m

m s X S 1 1 1 1

X S s
2 2 2 2

X S s
33 3 3

3

2

1

−1

−1

−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 31

Given the residue number(x1,x2,...,xL) with respect to the moduli set (s1,s2,...,sL) , the

corresponding decimal number X is computed as:

X = x1+|k1s1(x2−x1)k2s1s2(x3−x2)+···+kL−1s1s2...sL−1(xL −xL−1)
|
s2s3...sL

The main drawback of CRT emerges from the required modulo-M operation which,

given that M is a rather large number, can be time consuming and rather expensive in

terms of area and energy consumption. The MRC is an alternative method which does

not involve the large modulo-M calculations.

2.2.10 The Mixed Radix Conversion.

Conversion from RNS to decimal is relatively fast using Mixed Radix Conversion

(MRC) as it does not involve the large modulo-M calculations present in CRT.

Suppose that we have an RNS number (x1,x2,...,xL) with the corresponding set of

moduli(m1,m2,...,mL) and a set of digits(a1,a2,...,aL) which are the Mixed Radix Digits

(MRDs), the decimal equivalent of the residues can be computed as follows:

 X = a1+a2m1+a3m1m2+···+anm1m2m3...mn−1 (2.21)

Figure 2.3: A schematic diagram of the MRC

2 nd term

nth term

1 st term a

SUM

1

a m
2 1

a *m *m *...*m n 1 2 n−1

X

.

.

.

.

.

32 CHAPTER 2. REVIEW OF LITERATURE

where the the mixed radix digits are given as follows:

a1 = x1

a

m2

a

m3

·

an

(2.22)
mn

Figures 2.4 and 2.3 show how the decimal equivalent and the MRDs of the residues

can be computed respectively [63]. For the MRD ai, 0 ≤ a1 < mi any positive number

in the interval can be uniquely represented. The only obstacle with the

MRC is that by its very nature, it is a sequential process. Several attempts have been

made to address this short-coming [67–69]. As stated earlier, data conversion and

moduli selection are the two most important issues for a successful RNS design. Thus,

this review will be incomplete without discussing moduli selection. Consequently,

moduli selection is the subject of next section.

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 33

Figure 2.4: MRDs schematic diagram

2.2.11 Moduli Selection

The forms and the number of moduli selected determine the speed, the dynamic range,

and the hardware complexity of the resulting RNS architecture. The magnitude of the

largest modulus dictates the speed of the arithmetic operations. The moduli selected

should therefore be made comparable in magnitude since there is no advantage in

further fragmentation as the speed is already being dictated by the magnitude of the

largest modulus. We present the classification of moduli selection in the following

subsections.

2.2.12 Unrestricted Moduli selection

Unrestricted moduli selection, which is one of the categories of moduli selection, is

presented first while the restricted moduli selection, the second category of moduli

selection is the topic of next subsection.

In an unrestricted moduli selection, prime numbers are chosen in sequence until the

desired dynamic range M is obtained. Thus mutually prime integer moduli are the

topmost among the RNS researchers’ design considerations. However, unrestricted

moduli selection does not support simple conversions and simple RNS arithmetic

a

a

SU

SU

SU

M

1 2 3 X X X X n

a
1

2

3

a n

.

M

SU

M

SU

M

SU

M

34 CHAPTER 2. REVIEW OF LITERATURE

computations. The solutions for realizing all arithmetic operations are based on ROMs,

in order to speed up execution. The cost of implementing ROM based RNS data

converters is generally very high. Thus, the need for restricted moduli selection [14,

70–72], which is discussed next.

2.2.13Restricted moduli Selection

These restricted moduli sets are based on powers - of - two related moduli. This class

of moduli set eliminates the need for ROMs in building RNS data converters [73].

Additionally, with the restricted moduli sets, the basic building blocks such as

multipliers,adders, binary - to - RNS converters, and RNS - to - binary converters can

also be easily realized using logic gates. Again, using restricted moduli sets, several

adder based data converters have been proposed. For example,

 In

general, moduli sets have some unique common features [70, 74]. These features are

discussed next.

2.2.14Expected Features of the Moduli Sets.

In selecting the moduli set {mis}i=1−L the following general rules are considered:

1. They should be relatively prime;

2. The moduli mis should be made as small as possible so that operations modulo

require minimum computational time;

3. The moduli mis should imply simple weighted to RNS and RNS to weighted

conversions as well as simple RNS arithmetic. Sets with all their moduli being

of the forms 2n1+1 and 2n2−1 and one of the form 2n3 satisfy the requirement of

simple conversions and simple arithmetic.

2.2. COMPUTER NUMBER SYSTEM AND ARITHMETICS. 35

4. The dynamic range should be large enough in order to avoid overflow;

5. The moduli mis should create a balanced decomposition of the Dynamic Range.

This implies that the differences between the number of bits of the different

moduli should be very small;

In the previous sections, we have presented a number of issues which are of paramount

importance to the design of RNS based processors. The next section talks about the

application of these arithmetic advantages of the RNS to bioinformatics in order to

speed up the computational challenge of the SWA.

2.2.15 Application of Residue Number System to Bioinformatics.

The arithmetic advantages associated with these number systems are employed to

address the computational challenge of the SWA in the next chapter. As we know, the

main tasks of a computer is computing which deals with numbers all the times. The

type of the number system used greatly impacts the performance and area of a digital

system, and must therefore be carefully looked at when implementing any thing that

has to do with computing.

Chapter 3

Design and Simulation

n this chapter, we outline the digital system implementation process and how this process is

used in the implementation of the Residue Number System - Smith - Waterman Algorithm

(RNS-SWA) architecture. The inherent features of RNS as shown in Section 2.2.4 are used to

speed up the computational challenge of the SWA.

3.1 Digital System Implementation Process

In general, a digital system is a sequential circuit made up of interconnected flip flops and gates.

The system is partitioned into modular subsystems, each of which performs some functional

task. The modules are constructed hierarchically from functional blocks such as registers,

counters, decoders, multiplexers, buses, arithmetic elements, flip - flops, and primitive gates.

Interconnecting the various subsystems through data and control signals results in a digital

system. In this digital system, we partition the system into two types of mod-

ules:

• datapath, and

• control unit.

34

 3.1. DIGITAL SYSTEM IMPLEMENTATION PROCESS

 3.1.1 Datapath

The Datapath is responsible for all the operations performs on the data. It includes:

I

37

• Functional units such as adders, shifters, multipliers, Arithmetic and Logic Units (ALUs)

and, comparators.

• Registers and, other memory elements for temporary storage of data and,

• Buses and, multipliers for the transfer of data between the different components in the

datapath through the data input lines. Results from the computation are returned through

the data output lines.

 3.1.2 Control Unit

The control unit (controller) is responsible for controlling all the operations of the data path by

providing appropriate control signals to the datapath at the appropriate times. At any one time,

the control unit is said to be in a certain state as determine by the content of the state memory.

The state memory is simply a register with one or more (D) flip - flops.

The control unit operates by transitioning from one state to another - one state per clock cycle,

and because of this behavior, the control unit is also referred to as finite - state machine (FSM).

The next - state logic in the control unit will determine what state to go to next in the next clock

cycle depending on the current state that the FSM is in, the control inputs, and the status signals.

In every state, the output logic that is in the control unit generates all the appropriate control

signals for controlling the datapath. The datapath, in return, provides status signals for the next

- state logic. Upon compilation of the computation, the control output line is asserted to notify

external devices that the value on the data output lines is valid.

The Control signals are binary signals that activate the various data - processing operations. To

activate sequence of such operations, the control unit sends the proper sequence of control

signals to the datapath.The control unit, in turn, receives status bits from the datapath [75].

These variables describe aspects of the state of the datapath. The control unit uses the variables

in defining the specific sequence of the operations to be performed.

In implementing a digital system, we made use of Programmable Logic Device (PLD), these

include Simple Programmable Device, Complex Programmable Logic Device (CPLD), and

Field Programmable Gated Array (FPGA). This can be thought of as a “blank slate” on which

you implement a specified circuit or system design using a certain process. This process requires

38

 CHAPTER 3. DESIGN AND SIMULATION

a software development package installed on a computer to implement a circuit design in the

programmable chip. The computer must be integrated with a development board or

programmable fixture containing the device.

Any digital logic design based on PLD must pass through several design steps called the design

flow as shown in Figure 3.1. The constituents of the module design flow are explained below.

3.1.3 The Module Design Flow

• Design Entry: This is the first programming step. The circuit or system design must be entered

into the design application software using text - based, graphic entry (schematic capture), or

state diagram description. Design entering is device independent. Text - based entry is

accomplished with a hardware description language (HDL) such as VHDL, Verilog, AHDL,

or ABEL. Graphic (Schematic) entry allows pre-stored logic functions from a library to be

selected, placed on the screen, and then interconnected to create a logic design. State diagram

entry requires specification of both the states through which a sequential logic circuit

progresses and the conditions that produce each state change.

Once the design has been entered, it is compiled. A compiler is a program the controls

the design flow process and translates source code in format that can be logically tested

or downloaded to a target device. The source code is created

 3.1. DIGITAL SYSTEM IMPLEMENTATION PROCESS

39

40

 CHAPTER 3. DESIGN AND SIMULATION

Figure 3.1: The Module Design Flow Diagram

during design entry, and the object code is the final code that actually causes the design to be

implemented in the programmable device.

• Functional simulation: The entered and compiled design is simulated by software to confirm

that the logic circuit functions as expected. The simulation will verify that correct outputs are

produced for a specified set of inputs. A device independent software tool for doing this is

generally called a waveform editor. Any flaws demonstrated by the simulation would be

corrected by going back to design entry and making appropriate changes.

• Synthesis: Synthesis is where the design is translated into a netlist, which has a standard form

and is device independent.

• Implementation: Implementation is where the logic structures described by the netlist are

mapped into the actual structure of the specific device being programmed. The

implementation process is called fitting or place and route and results in an output called a

bit - stream, which device dependent.

• Timing simulation: This step comes after the design is mapped into the specific device. The

timing simulation is basically used to confirm that there are no design flaws or timing

problems due to propagation delays.

• Download: Once a bitstream has been generated for a specific programmable device, it has

to be downloaded to the device to implement the software design in hardware. Some

programmable devices have to be installed in a special piece of equipment called a device

programmer or on a development board.

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 41

 3.2 Hardware Implementation of the RNS - SWA

Architecture

In this section we give a brief description of the SWA and its pseudo code. The section

also presents the hardware implementation procedures of the RNS-SWA architecture.

3.2.1 The Smith - Waterman Algorithm

The algorithm is explained below:

In calculating the local alignment, matrix H(i, j) is used to keep track of the degree of

similarity between the two sequences to be aligned, that is Ai and Bj. Each element of

the matrix H(i, j) is calculated according to the following equation:

 0H(i−1, j−1)+S(i, j)

H(i, j) = max Diagonal Entry (3.1)

d Upper Entry

d Left Entry

where:

H(i, j) is the maximum similarity score between the two sequences.

S(i, j) is the similarity score of comparing sequence Ai to sequence Bj and d is the gap

penalty of mismatch

Diagonal, Upper and Left entries are the matrices entry position relative to the current

H(i, j) calculation.

The pseudo code of the SWA is also shown below:

As stated in Chapter 2 under Section 2.1.1, the SWA computation involves three main

steps. The matrix fill step is computationally intensive and it is this very step that had

been accelerated in hardware by various researchers.

42 CHAPTER 3. DESIGN AND SIMULATION

In this section, we give a detail procedure of the hardware implementation of this step

using RNS as tool, making use of its carry free, modularity and one step multiplication

1 Declare an nxm similarity matrix;

2 Initialize the top row (i = 0) and left column (j = 0) with 0;

3 for i = 1;i < length(Sequence); i++ do

4 for j = 1; j < length(Sequence); j++ do

5H(i,j) =

max{0,H(i−1, j−1)+S(i, j),H(i−1, j)−d,H(i, j−1)−d};

6 end

7 end

8 Save index of term that contributed to the calculated value in H(i,j);

9 Find maximum value in nxm matrix;

10 Using saved indices in 8, traceback to find 0 encountered;

Algorithm 1: The Pseudo code of the Smith - Waterman Algorithm

features as outline in Section 2.2.4 above. The complete implementation of the SWA

involves basically three steps. These include:

1. The Binary/Decimal to RNS Conversion stage. This step is christened the RNS

Based SWA Forward converter (RSFC).

2. The RNS based arithmetic operations stage. This is also termed the RNS base

SWA microprocessor stage and,

3. The RNS magnitude comparison stage.

A block diagram of the RNS-SWA architecture is shown in Figure 3.2 with these three

stages layout. In the next section these three stages are implemented on a PLD system

employing the inherent arithmetic properties of RNS.

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 43

Figure 3.2: The RNS-SWA Architecture

3.2.2 The RNS-SWA Forward Converter

In this section, we shall describe the Residue Number System Based Smith-Waterman

Algorithm Forward Converter (RSFC), which is one of the components of the

hardware implantation of the RNS - SWA based architecture.

The RSFC is made up of the binary/decimal input values which comprise of

H(i− 1, j − 1), S(i, j), H(i− 1, j), H(i, j − 1) and d, as shown in the equation 3.1. These

binary/decimal values are converted into residues numbers by the Binary to RNS

Converter (BRC), which is termed the RNS forward conversion. The residues

produced are then used to execute carry free addition, borrow free subtraction by the

two RNS processors as shown in Figure 3.2. Each of the residue processors does

concurrent data processing, independent of each other, and thereby speeding up the

arithmetic operation involves in the calculation of the SWA.

44 CHAPTER 3. DESIGN AND SIMULATION

Based on the architecture shown in Figure 3.2, we present a customized memoryless

RNS forward converter using combinational logic; it does not need any memory or

Processing Elements (PEs) in its residue computation. The converter also works for

both signed and unsigned numbers.

3.2.3Selection of Moduli Set

As outline in Section 2.2.11, the forms and the number of moduli selected determine

the speed, the dynamic range, and the hardware complexity of the resulting RNS

architecture. The magnitude of the largest modulus dictates the speed of the arithmetic

operations.

In our work, we choose to use the moduli set {2n, 2n −1} for the following reasons:

firstly, it provides simpler designs for converters and magnitude - related operations,

thus is more applicable to our design; secondly, it is the most commonly used moduli

set in literature, using this moduli set makes our work comparable to most existing

designs.

In order to be able to use a moduli set with this smaller dynamic range, matrix

partitioning has been used based on the fact that the comparison of two long strings

can be done in a divide-and-conquer fashion. The moduli set used in the

implementation is m = {2n, 2n −1}, where n = 4 and, m = {16,15}, with a dynamic

range of M = 240.

The elements of this moduli set within the given dynamic range for signed numbers

are shown in Table 3.1

3.2.4The Memoryless RNS - SWA Forward Converter

As most existing devices and applications use binary representations, such as fixed

point or floating - point numbers, the first part of an RNS design is usually a converter

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 45

that converts binary numbers into residues format, which is usually termed as the

forward converter or residue generator.

Table 3.1: The Residues Table for Mod 16 and Mod 15 for signed numbers in

hexadecimals

Decimal Number Hexadecimal Number (Mod 16, Mod 15)

-120 88 (8, 0)

-119 89 (9, 1)

-118 8A (A, 2)

...

-3 FD (D, C)

-2 FE (E, D)

-1 FF (F, E)

0 00 (0, 0)

1 01 (0, 0)

2 02 (2, 2)

3 03 (3, 3)

...

117 75 (5, C)

118 76 (6, D)

119 77 (7, E)

Early efforts [16,23,61,76] on forward converters decompose the binary value into an

array of power - of - two values, and sum them up with modular adders, this concept

is outline in Section 2.2.7

In our implementation of the Memoryless Forward Converter, with the use of this

specific moduli set m = {2n, 2n −1}, makes the generation of the residue values greatly

simplified, just by the use of combinational logic without use of any memory. The

implementation steps outline below were used in accordance with the design flow

diagram shown in Figure 3.1.

1. The Design Entry: The memoryless RNS forward converter is entered into a

Quartus II version 4.0 VHDL application software using the graphic entry or

schematic capture tool embedded in the software. This process allows pre-stored

logic functions from the software library to be selected, placed on the screen, and

46 CHAPTER 3. DESIGN AND SIMULATION

then interconnected to create the logic design. The implemented diagram of the

converter is shown in Figure 3.3.

A decimal number, D, which is an 8 - bit number is partitioned into two nibbles

namely U and V. U (i.e. U0, U1, U2, U3) is the high order nibble of the binary

Figure 3.3: The Memoryless RNS - SWA Forward Converter

representation of D and V (i.e. V0, V1, V2, V3) is the low order nibble. For modulus

2n, the residue is simply the lowest order n bits. However for modulus 2n −1, the

forward conversion is not as simple.

In the case of modulus 15 the high order nibble is added to the low order nibble by

a parallel adder which is made up of one half adder and three full adders, labeled

Parallel Adder1 in Figure 3.3. The sum from Parallel Adder1, namely R1, R2, R3,

R4, forms an operand for a second stage of addition. The second operand for this

stage is derived from U3, the carry-out and the sum from Parallel Adder1 as per the

intervening logic shown between Parallel Adder1 and Parallel Adder2 in Figure

3.3. The sum from this stage (without the carry-out) constitutes the D mod 15

representation. D mod 16 is simply the nibble V.

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 47

2. Compilation: After the design entry is completed, it is compiled, in order to

translate the source object code into object code in a format that can be logically

tested or downloaded to a target device.

3. Functional Simulation: The next step that follows the compilation process is the

functional simulation. This is done by the software to confirm that the logic circuit

functions as expected. The simulation will verify that correct outputs are produced

for a specified set of inputs, and it is the waveform editor (a device independent

software tool) that is used to verify this.

4. Timing Simulation: Finally, timing simulation was done to verify that the circuit

works at the design frequency and that there are no propagation delays or other

timing problems that will affect the overall operation of the circuit when

implemented on the hardware device.

The output of Parallel-Adder2 and the four LSBs of the decimal number are the result

of the RNS representation of the decimal number in question.

The VHDL codes of the memoryless forward converter are shown below.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

LIBRARY work; ENTITY

MODULUS15_16 IS port (

V0 : IN STD_LOGIC;

V1 : IN STD_LOGIC;

V2 : IN STD_LOGIC;

V3 : IN STD_LOGIC;

U0 : IN STD_LOGIC;

U1 : IN STD_LOGIC;

U2 : IN STD_LOGIC;

U3 : IN STD_LOGIC;

P0 : OUT STD_LOGIC;

48 CHAPTER 3. DESIGN AND SIMULATION

P1 : OUT STD_LOGIC;

P2 : OUT STD_LOGIC;

P3 : OUT STD_LOGIC;

Q0 : OUT STD_LOGIC;

Q1 : OUT STD_LOGIC;

Q2 : OUT STD_LOGIC;

Q3 : OUT STD_LOGIC

);

END MODULUS15_16;

ARCHITECTURE bdf_type OF MODULUS15_16 IS component and_5

PORT(data0 : IN STD_LOGIC; data1 : IN STD_LOGIC; data2 : IN

STD_LOGIC; data3 : IN STD_LOGIC; data4 : IN STD_LOGIC;

result : OUT STD_LOGIC

); end component; component paralell_adder2b

PORT(R0 : IN STD_LOGIC;

R1 : IN STD_LOGIC;

R2 : IN STD_LOGIC;

R3 : IN STD_LOGIC;

F0 : IN STD_LOGIC;

F1 : IN STD_LOGIC;

F2 : IN STD_LOGIC;

F3 : IN STD_LOGIC;

A0 : OUT STD_LOGIC;

A1 : OUT STD_LOGIC;

A2 : OUT STD_LOGIC;

A3 : OUT STD_LOGIC); end component; component

parallel_adder1

PORT(V0 : IN STD_LOGIC;

V1 : IN STD_LOGIC;

V2 : IN STD_LOGIC;

V3 : IN STD_LOGIC;

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 49

U0 : IN STD_LOGIC;

U1 : IN STD_LOGIC;

U2 : IN STD_LOGIC;

U3 : IN STD_LOGIC;

R0 : OUT STD_LOGIC;

R1 : OUT STD_LOGIC;

R2 : OUT STD_LOGIC;

R3 : OUT STD_LOGIC;

C0 : OUT STD_LOGIC); end component; signal SYNTHESIZED_WIRE_17 :

STD_LOGIC; signal SYNTHESIZED_WIRE_18 : STD_LOGIC; signal

SYNTHESIZED_WIRE_19 : STD_LOGIC; signal SYNTHESIZED_WIRE_20 :

STD_LOGIC; signal SYNTHESIZED_WIRE_4 : STD_LOGIC; signal

SYNTHESIZED_WIRE_5 : STD_LOGIC; signal SYNTHESIZED_WIRE_6 :

STD_LOGIC; signal SYNTHESIZED_WIRE_7 : STD_LOGIC; signal

SYNTHESIZED_WIRE_21 : STD_LOGIC; signal SYNTHESIZED_WIRE_22 :

STD_LOGIC; BEGIN

P0 <= V0;

P1 <= V1;

P2 <= V2; P3 <= V3;

b2v_inst : and_5

PORT MAP(data0 => SYNTHESIZED_WIRE_17,

data1 => SYNTHESIZED_WIRE_18, data2 =>

SYNTHESIZED_WIRE_19, data3 =>

SYNTHESIZED_WIRE_20, data4 =>

SYNTHESIZED_WIRE_4, result =>

SYNTHESIZED_WIRE_6);

SYNTHESIZED_WIRE_4 <= NOT(U3);

SYNTHESIZED_WIRE_7 <= SYNTHESIZED_WIRE_5 OR

SYNTHESIZED_WIRE_6;

50 CHAPTER 3. DESIGN AND SIMULATION

SYNTHESIZED_WIRE_21 <= SYNTHESIZED_WIRE_7 XOR U3;

SYNTHESIZED_WIRE_22 <= U3 AND SYNTHESIZED_WIRE_21;

b2v_inst7 : paralell_adder2b

PORT MAP(R0 => SYNTHESIZED_WIRE_17,

R1 => SYNTHESIZED_WIRE_18,

R2 => SYNTHESIZED_WIRE_19,

R3 => SYNTHESIZED_WIRE_20,

F0 => SYNTHESIZED_WIRE_21,

F1 => SYNTHESIZED_WIRE_22,

F2 => SYNTHESIZED_WIRE_22, F3

=> SYNTHESIZED_WIRE_22,

A0 => Q0,

A1 => Q1,

A2 => Q2,

A3 => Q3);

b2v_inst8 : parallel_adder1

PORT MAP(V0 => V0,

V1 => V1,

V2 => V2,

V3 => V3,

U0 => U0,

U1 => U1,

U2 => U2,

U3 => U3,

R0 => SYNTHESIZED_WIRE_17,

R1 => SYNTHESIZED_WIRE_18,

R2 => SYNTHESIZED_WIRE_19,

R3 => SYNTHESIZED_WIRE_20,

C0 => SYNTHESIZED_WIRE_5);

END

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 51

VHDL codes of the memoryless RNS Forward Converter

 3.2.5 The RNS Based Smith - Waterman Processor

The next step after the binary/decimal conversion to RNS phase is the RNS base SWA

processor stage. This stage shows how the inherent properties of RNS are used to do

carry free arithmetics on the SWA. The design diagram consists of two multiplexers

(MUXs), each consisting of eight inputs and four outputs, two modulus 15 parallel

adder, one modulus 16 parallel adder and a control unit that controls the data selections

in the two MUXs.

Each of these components are implemented using the design flow diagram as outlined

in Figure 3.1 and then interconnected to get the total design. The residues produced by

the forward converter are added either to the S(i, j) or (-d), where d is 2 in this design,

which is the default value in literature. The Sequence of the addition is as follows:

Table 3.2: Control Unit Implementation Table and Excitation equations

52 CHAPTER 3. DESIGN AND SIMULATION

H(i-1,j-1) is added to S(i, j), (this is called the Diagonal addition), H(i-1, j) is added to

(- d), (this is called the Upper addition) and H(i, j - 1) is added to (-d), (this is called

the Left addition).

The logic in the control unit controls the multiplexer which in turn controls the

sequencing of these additions. The implementation table (using D flip - flops) for the

control unit is shown in Table 3.2 with their corresponding excitation equations.

The excitation equations from implementation Table 3.2 which are used to design the

control unit are: D0 = Q0 and D1 = Q0+Q1 which are obtained from the implementation

table.

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 53

The results of the forward converter are used to do carry free arithmetic operations in

accordance with Equation 3.1. The residues from the diagonal entry are added to S(i,

j) modulus 16 and S(i, j) modulus 15 at one clock cycle. At another clock cycle, the

upper addition is done. Here, the two complement addition is done on the H(i−1, j)

with −2 modulus 16 and modulus 15. The last two complement addition is done on

H(i, j−1) with −2 modulus 15 and modulus 16.

In Figure 3.4 the Modulus16 block in the diagram does the modulus 16 addition of the

data, the Modulu15 block does the modulus 15 addition and MUX-A and MUX-B do

the data selections. The residues from the forward conversion process are added to the

results Z01, Z11, Z22, Z33 of MUX-B of the Modulus16 adder. The results G1, G2,

G3, G4 without the carry bit are the residues of the binary number with respect to

modulus 16. Also the residues of the modulus 15 addition is obtained by first adding

the residues values from the forward converter to the results Z0, Z1, Z2,Z3 of the

MUX-A by the ParallelAdder. The results of the ParallelAdder are fed into the

Modulus15 adder which finally gives the residue values of the number as A1, A2, A3,

A4 as shown in Figure 3.4.

These results are also loaded into a register ready for onward processing. After the

design of the RNS - SWA Processor, it is compiled and then functional and timing

simulation is done. The functional simulation is done to confirm that the logic

functions as expected and also to verify that the correct outputs are produced for a

specified set of inputs. The waveform editor within the software was used to perform

this. The timing simulation is done to verify that the circuit works at the design

frequency and that there are no propagation delays or other timing problems that will

affect the overall operation of the circuit when implemented on the hardware device.

The functional, circuit resource utilization and timing simulation results are posted in

Chapter 4 under

54 CHAPTER 3. DESIGN AND SIMULATION

Figure 3.4: The Schematic Diagram of RNS - SWA processor

subsection 4.1.2.

3.2.6Residue Number System Comparator

The third component in the RNS - SWA architecture is the RNS Comparator. The RNS

Comparator finds the maximum of the H(i, j) which consists of the

0, H(i - 1, j - 1) + S(i, j), H(i - 1, j) -d, H(i, j - 1) - d entries

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 55

The schematic diagram of the RNS - SWA comparator is shown in Figure 3.5. It

compares the residues values of 0, H(i - 1, j - 1)+ S(i, j), H(i-1, j) and H(i, j - 1) to

obtain the maximum value which is then assigned to H(i, j) as the matrix score.

Figure 3.5: The Schematic Diagram of RNS Comparator The RNS comparator

architecture is made up of 256 words × 8 - bit ROM that contains the residue values

and their decimal equivalents of all the decimal numbers within the dynamic range.

The residue values, 8 - bit numbers, are used as the address of their various equivalent

decimal numbers. Figure below shows the VHDL codes of the ROM

and its content.

--This is a 256 X 8 bits ROM that stores the RNS

56 CHAPTER 3. DESIGN AND SIMULATION

--values at various address locations Library

ieee; use ieee.std_logic_1164.all; use

ieee.std_logic_arith.all; use

ieee.std_logic_unsigned.all;

---entity RNS_ROM2 is port(

Clock : in std_logic; Clear : in std_logic;

Enable : in std_logic;

Read : in std_logic;

A0,A1,A2,A3,A4,A5,A6,A7 : in std_logic; Data_out : out

std_logic_vector(7 downto 0)); end RNS_ROM2;

--architecture Behav of

RNS_ROM2 is type RNS_ROM2_Array is array (0 to 255) of

std_logic_vector(7 downto 0); constant Content: RNS_ROM2_Array := (

-- The ROM table representation of the RNS Values

0=>"00000000",

1=>"00010000",

2=>"00100000",

3=>"00110000", ...

250=>"00000000",

251=>"00000000",

252=>"00000000",

253=>"00000000",

254=>"00000000",

OTHERS => "ZZZZZZZZ"

); signal Index:std_logic_vector(7 downto 0); begin process(Clock, Clear,

Read, Index) begin

if(Clear = ’1’) then

Data_out <= "ZZZZZZZZ"; elsif(Clock’event and Clock = ’1’) then if Enable

= ’1’ then if(Read = ’1’) then

Index<=(A0&A1&A2&A3&A4&A5&A6&A7);

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 57

Data_out <= Content(conv_integer(Index)); else

Data_out <= "ZZZZZZZZ"; end if; end if; end if;

end process; end Behav;

These decimal numbers are read into two different registers at various clock cycles and

then compared by the RNS comparator.The RNS Comparator does two comparison,

i.e H(i - 1, j - 1) + S(i, j) with H(i - 1, j) -d to get the maximum value. And then this

maximum value is compared with H(i, j-1) -d to obtain the overall maximum value.

The value 0 is read from the ROM into the Register only when any of these three

H(i,j)’s entries are negative since the algorithm does not deal with negative values.

In this implementation, the H(i - 1, j - 1) + S(i, j) value is loaded into Register A by

asserting the Load control signal of the Register A (i.e., asserting LDA) at the first

clock cycle. The actual storing of the value in Register A occurs at the beginning of

the next active edge of the clock. In the next clock cycle, the H(i, j - 1) - d value is

loaded into Register B by asserting the Load control signal of the register (i.e.,

asserting LDB) and these two register contents are compared by the RNS Comparator.

The maximum of this first comparison is selected by the multiplexer (MUX) and

loaded into Register A, by asserting the LDA of the register the second time. Then the

last value of H, H(i - 1, j) - d, is loaded into Register B and the second comparison is

made between the two register contents, and then output the final comparison result as

the Max H(i, j), by asserting the TB3 which is also connected to the Done signal. The

Done control signal is to notify the external world that the execution of the algorithm

has been completed and that the data at the Data output is valid. Various tristate buffers

namely TB1, TB2, TB3 are asserted at appropriate times to control the data movement

within the datapaths. The RNS Comparator implementation table with the

corresponding excitation equations are shown in Table 3.3 The next state table is

shown in Table 3.4. Since there is a total of eight states, three flip-flops are needed to

encode them. For simplicity, the straight binary encoding scheme is used for encoding

the states. In the next state table, these eight states are assigned to eight rows, each

labeled with the state name and their encoding. In addition to the eight current states

listed down the rows of the table, the next state of the FSM is also depended on the

58 CHAPTER 3. DESIGN AND SIMULATION

status signal for the test condition(i.e. Start = 0) for when the condition is false and one

column with the label (Start = 1)for when the condition is true. The three flip-flops

Table 3.3: Control and Output Signals of the RNS Comparator

State

Q3Q1Q0

TB1 TB2 TB3 LDA LDB Done

0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0

0 1 0 1 0 0 0 0 0

0 1 1 0 1 0 1 0 0

1 0 0 1 0 0 0 1 0

1 0 1 0 1 0 1 0 0

1 1 0 0 0 1 0 0 1

and one status signal give us a total of four variables (or 24 different combinations) to

consider in the next-state table. Each next - state entry in the table is obtained from the

state diagram by looking at the corresponding current state and the edges leading out

from that state to see what the next is.

From the next -state table, we get the implementation table, as shown in Table 3.4.

Using D flip-flops to implement the FSM, the implementation is the same as the next

state table because the characteristic equation for the D flip-flop is Qnext = D. The only

difference between the two tables is that the bits in the entries mean something

different. In the next-state table, the bits in the entries (labeled Q1nextQ0next)are the

next states from the FSM to go to. In the implementation table, the bits (labeled

D2D1D0) are the inputs necessary to realize those next states.

From the implementation table, we derive the excitation equations. The excitation

equations are used to derive the next-state circuit for generating the inputs to the state

memory flip-flops. Since we have used three D flip-flops, three excitation equations

(one for D2, one for D1, and one for D0) are needed, as shown in Table 3.4. The two K

- maps for these two excitation equations are obtained from extracting the

corresponding bits from the implementation table. These three excitation equations are

depended on the three variables, Q1,Q0, and Start, which represent the current state and

status signal respectively. Having derived the excitation equations, it is trivial to draw

the next -state circuit based on these equations using the K - map method 3.5.

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 59

Table 3.4: The Next State and Implementation Tables of the Control Unit

Table 3.5: The K - Map and Excitation Equations the Control Unit

60 CHAPTER 3. DESIGN AND SIMULATION

The output logic circuit for the FSM is derived from the control word signals and the

states in which the control words are assigned to. Recall that the control signals control

the operation of the datapath, and now we are constructing the control unit to control

the datapath. So what the control unit needs to do is to generate and output the

appropriate control signals in each state to execute the instruction that is assigned to

that state. In order words, the control signals for controlling the operation of the

datapath are simply the output signals from the output logic circuit in the FSM. Once

we have derived the excitation and output equations, we simply can draw the control

unit circuit. The state memory simply consists of two D - flip-flops with asynchronous

clear signals. All the asynchronous clear signals are connected to the global Reset

signal. Both the next-state logic circuit and the output logic circuit are combinational

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 61

circuits and are constructed from the excitation equations and output equations

respectively. The control signal and the output equations from the Table 3.3 are shown

below:

TB1 = Q2 Q1Q0+Q2Q1 Q0+Q2Q1 Q0

TB2 = Q2Q1Q0+Q2 Q1Q0

TB3 = Q2Q1Q0

LDA = Q1Q0+Q0

LDB = Q2Q1 Q0

Done = Q2Q1Q0

3.2.7The Implementation Strategy of the RNS - SWA Comparator

The RNS - SWA comparator is entered into a Quartus II version 4.0 VHDL application

software using the graphic entry or schematic capture tool embedded in the software.

62 CHAPTER 3. DESIGN AND SIMULATION

Figure 3.6: Simulation results of the RNS Comparator

This process allows pre-stored logic functions from the software library to be selected,

placed on the screen, and then interconnected to create the logic design.

After the design entry is completed, it is compiled, in order to translate the source

object code into object code in format that can be logically tested or downloaded to a

target device.

The next step that follows the compilation process is the functional simulation. This is

done by the software to confirm that the logic circuit functions as expected. The

simulation will verify that correct outputs are produced for a specified set of inputs,

and it is the waveform editor (a device independent software tool) that is used to verify

this.

Finally, timing simulation was done to verify that the circuit works at the design

frequency and that there are no propagation delays or other timing problems that will

affect the overall operation of the circuit when implemented on the hardware device.

Figure 3.6 shows the simulation waveform results of the RNS - SWA comparator.

The hardware resource utilization of the implementation are shown in Table 3.6. Form

the table it is clear that the implementation is not hardware intensive as only 187 out

of 10,570, making a negligible 1 of the logic cell within the device are used when

3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 63

Table 3.6: The RNS - SWA Comparator Simulation status and circuit resource

utilization table

Resource Usage

Logic cells 187 / 10,570 (1 %)

Registers 36 / 12,506 (< 1 %)

Total LABs 27 / 1,057 (2 %)

Logic cells in carry

chains

8

User inserted logic cells 0

I/O pins 24 / 336 (7 %)

– Clock pins 5 / 16 (31 %)

Global signals 3

M512s 0 / 94 (0 %)

M4Ks 0 / 60 (0 %)

M-RAMs 0 / 1 (0 %)

Total memory bits 0 / 920,448 (0 %)

Total RAM block bits 0 / 920,448 (0 %)

DSP block 9-bit

elements

0 / 48 (0 %)

Global clocks 3 / 16 (18 %)

Regional clocks 0 / 16 (0 %)

Fast regional clocks 0 / 8 (0 %)

DIFFIOCLKs 0 / 16 (0 %)

SERDES transmitters 0 / 44 (0 %)

SERDES receivers 0 / 44 (0 %)

Maximum fan-out node SWA_COMPARATOR_A:inst|RNS_ROM2:inst10|Index[6]

Maximum fan-out 44

Total fan-out 741

Average fan-out 3.50

implemented on EP1S10F484C5 device (a Stratix family). Also the worst - case clock

-to -output delay (tco) between the specified source and destination points is 3.715 ns.

These results show that the implementation is both speed and hardware efficient and

will eventually improve the overall RNS - SWA architecture, thereby reducing the

computational cost associated with the algorithm.

Chapter 4

Simulation Results and Discussion

his chapter discusses the simulation results of the hardware implementation of

the RNS - SWA architecture.

After describing a digital system in VHDL either behaviorally or schematically,

simulation of the VHDL code is important for two reasons. First, we need to verify

that the VHDL code correctly implements the intended design, and second, we need

to verify that the designs meets its specifications. Before the VHDL model of a digital

system can be simulated, the VHDL code must first be compiled. The VHDL compiler,

also called an analyzer, first checks the VHDL source code or schematic

interconnections to see that it conforms to the syntax and semantic rules of VHDL.

The compiler also checks to see that references to libraries are correct. If the VHDL

code or schematics conforms to all of the rules, the compiler generates intermediate

code which can be used by simulator or by a synthesizer.

There are basically two types of simulations used in VHDL; Functional Simulation

and Timing Simulation. The functional simulation is done by the software to confirm

that the logic circuit functions as expected and the timing simulation is done to verify

that the circuit works at the design frequency and that there are no propagation delays

or other timing problems that will affect the overall operation of the circuit when

implemented on the hardware device.

63

4.1Simulation Results

As outlined in section 3.2.1,the complete implementation of the RNS - SWA

architecture involves basically three components. These components include:

T

4.1. SIMULATION RESULTS 65

• The Binary/Decimal to RNS Conversion stage. This step is christened the RNS

Based SWA Forward converter (RSFC).

• The RNS based arithmetic operations stage. This is also termed the RNS base

SWA microprocessor stage and,

• The RNS comparison stage.

The simulation results of the various components and then the complete unit of the

RNS - SWA architecture are explained in the following subsections.

4.1.1The Simulation Results of the RNS Forward converter

After the schematic design entry of the memoryless RNS (mRNS) forward converter

of the SWA architecture is completed, it is compiled, in order to translate the source

object code into object code in format that can be logically tested or downloaded to a

target device.

The next step that follows the compilation process is the functional simulation. The

simulation will verify that correct outputs are produced for a specified set of inputs,

and it is the waveform editor (a device independent software tool) that is used to verify

this.

Finally, timing simulation was done to verify that the mRNS forward converter circuit

works at the design frequency and that there are no propagation delays or other timing

problems that will affect the overall operation of the circuit when implemented on the

target hardware device. The simulation result of the mRNS forward converter are

shown in Figure 4.1.

66 CHAPTER 4. SIMULATION RESULTS AND DISCUSSION

Figure 4.1: Simulation result of the mRNS Forward Converter

The hardware timing and resource utilization summary of the mRNS Forward

Converter implementation are shown in Table 4.1 and Table 4.2 respectively. From

the

Table 4.1: Timing Results of the mRNS Forward converter

Type Slacks Required

Time

Actual

Time

From To

Worst-case minimum

tpd

N/A None 4.600 ns V0 P0

Worst-case tpd N/A None 9.100 ns U3 Q1

tables it is clear that the implementation is not hardware intensive as only 62% of the

logic cell within the device are used. Also The worst - case point -to - point delay (tpd)

between the specified source and destination points is 4.600ns making this converter

both area and speed efficient.

4.1. SIMULATION RESULTS 67

4.1.2 The Simulation Results of RNS - SWA microprocessor

After the RNS - SWA processor is designed and entered schematically into the design

software, it is compiled and simulated. The functional simulation as explained in the

previous subsection is done to confirm that the logic circuit functions as expected

Table 4.2: The mRNS Simulation status and circuit resource utilization table

Flow Status Successful - Tue Sep 07 00:00:49

2010

Revision Name MODULUS15_16

Top-level Entity Name MODULUS15_16

Family MAX7000AE

Total macrocells 20 / 32 (62 %)

Total macrocells 20 / 32 (62 %)

Total pins 20 / 36 (55 %)

Device EPM7032AELC44-4

User inserted logic

cells

0

Shareable expanders 12 / 32 (37 %)

Registers used 0 / 32 (0 %)

Parallel expanders 9 / 30 (30 %)

Number of pterms used 87

Maximum fan-out node V0

Maximum fan-out 18

Logic cells 20 / 32 (62 %)

I/O pins 20 / 36 (55 %)

Global signals 0

Cells using turbo bit 20 / 32 (62 %)

Average fan-out 3.44

– Dedicated input pins 0 / 2 (0 %)

– Clock pins 0 / 2 (0 %)

and the timing simulation was done also to verify that the circuit works at the design

frequency and that there are no propagation delays or other timing problems that will

affect the overall operation of the circuit when implemented on the hardware device.

The simulation of the RNS - SWA processor are shown in Figure 4.2.

Table 4.4 shows the flow summary of the RNS - SWA processor and the hardware

utilization figures. Less than 1% of logic cells are employed in this implementation,

making the implementation hardware efficient.

68 CHAPTER 4. SIMULATION RESULTS AND DISCUSSION

4.1.3The Simulation Results of the RNS Comparator

The schematic of RNS - SWA comparator is entered into a Quartus II version 4.0

VHDL application software using the graphic entry or schematic capture tool

embedded in the software. This process allows pre-stored logic functions from the

software library to be selected, placed on the screen, and then interconnected to create

the logic

Figure 4.2: Simulation results of the RNS - SWA Processor

Flow Status Successful - Tue Nov 23 23:57:09

2010

Revision Name RNS_PROCESSOR

Top-level Entity Name RNS_PROCESSOR

Family Stratix II

Total combinational

functions

27

Total registers 10

Total pins 26 / 343 (7%)

Total memory bits 0 / 419,328 (0 %)

DSP block 9-bit elements 0 / 96 (0 %)

Total PLLs 0 / 6 (0 %)

Total DLLs 0 / 2 (0 %)

Device EP2S15F484C3

4.1. SIMULATION RESULTS 69

Table 4.3:

The RNS - SWA processor Simulation status and circuit resource utilization table

design.

After the design entry is completed, it is compiled, in order to translate the RNS SWA

comparator source code into object code in format that can be logically tested or

downloaded to a target device.

What follows the compilation stage is the functional and timing simulation. These are

done to check the circuit functionalities and timing constraints of the design in the

target device. Figure 4.3 shows the simulation results of the RNS - SWA comparator.

The hardware resource utilization of the implementation are shown in Table 4.4

Total ALUTs 34 / 12,480 (1 %)

70 CHAPTER 4. SIMULATION RESULTS AND DISCUSSION

Figure 4.3: Simulation results of the RNS Comparator

Form the table it is clear that the implementation is not hardware intensive as only 187

logic cell within the device are used when implemented on EP1S10F484C5 device (a

Stratix family). Also the timing results show that the worst - case clock -to -output

delay (tco) between the specified source and destination points is 3.715 ns. These

results show that the implementation is both speed and hardware efficient and will

eventually improve the overall RNS - SWA architecture, thereby reducing the

computational cost associated with the algorithm.

4.1.4The Simulation Results of the Complete RNS - SWA Archi-

tecture

The complete design of the RNS - SWA architecture is obtained when all the three

stages outline above are interconnected to form a single unit using the schematic

capture tool embedded in the VHDL software. This was done and functional and

timing simulations carryout again on this single unit to get the overall resource

utilization and delay within the design.

Table 4.4: The RNS - SWA Comparator Simulation status and circuit resource

utilization table

Resource Usage

4.1. SIMULATION RESULTS 71

Logic cells 187 / 10,570 (1 %)

Registers 36 / 12,506 (< 1 %)

Total LABs 27 / 1,057 (2 %)

Logic cells in carry

chains

8

User inserted logic cells 0

I/O pins 24 / 336 (7 %)

– Clock pins 5 / 16 (31 %)

Global signals 3

M512s 0 / 94 (0 %)

M4Ks 0 / 60 (0 %)

M-RAMs 0 / 1 (0 %)

Total memory bits 0 / 920,448 (0 %)

Total RAM block bits 0 / 920,448 (0 %)

DSP block 9-bit

elements

0 / 48 (0 %)

Global clocks 3 / 16 (18 %)

Regional clocks 0 / 16 (0 %)

Fast regional clocks 0 / 8 (0 %)

DIFFIOCLKs 0 / 16 (0 %)

SERDES transmitters 0 / 44 (0 %)

SERDES receivers 0 / 44 (0 %)

Maximum fan-out node SWA_COMPARATOR_A:inst|RNS_ROM2:inst10|Index[6]

Maximum fan-out 44

Total fan-out 741

Average fan-out 3.50

Table 4.5 shows the summary results of the final implementation. The hardware timing

and resource utilization of the implementation shows that the implementation is fast

and efficient. For only 189 out of 12,480, making a negligible 1% of the logic cells

within the device are used when implemented on EP2S15F484C3 device (a Stratix

family). Also the worst - case clock -to -output delay (tco) between the specified source

and destination points is 6.006 ns, a maximum clock speed of 185.53 MHz.

The VHDL codes for the complete RNS - SWA design are posted at Appendix A.

72 CHAPTER 4. SIMULATION RESULTS AND DISCUSSION

4.1.5 Performance Evaluation of the RNS - SWA Processor

In order to evaluate the performance of the design, it was compared with the work of

Laiq Hasan and Zaid Al - Ars. Their work was chosen because of implementaTable

4.5: Flow summary and circuit resource utilization table of the RNS - SWA

Architecture

Flow Status Successful - Mon Nov 29 13:48:01

2010

Revision Name FINAL_SWA_PROCESSOR

Top-level Entity Name FINAL_SWA_PROCESSOR

Family Stratix II

Total combinational

functions

143

Total registers 46

Total pins 32 / 343 (9 %)

Total memory bits 0 / 419,328 (0%)

DSP block 9-bit elements 0 / 96 (0 %)

Total PLLs 0 / 6 (0 %)

Total DLLs 0 / 2 (0 %)

Device EP2S15F484C3

Total ALUTs 189 / 12,480 (1 %)

Device EP2S15F484C3

Total ALUTs 189 / 12,480 (1 %)

tion similarity and the facts that their work is currently claimed by them as the best

implementation of the SWA.

In [1], Laiq Hasan and Zaid Al - Ars in 2007, used the GNU profiler, gprof, to profile

the SWA in order to get the function that consumes most of the computation time.

Table 4.6 shows the profiling results that was obtained. The GNU profiler gives

information about the number of times, each function is called and the number of

Clocks Ticks consumed by each function. The code was run on the Intel Pentium - IV

(3.2

GHz) processor, for which the time period of the clock is

1

= = 0·312ns

3·2GHz

4.1. SIMULATION RESULTS 73

The matrix fill function, labeled “fill_matrix_2 ”in Table 4.6 was identify as the the

most called function and consumed 72.33% of the total runtime, making it the right

candidate to be implemented in hardware. In the table, the fill_matrix_2 function took

5.23ms of the total time. This is actually the time when the code is repeated 100 times.

So the actual time consumed by the matrix fill stage function is

ms

Also in Laiq Hasan and Zaid Al - Ars [1] 2007, the post place and route simulation

Table 4.6: L. Hasan and Z. Al-rs Profiling Results for the Software implementation of

the SWA

Function No. of

Calls

No. of Clocks

Ticks

No. of Clock

Cycles

Total

(ms)

time % Time

Init_Matrix 100 71944 2302208 0.718 9.93

fill_Matrix_1 100 32392 1036544 0.323 4.47

fill_Matrix_2 4800 524040 16769280 5.23 72.33

trace_back_1 100 31232 999424 0.312 4.31

trace_back2 500 64944 2078208 0.648 8.96

showed that the total delay of their hardware implementation was 0·0146µs, whereas

the time consumed by it’s software equivalent was 52·32µs. Their runtime

improvement over that of the software implementation was calculated to be 3582% =

35.82 times faster. The device utilization summary shows that 29 out of 13696 slices

are used, so the design was claimed to be very efficient in terms of resource utilization.

In our implementation, the same matrix fill stage, labeled as “fill_matrix_2 ”in the

table 4.6 was implemented in hardware using RNS as a tool to further improves upon

the computational cost associated with the fill_matrix_2. The VHDL implementation

was run on the Intel(R) Pentium(R) Dual CPU T2330 1.60 GHz(2 CPUs) processor,

for which the time period of the clock is

1

 = = 0·625ns

1·6GHz

The flow summary of the implementation of the RNS - SWA is shown in Table 4.5.

The timing simulation of the RNS - SWA architecture shows that the critical delay is

equal to 6.006ns.

74 CHAPTER 4. SIMULATION RESULTS AND DISCUSSION

The comparison between the total delay of [1] hardware implementation, denoted as

Hardward1_runtime, and the hardware implementation of our work, denoted as

Hardware2_runtime, expressed as a percentage, will give us the percentage runtime

improvement over their work and thereby gives us a good ground to argue.

Mathematically, the percentage runtime improvement ratio of the RNS - SWA

implementation to that of [1] is calculated as follows:

 " 1 #

 %Runtime Ratio = Hardware2_runtime ∗100%
1

Hardware1_runtime

Substituting our hardware implementation total delay denoted as

Hardware2_runtime and that of [1], denoted as Hardware1_runtime, we

obtain;

%Runtime Ratio 100%

%Runtime Ratio = 243%

It will also be of interest to find the percentage difference gained in term of

speed of our implementation over that of [1]. This percentage gain is

calculated mathematically below:

" Hardware12_runtime − Hardware11_runtime #

%Runtime Improvement over Hardware1 =∗100%
1

Hardware1_ru

ntime Substituting our hardware implementation total delay denoted as

Hardware2_runtime and that of [1], denoted as Hardware1_runtime, we

obtain;

%Runtime Improvement over Hardware1 100%

%Runtime Improvement over Hardware1 = 143·09%

For the purpose of completeness and to be able to show the superiority of

our work over the software implementation, our hardware implementation

4.1. SIMULATION RESULTS 75

result is also compared with the total time consumed by it’s software

equivalent as shown below:

"

1 − Software1_runtime
#

Hardware2_runtime

%Runtime Improvement over Software =∗100%
1

Soft

ware

_ru

ntim

e

where Software_runtime is the software implementation delay. Substituting our

hardware implementation total delay and that of the software’s delay, we obtain;

%Runtime Improvement over Software 100%

%Runtime Improvement over Software = 871029%

%Runtime Improvement over Software = 8710·29 times

From the above three comparison, these deductions can be made:

• Our hardware implementation is 243% better in term of speed over that of [1].

• In term of percentage difference gained in term of speed, our implementation is

143% superior over that of [1].

• In comparing our implementation with it’s software profiling results, ours is

871029% better in term of speed, that is 8710.29 times faster.

What these outstanding results mean is that there is hope for the bioinformatics

community so far as accurate sequence alignment is concern. The total time that will

be needed to alignment two strings of DNA using the RNS - SWA architecture will be

improved by 8710.29 times more than it’s software equivalent implementation or

243% faster than that of the hardware implementation done by [1].

76 CHAPTER 4. SIMULATION RESULTS AND DISCUSSION

These results also support the fact that RNS is a good platform to implement the SWA,

since it has a high prospect of improving the overall computational cost and the

hardware foot print of the algorithm.

74 CHAPTER 4. SIMULATION RESULTS AND DISCUSSION

Chapter 5

Conclusion and Future Research

Directions

 5.1 Conclusion

his thesis work investigated the possibility of accelerating the Smith - Waterman

algorithm (SWA) using the arithmetic advantages of the Residue Number System (RNS).

RNS is such an integer system exhibiting the capabilities that support parallel computation,

carry free addition, borrow-free subtraction, and single step multiplication without partial

product. The theoretical analysis shows the advantages of implementing the SWA on an RNS

platform. These advantages are exploited in this implementation to build an RNS - SWA

architecture in order to reduce the computational time of the SWA. The RNS - SWA

architecture consists of a Binary to RNS converter, two RNS processors, and RNS to Binary

converter cum comparator.

As most existing devices and applications use binary representations, such as fixed point or

floating - point numbers, the first part of an RNS design is usually a converter that converts

binary numbers into residues format, which is usually termed as the forward converter or

residue generator. Due to this, a customized memoryless RNS forward converter was

implemented to convert the input binary representation into their respective residues forms. The

RNS processors then use these residues to do

75

76 CHAPTER 5. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

T

fast arithmetic operations in accordance with the SWA arithmetic operations. Various control

units are built to control the sequencing of these arithmetic operations and the asserting of

control signals and status signals at appropriate times.

The results obtained from the processors were converted back to their equivalent binary values

by the use of 256 words × 8 - bits ROM and then comparison was done to get the maximum

matrix score. The VHDL implementation of the RNS - SWA architecture shows that our

implementation is superior in term of speed as compare to [1]. The runtime ratio of our

implementation to that of [1] expressed as a percentage shows a 243% improvement. In terms

of comparison with the hardware implementation done by [1], our hardware implementation is

superior by 143%.

Also, comparing our hardware implementation result with it’s software equivalent shows a

tremendous improvement of 871029%, that is 8710.29 times faster. These results also support

the fact that RNS is a good platform to implement the SWA, since it has a high prospect of

improving the overall computational cost and the hardware foot print of the algorithm. In terms

of hardware utilization, our implementation consumed 189 logic cells when implemented on

EP2S15F484C3 device (a Stratix family).

What these findings mean is that there is hope for the bioinformatics community so far as

accurate sequence alignment is concern. The total time that will be needed to alignment two

strings of DNA using the RNS - SWA architecture will be improved by 8710.29 times more

than it’s software equivalent implementation. These findings support the fact that RNS is good

platform to implement the SWA, and therefore will go a long way to improve the computational

constraints of the SWA.

80

 5.2. FUTURE RESEARCH DIRECTIONS

 5.2 Future Research Directions

• Since RNS is showing a high prospect in accelerating the SWA, it will be of interest

to implement these finding in VLSI platform.

• The nature of the moduli set use in an RNS implementations has effect on the speed

and area of that device. It is of interest to investigate the possibility of implementing

the SWA using different moduli set and then select the best moduli set in terms of

speed, area or both.

• It is of interest to research into the possibility of building a RNS-based SWA

architecture with fault tolerant capabilities to detect and correct errors using

Redundant Residue Number System (RRNS).

• It could be a good research effort to investigate whether there will be gains in terms

of speed and area if the SWA were implemented using Polynomial Residue

Number System (PRNS).

• It will be of research interest to find out whether there will be better results in terms

of speed and area if the SWA is implemented on moduli set with a wide dynamic

range that can take care of a long string of DNA without doing the divide- and -

conquer approach assumed in this thesis.

Bibliography

[1] L. Hasan and Z. Al-Ars, “Performance improvement of the Smith - Waterman

Algorithm,” Annual workshop on circuits, systems and signal processing

(ProRISC), (Veldhoven, The Netherlands), November 29 - 30 2007.

[2] F. Ahmed, “Pruning algorithm to reduce the search space of the SmithWaterman

algorithm,” 2005.

[3] A. Davidson, A fast pruning algorithm for optimal sequence alignment.

 BIBLIOGRAPHY 81

Technical Report, University of Alberta, Edmonton, Alberta, Canada.

[4] K. H. Lee, C. Yu, K. H. Kwong, and P. H. W. Leong

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “A basic local

search tool.,” Molecular Biology, vol. 215, 1990.

[6] T. Smith and M. Waterman, “Identification of common molecular subsequences,”

Journal of molecular biology, vol. 147, pp. 195 – 197, 1981.

[7] R. Zimmermann, “Binary Adder Architectures for cell-based VLSI and their

Synthesis,” PhD Dissertation, Swiss Federal Inst. of Technology, 1997.

[8] N. Szabo and R. Tanaka, Residue Arithmetic and its Application to Computer

Technology. New York: MC-Graw-Hill, 1967.

[9] B. Parhami, “Generalized signed-digit number system: a unifying framework for

redundant number representation,” IEEE Transactions on Computers, Vol. 39, No.

1, pp. 89-98, 1990.

78

[10] T. Chen, “Maximal redundancy signed-digit systems,” Proceedings of IEEE

Symposium on Computer Arithmetic, pp. 296-300, Urbana, June, 1985.

[11] A. D. Booth, “A signed binary multiplication technique,” Quaterly J. Math. Appl.

Math., Vol. 4, part 2, pp. 236-240, 1951.

[12] K.D.Tocher, “Technique for multiplication and division for automatic binary

computers,” Quaterly J. Math. Appl. Math., Vol. 11, part 3, pp. 364384, 1958.

[13] J. E. Robertson, “A new class of digital division methods,” IEEE Trans. on

Computers, Vol. c-7, pp. 218-222, September, 1958.

[14] B. Parhami, Computer Arithmetic and Hardware Designs. New York, Oxford

University press, 2000.

[15] G. Jaberipur and S. Gorgin, “An improved maximally redundant signed digit

adder,” Journal of Computers and Electrical Engineering, Vol. 36, pp.

491-502, 2010.

[16] F. Taylor, “Residue arithmetic: A tutorial with examples,” IEEE comp. magazine,

pp. pp. 50 – 62., May 1984.

[17] H. Garner, “The Residue Number System,” IRE Trans. on Electronic Computers,

pp. 140-147, 1959.

[18] F. Barsi and P. Maestrini, “Error correcting properties of redundant residue number

systems,” IEEE Transactions on Computer, Vol. c-22, No. 3 pp.307-315, March,

1973.

[19] L. Yang and L. Hanzo, “Redundant Residue Number System Based Error

Correction Codes,” IEEE Vehicular Technology Conference, Vol. 3, pp.1472-1476,

Atlantic, NJ, USA, 2001.

[20] V. Goh and M. Sidiqqi, “Multiple Error Detection and Correction based on

Redundant Residue Number Systems,” IEEE Trans. on Communications,

Vol. 56, No. 3, pp. 325-330, 2008.

 BIBLIOGRAPHY 83

[21] ITRS, “International technology roadmap for semiconductors, emerging

research devices,” ITRS report (Executive Summary),

http://www.itrs.net/Common/2007ITRS, 2007.

[22] T. Toivonen and J. Heikkila, “Video filtering with fermat number theoretic

transforms based on residue number systems,” IEEE Trans. on Circuits

and Systems for Video Tech., Vol. 16, No. 1, pp. 92-101, 2006.

[23] W. Jenkins, “Techniques for residue-to-analog conversion for

residueencoded digital filters,” IEEE Trans. on Circuits and Syst., Vol.

CAS-25, pp. 555-562, July, 1978.

[24] R. Conway and J. Nelson, “Improved RNS fir filter architectures,” IEEE

Trans. on Circuits and Systems-II: Express briefs, Vol. 51, No.1, pp. 26-

28, January, 2004.

[25] W. Jenkins and B. Leon, “The use of residue number systems in the design

of finite impulse response digital filters,” IEEE Trans. on circuit and

systems, vol. 24, pp. 191-200, 1977.

[26] P. Fernandez, A. Garcia, J. Ramirez, L. Parrilla, and A. Lloris, “A

RNSbased matrix-vector-multiply fct architecture for dct computation,”

Proceedings of 43rd IEEE Midwest Symposium on Circuits and Systems,

pp.350-353, Lansing, MI, August, 2000.

[27] P. Fernandez, A. Garcia, J. Ramirez, and A. Lloris, “Fast RNS-based

2DDCT computation on field-programmable devices,” Proceedings of the

IEEE Signal Processing Systems Workshop, pp.365-373, LA, USA,

October, 2000.

[28] F. Taylor, “An RNS discrete fourier transform implementation,” IEEE

Trans. Acoust. Speech, Signal Process, Vol. 38, No. 8, pp. 1386-1394,

1990.

84 BIBLIOGRAPHY

[29] F. Taylor and C. Huang, “A comparison of DFT algorithms using a residue

arithmetic architecture,” International Journal of Computer Electronic

Engineering, September, 1982.

[30] J. Vaccaro, B. Johnson, and C. Nowacki, “A systolic discrete fourier

transform using residue number systems over the ring of gaussian

integers,” IEEE International Conference on Accoustics, Speech and

Signal Processing, pp. 1157-1160, 1986.

[31] C. H. Huang and F. J. Taylor, “High speed DFTs using residue numbers,”

in Proc. IEEE 1980 Conf Acoust., Speech, Signal Processing, Denver, Co,

pp. 238-241, April, 1980.

[32] M. Soderstrand, W. Jenkins, G. Jullien, and F. Taylor, Residue Number

System Arithmetic: Modern Applications in Digital Signal Processing.

IEEE press, Piscataway, NJ, USA, 1986.

[33] R. Merrill, “Improving digital computer performance using residue number

theory,” Trans. on Electronic Computers, vol. 13, issue 2, pp. 93-101,

1964.

[34] T. Stouraitis and V. Paliouras, “Considering the alternatives in low-power

design,” IEEE Circuits and Devices Magazine, Vol. 17, issue 4, pp. 22-29,

2001.

[35] K. Parhi, “Low-energy csmt carry generators and binary adders,” IEEE

Trans. VLSI Syst., vol. 7, pp. 450-462, December, 1999.

[36] T. Callaway and E. S. Jr., “Power-delay characteristics of cmos

multipliers,” in Proc. 13th Symp. Computer Arithmetic (ARITH13),

Asilomar, USA, July 1997, pp. 26-32, 1997.

[37] P. Landman and J. Rabaey, “Architectural power analysis: The dual bit

type method,” IEEE Trans. VLSI Syst., vol. 3, pp. 173-187, June, 1995.

 BIBLIOGRAPHY 85

[38] V. Paliouras and T. Stouraitis, “Signal activity and power consumption

reduction using the logarithmic number system,” in Proc. 2001 IEEE Int.

Symp. Circuits and Systems (ISCAS), vol. 2, pp. 653-656, 2001.

[39] V. Paliouras and T. Stouraitis, “Low-power properties of the logarithmic

number system,” in Proc. 15th Symp. Computer Arithmetic (ARITH15),

2001.

[40] W. A. C. Jr., “One-hot residue coding for low delay-power product cmos

design,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 303-313, March, 1998.

[41] M. Ibrahim, “Novel digital filter implementations using hybrid rns-binary

arithmetic,” Signal Processing, vol. 40, no. 2-3, pp. 287-294, 1994.

[42] A. Z. Baraniecka and G. A. Jullien, “Residue number system

implementation of number theoretic transforms in complex residue rings,”

IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-28, pp. 285-

291, June, 1980.

[43] M. R. Schroeder, Number Theory in Science and Communication.

Germany: Springer-Verlag, 1984.

[44] K. Y. Lin, B. Krishna, and H. Krishna, “Rings, fields, the chinese

remainder theorem and an extension,” IEEE Trans. Circuits Syst. II , vol.

41, pp. 641?655, October, 1994.

[45] A. Madhukumar, F. Chin, and A. Premkumar, “Residue number system

based multicarrier CDMA for broadband mobile communication systems,”

Proceedings of 43rd IEEE Midwest Symposium on Circuits and Systems,

pp.536-539, Lansing, MI, August, 2000.

[46] A. Madhukumar and F. Chin, “Performance of a residue number system

based cdma system over bursty communication channels,” Journal of

Wireless Personal Communications, Springer, Netherlands, Vol. 22, No.

1, pp.89-102, 2002.

86 BIBLIOGRAPHY

[47] T. Shahana, R. Babita, K. Jacob, and S. Sasi, “RRNS-convolutional

concatenated code for OFDM based wireless communication with direct

analog-to-residue converter,” Proceedings of World Academy of Science,

Engineering and Technology, Vol. 35, pp.652-659, 2008.

[48] L. Yang and L. Hanzo, “Residue number system assisted fast

frequencyhopped synchronous ultra-wideband spread-spectrum multiple-

access: A design alternative to impulse radio,” IEEE Journal on Selected

Areas of Communications, 20 (9), pp. 1652-1663, 2002.

[49] L. Hasan and Z. Al-Ars, “Accurate profiling and acceleration evaluation of

the Smith - Waterman Algorithm using the MOLEN platform,”

[50] P. Hogeweg, “Simulating the growth of cellular forms.,” Simulation, vol.

31, pp. 90–36, 1978.

[51] M. Borah, R. S. Bajwa, S. Hannenhalli, and M. J. Irwin, “A SIMD solution

to the sequence comparison problem on the MGAP,” 1994.

[52] D. P. Lopresti, “Rapid implementation of a genetic sequence comparator

using field programmable logic arrays,” pp. 138–152.

[53] H. Y. Liao, M. L. Yin, and Y. Cheng., “A parallel implementation of the

Smith-Waterman Algorithm for Massive Sequences Searching.,”

September 1-5, 2004.

[54] S. A. et al, “Bio-sequence database scanning on a GPU.”

[55] A. D. B. et al, “The UCSC kestrel parallel processor,” vol. 16, no. 1, pp.

80–

92.

[56] S. Margerm, “Reconfigurable computing in real world applications,” Cray

Inc., FPGA and Structured ASIC, February, 7, 2006.

 BIBLIOGRAPHY 87

[57] T. Oliver, B. Schmidt, and D. Maskell, “Hyper customized processor for

bio-sequence database scanning on FPGAs,” 2005.

[58] J. Chiang, J. Shaw, M. Studniberg, and K. Truong, “Hardware accelerator

for genomic sequence alignment,” August 30 - September 3, 2006.

[59] Y. Yamaguchi, T. Maruyana, Y. Miyajima, and A. Konagaya, “High speed

homology search using run-time reconfiguration,” 2002.

[60] B. H. W. Yang, A parallel Implementation of Smith - Waterman Sequence

Comparison Algorithm. Stanford University, USA, December 6, 2002.

[61] M. A. Soderstrand, W. K. Jenkins, G. Jullien, and F. J. Taylor, “Residue

number system arithmetic,” Modern Applications in Digital Signal

Processing, 1986.

[62] K. Gbolagade and S. Cotofana, “A residue to binary converter for the

moduli set {2n+2,2n+1,2n},” Nov., 2008.

[63] K. Gbolagade and S. Cotofana, “Residue number operands to decimal

conversion for 3 - moduli set,” August, 2008.

[64] Y. Wang, X. Song, M. Aboulhamid, and H. Shen:, “Adder based residue

to binnary number converter for {2n −1,2n,2n +1},” IEEE Trans. on Signal

processing, vol. 50, no. 7, July 2002.

[65] Y. Wang, “New chinese remainder theorems,” vol. 1 of in proc. 32nd

Asilomer Conf. signals, systems computing, pp. pp. 165 – 171, 1998.

[66] Y. Wang, “Residue - to - Binary converters based on New Chinese

Remainder Theorems,” IEEE Trans. on circuits and systems II: Analog to

Digital signal processing, vol. 47, no. 3, March, 2000.

[67] K. Gbolagade and S. Cotofana, “Generalized matrix method for efficient

residue to decimal conversion,” No. 3 in Proceedings of 19th IEEE Asia

88 BIBLIOGRAPHY

Pacific Conference on Circuits and Systems (APCCAS 2008), (Macao,

China), pp. 1414 – 1417, Dec., 2008.

[68] H. M. Yassine and Moore, “Improved mixed - radix conversion for residue

number system architectures,” vol. vol. 138 of Proceeding IE Pt. G, pp.

120 – 124, Feb. 1991.

[69] K. Gbolagade and S. Cotofana, “An O(n) Residue Number System to

Mixed Radix Conversion,” (To appear) in proceeding of the 2009 IEEE

International Symposium on Circuits and Systems (ISCAS 2009),

(Taiwan,

China), May 2009.

[70] M. Abdallah and A. Skavantzo, “A systematic approach for selecting

practical moduli sets for residue number systems,” proceedings of the 27th

Southeastern Symposium on System theory, pp. 445 – 449, 1995.

[71] A. B. Premkumar, “An RNS to binary converter in a three moduli set with

common factors,” IEEE Trans. on circuits and systems - II analog and

digital signal proc., vol. 42, no. 4, pp. 98 – 301, 1995.

[72] W. Wang, M. Swamy, M. O. Ahmad, and Y. Wang, “A study of theResidue

- to -Binary converters for the three - moduli set,” IEEE Trans. on circuits

and systems I. Fundamental theory and Applications, vol. 50.

[73] A. Prekumar, “Improved memoryless rns forward converter based on the

periodicity of residues,” IEEE Trans. on circuits and systems - II, Express

briefs, vol. 53, no. 2, 2006.

[74] M. Abdallah and A. Skavantzos, “On multimuduli residue number systems

with moduli of the forms ,” IEEE Trans., on circuits and

systems, vol. vol. 52, no. 7, pp. 1253 – 1266, 2005.

[75] M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals.

New Jersey: Tom Robbins, 2000.

 BIBLIOGRAPHY 89

[76] R. Conway and J. Nelson, “Fast converter for 3 moduli RNS using new

property of CRT,” IEEE Trans. Comput., vol. 48, pp. 852-860, August,

1999.

Appendix A

VHDL Codes implantation of the

complete RNS - SWA Architecture

LIBRARY ieee;

USE ieee.std_logic_1164.all;

LIBRARY work;

ENTITY FINAL_RNS_PROCESSOR IS port

(

H7 : IN STD_LOGIC;

H6 : IN STD_LOGIC;

H5 : IN STD_LOGIC;

H4 : IN STD_LOGIC;

H3 : IN STD_LOGIC;

H2 : IN STD_LOGIC;

H1 : IN STD_LOGIC;

H0 : IN STD_LOGIC;

S00 : IN STD_LOGIC;

S01 : IN STD_LOGIC;

S02 : IN STD_LOGIC;

S03 : IN STD_LOGIC;

S10 : IN STD_LOGIC;

S11 : IN STD_LOGIC;

S12 : IN STD_LOGIC;

S13 : IN STD_LOGIC;

READ : IN STD_LOGIC;

START : IN STD_LOGIC;

CLOCK : IN STD_LOGIC;

CLEAR : IN STD_LOGIC;

CLOCK1 : IN STD_LOGIC;

CLEAR1 : IN STD_LOGIC;

DONE : OUT STD_LOGIC;

MAX : OUT STD_LOGIC_VECTOR(7 downto 0)

);

86

END FINAL_RNS_PROCESSOR;

ARCHITECTURE bdf_type OF FINAL_RNS_PROCESSOR IS

component rns_processor

91

PORT(H7 : IN STD_LOGIC;

H6 : IN STD_LOGIC;

H5 : IN STD_LOGIC;

H4 : IN STD_LOGIC;

H3 : IN STD_LOGIC;

H2 : IN STD_LOGIC;

H1 : IN STD_LOGIC;

H0 : IN STD_LOGIC;

S00 : IN STD_LOGIC;

S01 : IN STD_LOGIC;

S02 : IN STD_LOGIC;

S03 : IN STD_LOGIC;

S10 : IN STD_LOGIC;

S11 : IN STD_LOGIC;

S12 : IN STD_LOGIC;

S13 : IN STD_LOGIC;

CLEAR : IN STD_LOGIC;

CLOCK : IN STD_LOGIC;

Q3 : OUT STD_LOGIC;

Q2 : OUT STD_LOGIC;

Q1 : OUT STD_LOGIC;

Q0 : OUT STD_LOGIC;

P3 : OUT STD_LOGIC;

P2 : OUT STD_LOGIC;

P1 : OUT STD_LOGIC; P0 : OUT STD_LOGIC

); end component;

component rns_comparator

PORT(A0 : IN STD_LOGIC;

A1 : IN STD_LOGIC;

A2 : IN STD_LOGIC;

A3 : IN STD_LOGIC;

A4 : IN STD_LOGIC;

A5 : IN STD_LOGIC;

A6 : IN STD_LOGIC;

A7 : IN STD_LOGIC;

READ : IN STD_LOGIC;

CLOCK1 : IN STD_LOGIC;

START : IN STD_LOGIC;

CLOCK : IN STD_LOGIC;

CLEAR : IN STD_LOGIC;

APPENDIX A. VHDL CODES IMPLANTATION OF THE COMPLETE RNS - SWA

88 ARCHITECTURE

DONE : OUT STD_LOGIC;

MAX : OUT STD_LOGIC_VECTOR(7 downto 0)

); end

component;

signal SYNTHESIZED_WIRE_0 : STD_LOGIC;

signal SYNTHESIZED_WIRE_1 : STD_LOGIC;

signal SYNTHESIZED_WIRE_2 : STD_LOGIC;

signal SYNTHESIZED_WIRE_3 : STD_LOGIC;

signal SYNTHESIZED_WIRE_4 : STD_LOGIC;

signal SYNTHESIZED_WIRE_5 : STD_LOGIC;

signal SYNTHESIZED_WIRE_6 : STD_LOGIC;

signal SYNTHESIZED_WIRE_7 : STD_LOGIC;

BEGIN

b2v_inst : rns_processor

PORT MAP(H7 => H7,

H6 => H6,

H5 => H5,

H4 => H4,

H3 => H3,

H2 => H2,

H1 => H1,

H0 => H0,

S00 => S00,

S01 => S01,

S02 => S02,

S03 => S03,

S10 => S10,

S11 => S11,

S12 => S12,

S13 => S13,

CLEAR => CLEAR1,

CLOCK => CLOCK1,

Q3 => SYNTHESIZED_WIRE_0,

Q2 => SYNTHESIZED_WIRE_1,

Q1 => SYNTHESIZED_WIRE_2,

Q0 => SYNTHESIZED_WIRE_3,

P3 => SYNTHESIZED_WIRE_4,

P2 => SYNTHESIZED_WIRE_5,

P1 => SYNTHESIZED_WIRE_6,

P0 => SYNTHESIZED_WIRE_7);

b2v_inst3 : rns_comparator

PORT MAP(A0 => SYNTHESIZED_WIRE_0,

A1 => SYNTHESIZED_WIRE_1,

A2 => SYNTHESIZED_WIRE_2,

A3 => SYNTHESIZED_WIRE_3,

A4 => SYNTHESIZED_WIRE_4,

A5 => SYNTHESIZED_WIRE_5,

A6 => SYNTHESIZED_WIRE_6,

A7 => SYNTHESIZED_WIRE_7,

93

READ => READ,

CLOCK1 => CLOCK,

START => START,

CLOCK => CLOCK1,

CLEAR => CLEAR,

DONE => DONE, MAX => MAX);

END;

Appendix B

VHDL Codes implantation of the RNS -

SWA Comparator

LIBRARY ieee;

USE ieee.std_logic_1164.all;

LIBRARY work;

ENTITY Comparator1 IS port (

LOAD : IN STD_LOGIC;

CLOCK : IN STD_LOGIC;

CLEAR : IN STD_LOGIC;

A : IN STD_LOGIC_VECTOR(7 downto 0);

B : IN STD_LOGIC_VECTOR(7 downto 0);

MAX : OUT STD_LOGIC_VECTOR(7 downto 0)

);

END Comparator1;

ARCHITECTURE bdf_type OF Comparator1 IS

component rns_reg_a

PORT(clock : IN STD_LOGIC; aclr : IN STD_LOGIC; aload :

IN STD_LOGIC; data : IN STD_LOGIC_VECTOR(7

downto 0); q : OUT STD_LOGIC_VECTOR(7 downto 0)

); end component;

component rns_reg_b

PORT(clock : IN STD_LOGIC; aclr : IN STD_LOGIC; aload :

IN STD_LOGIC; data : IN STD_LOGIC_VECTOR(7

downto 0);

90

q : OUT STD_LOGIC_VECTOR(7 downto 0)

); end component;

component rns_comp

PORT(dataa : IN STD_LOGIC_VECTOR(7 downto 0); datab : IN

STD_LOGIC_VECTOR(7 downto 0); ageb : OUT STD_LOGIC

); end component;

component rns_mux

PORT(sel : IN STD_LOGIC; data0x : IN

STD_LOGIC_VECTOR(7 downto 0); data1x : IN

95

STD_LOGIC_VECTOR(7 downto 0); result : OUT

STD_LOGIC_VECTOR(7 downto 0)

); end component;

signal SYNTHESIZED_WIRE_5 : STD_LOGIC_VECTOR(7 downto 0); signal

SYNTHESIZED_WIRE_6 : STD_LOGIC_VECTOR(7 downto 0); signal

SYNTHESIZED_WIRE_2 : STD_LOGIC; BEGIN

b2v_inst2 : rns_reg_a

PORT MAP(clock => CLOCK, aclr =>

CLEAR, aload => LOAD, data => A, q =>

SYNTHESIZED_WIRE_6);

b2v_inst3 : rns_reg_b

PORT MAP(clock => CLOCK, aclr =>

CLEAR, aload => LOAD, data => B, q =>

SYNTHESIZED_WIRE_5);

b2v_inst4 : rns_comp

PORT MAP(dataa => SYNTHESIZED_WIRE_5, datab

=> SYNTHESIZED_WIRE_6, ageb =>

SYNTHESIZED_WIRE_2);

b2v_inst5 : rns_mux

9A2PPENDIX B. VHDL CODES IMPLANTATION OF THE RNS - SWA COMPARATOR

PORT MAP(sel =>

SYNTHESIZED_WIRE_2, data0x =>

SYNTHESIZED_WIRE_6, data1x =>

SYNTHESIZED_WIRE_5, result =>

MAX);

END;

