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Application of Residue Number System 
to Smith - Waterman Algorithm 

Edward Yellakuor Baagyere 

Abstract 

 

n this thesis, we propose a hardware implementation of the Smith - Waterman 

Algorithm using Residue Number System (RNS). 

One of the biggest challenges confronting the bioinformatics community as at now is 

fast and accurate sequence alignment. The Smith - Waterman algorithm (SWA) is one 

of the several algorithms used in addressing some of these challenges. Though very 

sensitive in doing sequence alignment, the SWA is not used in real life applications 

due to the computational cost involve in using this algorithm. Hence heuristics 

methods such as BLAST and FASTA are used though they do not guarantee accurate 

sequence alignments. We seek to address the computational challenge associated with 

the SWA by using the inherent arithmetic advantages of RNS. The RNS is such an 

integer system exhibiting the capabilities that support parallel computation, carry free 

addition, borrow-free subtraction, and single step multiplication without partial 

product. Base on some of these properties, a hardware implementation of the SWA is 

done in VHDL, a hardware description Language. In order to be able to use moduli set 

with a small dynamic range, matrix partitioning has been used on the fact that the 

comparison of two long strings of DNA can be done in a divide - and - conquer 
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xi 

approach. A sample 4 - bit system implementation improves the overall speed of the 

SWA. The implementation was on FPGA device EP2S15F484C3, a Stratix II family, 

and it consumes 189 logic cells. The worst - case clock - to - output delay (tco) between 

the specified source and destination points is 6.006 ns. These outstanding results when 

compared with what is in literature shows that the implementation is both area and 

speed efficient and thereby improve the speed constraints of the SWA. When 

compared with the work of L. Hasan and Z. Al-lrs (2007) this implementation has 

improves the computational time 243%, when calcualted in terms of percentage ratio, 

thereby making this implementation better than the state of the art hardware 

implementation of the SWA. In terms of comparison with the hardware 

implementation done by [1], our hardware implementation is superior by 143%. 

Also, comparing our hardware implementation result with it’s software equivalent 

shows a tremendous improvement of 871029%, that is 8710.29 times faster. 

What these outstanding results mean is that there is hope for the bioinformatics 

community so far as accurate sequence alignment is concern. The total time that will 

be needed to alignment two strings of DNA using the RNS - SWA architecture will be 

improved by 8710.29 times more than it’s software equivalent implementation. 

These results also support the fact that RNS is a good platform to implement the SWA, 

since it has a high prospect of improving the overall computational cost and the 

hardware foot print of the algorithm. 





 

 

Chapter 1 Introduction 

1.1 Background 

ioinformatics is a field in life science that is gaining much attention in recent 

times and advances are made daily in this area of research. The social 

consequences of progress in this area are very enormous as the promise of finding cure 

to hitherto incurable diseases, prolonging life, and understanding the beginning and 

end of life are becoming more and more probable [2]. These prospects are achievable 

by the technique of sequence alignments. 

The biological sequence alignments for sequence of Deoxyribonucleic Acid (DNA) or 

protein present an insight into the natural mutations occurring in the strings [3]. Also, 

similarities between two sequences might suggest evolution from the same genetic tree 

or mutations over time that occurred in one of the sequences in the given pair of 

sequences. Biological information from these sources are of significant importance to 

researchers in the field of bioinformatics, and therefore research in that direction 

cannot be over emphasized. 

All organisms have cells and these cells consist of genetic information that make a 

particular organism different and unique from another organism. These genetic 

informations are carried by a chemical known as DNA in the nucleus of the cell. The 

DNA 

1 

of an organism consists of an interwoven strands that forms a “double helix”. Each 

strand is built from residues of molecules called nucleotide. 

A nucleotide consists of two parts viz: a phosphate group and a sugar group called 

deoxyribose, these two parts form the ribbon-like backbone of the DNA strand and are 

identical in all nucleotides. There are four different kinds of bases, which define the 

four different nucleotides viz: Adenine (A), Cytosine (C), Guanine (G) and, Thymine 

B 



2 CHAPTER 1. INTRODUCTION 

 

(T). The complete human genome contains approximately 3 million of these base pairs 

[4]. In order to discover the functional, structural and evolutionary relationship 

between two or more sequences of DNA, it is necessary to find the similarity between 

the sequences. This is done by finding the edit distance between the said sequence in 

question and the process is called Sequence Alignment. 

There are several algorithms for doing sequence alignment. The commonly used ones 

are Fast Alignment Search Tool - All (FASTA) and Basic Local Alignment Search 

Tool (BLAST) [5]. FASTA and BLAST are fast algorithms which prune the search 

involved in a sequence alignment using heuristic methods, but they are not sensitive, 

that is, they don’t guarantee exact alignments. 

The Smith - Waterman Algorithm (SWA) [6] is very sensitive algorithm but it has a 

very high computational cost. Due to this high computational cost, the real life 

application of the SWA is much limited and the benefits that would have accrued from 

the field of bioinformatics are yet to come to the fore. For an example, the time and 

space complexity of this algorithm for comparing two sequences is O(nm), where m 

and n are the lengths of the two sequences being compared. Although this 

computational complexity may not seem threatening, the growth in the genetic bio - 

sequence database is exponential. Thus the complexity that concerns the real world 

applications is really O(knm), where k represents the exponential growth of the size in 

genetic databases [1]. 

The high computational cost of the SWA has a direct link with the carry propagation 

chains inherent to the Weighted Number Systems (WNS), e.g., binary number systems, 

decimal number systems. Because of this intrinsic performance limiter for arithmetic 

units and processors built based on WNS, several attempts have been made to over- 

1.1. BACKGROUND 

come the speed limitations by following two main research avenues as follows: 

The carry propagation through the conventional ripple-carry adders, which is the main 

contributor to the addition delay, can be accelerated by using fast addition techniques 

[7]. Those make use of specialized circuitry able to de - serialize the carries calculation 



3 

 

via methods like carry look ahead (CLA), carry-skip, prefix calculation, anticipated 

calculation, etc. These fast addition techniques are very important in improving 

arithmetic units performance because other arithmetic operations such as 

multiplication and division are based on addition, thus their delay heavily depends on 

the addition delay. For non redundant number systems, e.g., traditional binary and 

decimal number systems, the delay of such fast adders is logarithmically bounded by 

the number of operand digits [8]. 

An alternative way to speed up the addition process is to make use of number system 

with specialized carry characteristics, i.e., proposing alternative number representation 

systems, e.g., Redundant Signed Digit (RSD) number representation systems [9–15] 

and Residue Number Systems (RNS) [14]. The sought characteristic of such 

alternative number systems is the capability to provide support for carry-free addition 

as this directly results in high-speed arithmetic units. 

The RNS has many inherent interesting features. The RNS [8,16,17] is such an integer 

system exhibiting the capabilities to support parallel, carry-free addition, borrow-free 

subtraction, and single step multiplication without partial product. Moreover, it 

provides support for fault tolerance [18–20], which is becoming a crucial aspect as it 

is getting more and more expensive/difficult to fabricate perfect (predictable) devices 

in the context of deep sub-micron fabrication technology [21]. 

Due to some of these inherent features of RNS, it had wide spread application in Digital 

Signal Processing (DSP) applications, e.g., Digital Filtering [22–25], Convolutions, 

Correlations, Discrete Cosine Transform (DCT) [26, 27], Discrete Fourier Transform 

(DFT) [28–31], Fast Fourier Transform (FFT) [16, 24, 32, 33]. Additionally, RNS has 

also been applied in low power design [14,34–41], number theory [42–44], and digital 

communications [45–48]. 

With the increase in computing power and the rigorous research into computer number 

system, Residue Number System, and computer arithmetic, coupled with the decrease 

in the cost of memory, analyzing the enormous datasets generated by genome 

sequencing is becoming practicable in ways never thought possible. Even though such 

advances are encouraging and much needed, we are still several years away from the 
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immense amount of computing power that would be required to analyze these datasets 

completely, thus the need for further research in this field. 

The RNS can be used to improve the performance of SWA. The SWA involves the 

basic RNS supported arithmetic operations such as addition, subtraction and 

multiplication. Since it has been shown in literature both theoretically and 

experimentally that using these basic arithmetic operations, RNS is faster than the 

conventional binary number system, we suggest RNS as an alternative candidate for 

improving the performance of the SWA. 

1.2Problem Statement 

The SWA is the most accurate sequence alignment algorithm available, but it is also 

the most expensive computationally, in particular for long sequences of DNA or 

protein [6]. Thus it guarantees exact matches between sequences, at the cost of long 

processing time. For example, when profiled on the MOLEN platform, a specific 

function within the SWA consumed 78% of the total run time [49]. Faster algorithms 

like FASTA and BLAST are available, but they achieve high speed at the cost of 

accuracy. The uncompromising computational cost of the SWA calls for a hardware 

acceleration of this algorithm using the inherent arithmetic advantages of Residue 

Number System (RNS) and that is what this research seeks to address. 

1.3Objective of Study 

The objectives of the research are the following under listed: 

1.4. SPECIFIC OBJECTIVE 

1. To solve the computational cost associated with the SWA by using computer 

arithmetics and RNS. 

2. To further simplify the SWA and build a RNS-based SWA architecture with 

lower area footprint. 
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1.4 Specific Objective 

To construct a RNS - based SWA processor using appropriate computer arithmetics 

techniques and RNS properties to solve the computational and area footprint associated 

with the SWA. 

1.5 Justification 

The SWA is a well-known algorithm for performing local sequence alignment; that is, 

for determining similar regions between two nucleotide or protein sequences. Instead 

of looking at the total sequence, the Smith-Waterman algorithm compares segments of 

all possible lengths and optimizes the similarity measure. 

One motivation for local alignment is the difficulty of obtaining correct alignments in 

regions of low similarity between distantly related biological sequences, because 

mutations have added too much “noise” over evolutionary time to allow for a 

meaningful comparison of those regions. Local alignment avoids such regions 

altogether and focuses on those with a positive score. Another motivation for using 

local alignments is that there is a reliable statistical model for optimal local 

alignments. 

However, the SWA algorithm is fairly demanding of time and memory resources; in 

order to align two sequences of lengths m and n, O(kmn) time and space are required. 

As a result, it has largely been replaced in practical use by the BLAST algorithm; 

although not guaranteed to find optimal alignments. These limitations therefore call 

for the hardware acceleration of this algorithm using the inherent arithmetic 

advantages of RNS, in order to explore the full potentials that the SWA has to offer to 

the bioinformatics community. 
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1.6Scope of Study 

This research involves using RNS and computer arithmetics capabilities to solve the 

computational and space footprint that limits the real life application of the SWA. 

1.7Design Methodology 

The main objective of the research is to construct a RNS - based SWA processor to 

solve the computational and area footprint associate with the SWA. 

This objective is achieved by using appropriate computer arithmetics and RNS 

properties. Further, the hardware implementation of the design is done using Very 

High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), a 

hardware programming language. 

VHDL is a general - purpose hardware description language which can be used to 

describe and simulate the operation of a wide variety of digital systems, ranging in 

complexity from a few gates to an interconnection of many complex integrated 

circuits. Also VHDL can describe a digital system at several different levels - 

behavioral, data flow and structural. 

The results from the implementation are used to calculate the speed and area cost of 

the SWA and comparison is then made with the non - RNS based implementations in 

literature. 

1.8. ORGANIZATION OF THESIS 

1.8 Organization of Thesis 

This chapter provides an overview of the research undertaken in this thesis. The 

remainder of the work is organized as follows: 
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Chapter two, titled “Review of Literature”, summarizes works that have been done in 

the area of bioinformatics, sequence alignment algorithms, computer arithmetics, 

Residue Number System and, Data conversions types. 

Chapter three, “Design and Simulation”, gives a detail description of the use of RNS 

and computer arithmetics to solve the computational and area cost associated with the 

SWA. The chapter further presents a hardware implementation of the RNS - based 

SWA architecture using VHDL and using Quartus II version 4.0 VHDL to compile 

and simulate the codes. 

The next chapter is chapter four. It titled “Discussion of Simulation Results”, which 

deals with discussion of simulation results and then comparison between the RNS 

based SWA implementation and the non - RNS based is made. The thesis is completed 

with “Conclusion and Recommendation” which is captured under chapter five. This 

chapter gives a brief summary of the thesis findings and further research directions. 



 

 

Chapter 2 

Review of Literature 

n this section, we seek to review literature on bioinformatics with key reference to 

sequence alignment methods, Smith - Waterman Algorithm (SWA), and the 

available hardware acceleration methods used to speed up the SWA. We shall also 

review literature on computer arithmetics, Residue Number System (RNS), and Data 

conversions types. 

2.1 Bioinformatics 

Bioinformatics is the application of information technology and computer science to 

the field of molecular biology. The term bioinformatics was coined by Paulien 

Hogeweg in 1979 [50] for the study of informatics processes in biotic systems. Its 

primary use since at least the late 1980s has been in genomics and genetics, particularly 

in those areas of genomics involving large-scale DNA sequencing. 

Now, Bioinformatics entails the creation and advancement of databases, algorithms, 

computational and statistical techniques, and theory to solve formal and practical 

problems arising from the management and analysis of biological data. Over the past 

few decades rapid developments in genomics and other molecular research 

technologies and developments in information technologies have combined to produce 

a tremendous amount of information related to molecular biology. It is the name given 

to these 

8 

mathematical and computing approaches used to glean understanding of biological 

processes. Common activities in bioinformatics include mapping and analyzing DNA 

I 
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and protein sequences, aligning different DNA and protein sequences to compare them 

and creating and viewing 3-D models of protein structures. 

The primary goal of bioinformatics is to increase our understanding of biological 

processes. What sets it apart from other approaches, however, is its focus on 

developing and applying computationally intensive techniques (e.g., pattern 

recognition, data mining, machine learning algorithms, and visualization) to achieve 

this goal. Major research efforts in the field include sequence alignment, gene finding, 

genome assembly, protein structure alignment, protein structure prediction, prediction 

of gene expression and protein-protein interactions, genome-wide association studies 

and the modeling of evolution. 

Bioinformatics was applied in the creation and maintenance of a database to store 

biological information at the beginning of the “genomic revolution”, such as 

nucleotide and amino acid sequences. Development of this type of database involved 

not only design issues but the development of complex interfaces whereby researchers 

could both access existing data as well as submit new or revised data. 

In order to study how normal cellular activities are altered in different disease states, 

the biological data must be combined to form a comprehensive picture of these 

activities. Therefore, the field of bioinformatics has evolved such that the most 

pressing task now involves the analysis and interpretation of various types of data, 

including nucleotide and amino acid sequences, protein domains, and protein 

structures. The actual process of analyzing and interpreting data is referred to as 

computational biology. 

Some major research areas in Bioinformatics include: 

• Sequence analysis 

• Analysis of gene expression 

• Analysis of regulation 

• Analysis of protein expression 
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• Analysis of mutations in cancer 

• Prediction of protein structure 

• Comparative genomics 

• Modeling biological systems 

• Protein-protein docking 

2.1.1 The Smith - Waterman Algorithm. 

In 1981, T. F. Smith and M. S. Waterman described a method, commonly known as 

the Smith-Waterman(S-W) algorithm [6], for finding common regions of local 

similarity. The algorithm is a modification of the N - W algorithm which is a type of 

global sequence alignment. The algorithm is explained below: 

In calculating the local alignment, matrix H(i, j) is used to keep track of the degree of 

similarity between the two sequences to be aligned Ai,  Each element of the matrix 

H(i, j) is calculated according to the following equation: 

H(i,0) = 0, for 0 ≥ i ≤ m 

H(0, j) = 0, 0 for 0 ≥ j ≤ n 

 

 0H(i−1, j−1)+S(i, j) 

H(i, j)=max 

match/mismatch in the diagonal 

(2.1) 

d deletion in sequence 1 

d insertion in sequence 2 

1 ≥ i ≤ m ,1 ≥ j ≤ n; 

where: 

H(i, j) is the maximum similarity score between the two sequences. 

S(i, j) is the similarity score of comparing sequence Ai to sequence Bj and d is the gap 

penalty of mismatch 
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The algorithm consists of main three steps viz: 

Table 2.1: The DP matrix and the trace back path. 

  C A G C G T T G 

 0 0 0 0 0 0 0 0 0 

A 0 0 2 0 0 0 0 0 0 

G 0 0 0 4 2 2 0 0 2 

G 0 0 0 2 3 4 2 0 2 

T 0 0 0 0 1 2 6 4 2 

A 0 0 2 0 0 0 4 5 3 

C 0 2 0 1 2 0 2 3 4 

1. Initialization step 

2. Matrix fill step 

3. Trace back step 

The matrix is first initialized with H(0, j) = 0 and H(i,0) = 0,for all i and j· This is 

referred to as the initialization step. After the initialization, a matrix fill step is carried 

out using Equation 3.1, which fills out all entries in the matrix. 

The third step is the trace back step, where the scores in the matrix are traced back to 

inspect for optimal local alignment. The third step, which is the trace, starts at the cell 

with the highest score in the matrix and continues up to the cell, where the score falls 

down to a predefined minimum threshold. In order to execute the trace back, the 

algorithm requires to find the cell with the maximum value, which is done by going 

through the entire matrix. 

Table 2.1 shows the similarity between two sequences and the trace back in deep black. 

The time complexity of the initialization step is O(M +N), where N and M are sizes of 

the two sequences. During the matrix fill step, the entire H(i, j) matrix needs to be 

filled according to Equation 3.1, making its time complexity equal to the number of 

cells in the matrix or O(MN). The time complexity of the traceback is also O(MN), as 

the entire matrix needs to be traversed during this step. Thus the total time complexity 

of the SWA is O(M +N)+O(MN)+O(MN) = O(MN). The total foot print of the 
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SWA is also O(MN), as it fills a single matrix of size MN. 

In order to reduce the O(MN) complexity of the matrix fill stage, multiple entries of 

the H(i, j) matrix are calculated in parallel. This is however complicated by data 

dependencies, whereby each (Hi, j) entry depends on the values of three neighboring 

entries H(i, j − 1),H(i− 1, j) and H(i− 1, j − 1), with each of those entries in turn 

depending on the values of three neighboring entries, which effectively means that this 

dependency extends to every other entry in the region H(α,γ) : α ≤ i, γ ≤ j . This implies 

that it is possible to simultaneously compute all the elements in each anti diagonal, 

since they fall outside each others data dependency regions. 

Apart from SWA, there are other local search methods such as FASTA (Fast 

Alignment Search Tool - All) and BLAST (Basic Local Alignment Search Tool). 

Based on heuristics, they are faster, although much less sensitive than the SWA. 

2.1.2 Various Attempts to Accelerate the SWA in Hardware 

Various approaches have been adopted to accelerate the SWA by implementing either 

the whole algorithm or some part of it in hardware and compare the performance with 

the software-only implementation. 

Borah M. et al in 1994 [51] described the implementation of the SWA on a general 

purpose fine-grained architecture, the Micro Grained Array Processor (MGAP). The 

authors show that their implementation is about 5 times faster than the rapid 

implementation of a genetic sequence comparator using filed programmable logic 

arrays. Their work was compared with that done by Daniel P. Lopresti, 1991 [52]. The 

work of Borah M. et al shows that parallel processor arrays, like MGAP, have the 

potential to solve computationally intensive problems in bioinformatics efficiently and 

less expensively. 

In [53], the authors show the implementation of a fully custom processing unit to 

realize the execution of the SWA. The authors claimed that for conducting 

comparisons of multiple sequence pairs, using the same set of processing units, two 

approaches can be taken e.g. synchronous and asynchronous. The authors show that 
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the asynchronous parallel approach is (k-1)*(m-1) time steps faster than the 

synchronous parallel approach, where k represents the size of the existing sequences 

in the database, which grows exponentially. 

Schroder A. et al in 2006, [54] demonstrated that the streaming architecture of the 

Graphics processing Units (GPUs) can be used for biological sequence database 

scanning. GPUs are single-chip processors, used primarily for computing 3D 

functions, but is also a good candidate for a bioinformatics applications such as 

sequence alignments. To achieve an efficient mapping on this type of architecture, the 

authors have formulated the SWA in terms of computer graphics primitives and 

claimed that the evaluation of their implementation on a high-end graphics card shows 

a speedup of almost sixteen compared to Pentium-IV, 3.0 GHz processor. 

In 2005, Blas A. Di. et al [55] implemented the SWA on the Kestrel Parallel Processor 

for efficient query sizes. The Kestrel Parallel Processor is a single-board coprocessor 

with a 512-element linear array of 8-bit, SIMD processing elements. The performance 

was compared with the implementation on a 500 MHz, Ultra SPARC-II. The relative 

speed-up for a query size of 100 is reported to be seventeen. The other query sizes 

considered were 250 and 500. The speed -up achieved for the query size of 250was 49 

times, whereas that for the query size of 500 was 99 times. 

Laiq Hasan and Zaid Al-Ars in 2007, [1] divided the SWA into a number of functions, 

and then the time complexity of each function is measured, thus term known as code 

profiling. A software-only implementation of the SWA is profiled on Pentium-IV, 3.2 

GHz processor, using the GNU profiler. The profiling results identify the most time 

consuming function. This function is then designed in VHDL. The processing run time 

of a software -only implementation on Pentium-IV, 3.2 GHz processor and hardware 

implementation on Virtex II Pro FPGA are compared to evaluate the percentage 

runtime improvement. The results show that the hardware implementation is 35.82 

times faster than its equivalent software-only implementation. 

In [56], Steve Margem use the power of reconfigurable computing to accelerate 

substantially the performance of the SWA. The percentage time spent on calculating 

the elements of the matrix, Hi,j, was cut down by nearly a third and the absolute time 
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spent on the algorithm dropped from 6,461 seconds to a little over 100 seconds, 

approximately 64 times faster than the equivalent software-only implementation on 

AMD Opteron processors. 

Oliver T. et al in [57] showed a new approach to bio-sequence database scanning using 

reconfigurable FPGA-based hardware platforms to gain high performance at low cost. 

Their FPGA implementation achieves a speedup of approximately 170, as compared 

to a Pentium-IV, 1.6GHz processor. 

Chiang J. et al in [58] also studied the improvement of the computational processing 

time of the SWA using Custom Instructions (CIs) on an FPGA board. This was done 

by first writing the SWA in pure software and replacing the portion which was the 

most computationally intensive with an FPGA custom instruction. Particularly, the 

designed CIs was on an Altera Nios II integrated development environment. The Nios 

II soft microprocessor was instantiate on an FPGA to allow rapid prototyping of new 

designs. Finally, they compared the processing runtime between the “pure 

software”and the “hardware acceleration”versions to calculate the percentage of 

runtime improvement. The results showed that the hardware accelerated algorithm 

improvement the processing runtime by an average of 287%. Thus using FPGA CIs is 

a promising direction for further research in improving genomic sequence searching. 

In 2002, Yamaguchi Y. et al [59] proposed a high speed sequence alignment using run-

time reconfigurable computing. With this approach, it is demonstrated that high 

performance can be achieved using off-the-shelf FPGA boards. The performance is 

almost comparable with dedicated hardware systems. The time for comparing a query 

sequence of 2048 elements with a database sequence of 64 millions elements by the 

SWA is about 34 seconds, which is about 330 times faster than a desktop computer 

with a Pentium-III, 1.0 GHz processor. 

Yang B.H.W in 2002 [60], presented the design of a small custom processing element, 

called Proclet. This Proclet is used for a new VLSI implementation of the SWA. The 

results show that the design achieves a performance of 976 Kilo Cell Updates Per 
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Second(KCUPS), but is not compare with any reference design. 

In the next section, we discuss the application of RNS to sequence alignment, an 

essential aspect of bioinformatics 

2.2 Computer Number System and Arithmetics. 

As the arithmetic applications grow rapidly, it is important for computer engineers to 

be well informed of the essentials of computer number systems and arithmetic 

processes. 

With the remarkable progress in the very large scale integration (VLSI) circuit 

technology, many hitherto complex circuits that were unthinkable yesteryears become 

components easily realizable today. Algorithms that seemed impossible to implement 

now have attractive implementation possibilities for the future. This means that not 

only the conventional computer arithmetics, but also the unconventional ones are 

worth investigation in new design. 

Numbers play an important rule in computer systems. Numbers are the basis and object 

of computer operations. Remarkably, the main task of computers is computing, which 

deals with numbers all the time. 

Humans have been familiar with numbers for thousands of years, whereas the 

representation of these numbers in computer systems is a new issue. A computer can 

provide only finite digits for a number representation (fixed word length), though a 

real number may be composed infinite digits. 

Because of the trade-offs between word length and hardware size, and between 

propagation delay and accuracy, various types of number representation have been 

proposed and adopted. In this section, we introduce the Conventional Radix Number 

System and Signed-Digit Number System, both belonging to Fixed-Point Number 

System, as well as Floating-Point Number System [14]. Additionally, the Residue 
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Number System (RNS) will be described with emphasis on its arithmetic advantages 

in real life application in bioinformatics. 

2.2.1Conventional Radix Number System. 

A conventional radix number N can be represented by a string of n digits such as 

(dn−1dn−2...d1d0)r with r being the radix. di ≤ i ≤ n − 1, is a digit and di∈ {0,1,...,r−1}, 

where the position of di matters, because 23 is a different number from 32. Such a 

number system is referred to as positional weighted system [9]. Mathematically, 

n−1 

N = dn−1·wn−1+dn−2·wn−2+...+d0·w0 = ∑ di·wi (2.2) 

i=0 

with di being the weight of position i. If r if fixed, as in the fixed - radix number system 

in our further discussion, wi =ri. Hence 

n−1 

N = dn−1·rn−1+dn−2·rn−2+...+d0·r
0 = ∑ di·r

i (2.3) 

i=0 

If r is not fixed, the number becomes a mixed-radix number. 

To include the fraction into a fixed number N, let “.” be a radix point with the integer 

part on left of it and fraction part on the right of it. There are n digits in the integer and 

k digits in fraction, such as (dn−1dn−2...d1d0·d−1...d−k)r. 

Then 

n−1 

N = ∑ di·ri (2.4) 

i=−k 

In the string of weighted digits (dn−1...d0·d−1...d−k)r, dn−1 is called the most significant 

digit (MSD), and dk the least significant digit (LSD). A binary digit is referred to as a 

bit, and the above two digits are MSD and LSD, respectively. In an electric circuit, 

there are two voltage levels, “high”and “low”, which can easily represent two digits, 

“1”and “0 ”, in binary number system. More bits are required to represent a number in 

binary than in other radix systems. The number of bits required to encode a number ρ 

is blog2ρc+1. 
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Here the downstile or floor of x bxc, is the greatest integer that is not greater than x, 

where x can be an integer or real. (Likewise, the upstile or ceiling of x dxe, is the 

smallest integer that is not smaller than x). 

2.2.2 Conversion of Radix Numbers. 

Computer systems recognize the binary, octal and hexadecimal numbers, however, 

humans who are mostly the end users of these numbers, are most familiar with the 

decimal number systems. Numbers can be converted from one radix system to another 

before, after or in the middle of arithmetic operations. We present below the algorithms 

for such conversions. 

Given an integer, 

(dn−1dn−2···d1d0
)
r , 

with base r other than 10, such as r = 2 in binary, r = 8 in octal or r = 16 in hexadecimal, 

according to Equation 2.3, the following equations provides a method to convert it to 

the corresponding decimal number N1· 

 N1 = dn−1·rn−1+dn−2·rn−2+···+d0·r
0 (2.5) 

That is, N1 can be obtained by performing the multiplication of each given digit, the 

weight it carries and summing all the products. 

In the reversed way, given a decimal number we can obtain the corresponding digits 

in its binary, octal or hexidecimal representation by division,using r as the divisor 

equal to 2,8 or 16, respectively. 

Dividing both sides of Equation 2.5 by r, we obtained at the right - hand side the 

remainder d0 and the quotient 

 dn−1·rn−2+dn−2·rn−3+···+d1, (2.6) 
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since d0 < r and other terms on the right - hand side are integer times of r. if we divide 

the above quotient again by r, we will obtain the d1, and so forth. After performing the 

n−1 times, dn−1 will become the quotient. If we divide it by r again, we will have 

quotient 0, since any di < r and the last remainder dn−1. The conversion procedure 

stops there. 

Thus, to convert a decimal integer to a radix r number, the decimal number is initialized 

as the quotient. This quotient is repeatedly divided by r and the remainder is recorded 

until the quotient is zero. It should be noted that the LSB is generated first and the 

MSB is generated last. 

On the other hand, for a radix r fraction number, 

(0·d−1d−2···d−k
)
r , 

with r 6= 10, the corresponding decimal number N2 can be obtained by 

N2 = d−1·r−1+d−2·r−2+···+d−k·r
−k· (2.7) 

Also, a decimal fraction can be converted to a radix r number such as a binary, octal 

or hexadecimal number with r being 2, 8, 16, respectively. 

Multiplying both sides Equation 2.7 by r, we have on the right - hand side 

d−1+d−2·r−1+···+d−k·r
−k+1, 

where d−1 is the integer part and others add up to the fraction part. Multiply the fraction 

part by r again, we have 

d−2+d−3·r−1+···+d−k·r
−k+2, 

where d−2 is the part. Continuing the multiplication process and retaining the digits in 

the integer part, the radix r number corresponding to a particular decimal fraction can 

be obtained. The conversion process is stopped when either the fraction part becomes 
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zero or a predefined precision is reached. The digits following the radix point from left 

to right with the integer digits, the earliest obtained first. 

2.2.3Representation of Signed Numbers 

As the signs of numbers are important and necessary for scientific computing, the 

representation of signed numbers is discussed below. 

In the decimal number system the sign of a number is indicated by a + or − symbol to 

the left of the most - significant digit (MSD). In the binary number system, the sign of 

a number is denoted by the left - most bit (LMB), which is equal to 0 for a positive 

number, and 1 for a negative number. 

In a general representation, let a conventional radix number A be an n digit signed 

number with the MSD representing the sign. That is, 

A = (an−1an−2···a1a0)r, 

and the sign digit an−1 is decided as follows: 

an

 

if A ≥ 0 

if A < 0 

(2.8) 

For an integer number, the radix point is on the right of a0, that is, 

(an−1an−2···a1a0·), 

and that of a fraction number, the radix point is on the left of aa−2 such as 

(an−2·an−2···a1a0)· 

In particular, when an−1 6= 0, we say that A is a normalized fraction. 
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In this review, we shall assume that A is an integer for our illustration. Let the 

magnitude of A be; 

|A| = (mn−1···m1m0)· 

If an−1 = 0, A is a positive number, then, 

A = (0an−2···a1a0)r 

= (0mn−2···m1m0)r· 

That is, number A has the same value as its true magnitude. Thus 

 n−2 n−2 

A = ∑ air
i = ∑ mir

i 

 i=0 i=0 

If an−1 = r − 1, A is a negative number, then the representation of the number will 

depend on which format to use. 

There are three representation of negative numbers: 

1. sign - magnitude, 

2. diminished radix complement, and, 

3. radix complement. 

Sign - Magnitude Representation 

In the familiar decimal representation, the magnitude of both positive and negative 

numbers is expressed in the same way. The sign symbol distinguishes a number as 

being positive or negative. This scheme is called the sign - and - magnitude represen- 

tation. 

The same scheme can be used with binary number system in which case the sign bit is 

0 or 1 for positive or negative numbers, respectively. In general, the sign - magnitude 
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representation for a number A is (r−1)mn−2mn−3···m1m0, where r is the radix of the 

number. For example, if we use four - bit numbers, then for r = 2, −5 = (1)101, and for 

r = 10,−234 = (9)234. Because of its similarity to the decimal sign representation, the 

sign - and - magnitude representation is easy to understand. However this 

representation is not well suited for use in computer arithmetic. More suitable number 

representations are discussed below. 

Diminished Radix Complement 

The general representation of the diminished radix complement is shown below; 

(r−1)mn−2mn−3···m1m0, 

where 

mi = (r−1)−mi,0 ≤ i ≤ n−2· 

The diminished radix complement representation is also known as (r-1)’s complement 

denoted as 

 
A = rn −1−|A|, 

where n is the total number of digits including the sign digit. For example, given r = 

2, 

 
A = 2n −1−|A|, 

and we have the 10s complement representation as follows: −1010 : (1)0101· 

 
Given r = 10, A = 10n −1−|A|, we have the following 90s complement representation. 

−760210 : (9)2397· 

Radix Complement 
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A general representation of a radix complement is ((r − 1)mn−2mn−3···m1m0)+ 1, where 

m = (r − 1)−mi, 0 ≤ i ≤ n−2 The radix complement representation is also 

called r’s complement, denoted as A = rn −|A|, For example, given r = 2, A = 2n −|A|, 

and we have the 20s complement representation as follows: −10102 : (1)0110· Given 

 
r = 10, A = 10n −|A|, and we have the following 100s complement representation: 

−760210 : (9)2398· 

In the next few lines we shall discuss the representation of a fractional number using 

the radix complement format. 

If B = (0·d−1d−2···d−k)r, B is a positive number. It has the same value as the true 

magnitude of B. Thus 

−1 

B = |B| = ∑ dj·r
i, 

j=−k 

comparing with Equation 2.4 

n−1 

N = ∑ di·r
i, 

i=−k 

n = 0 here. 

If B = ((r − 1)·d−1d−2···d−k)r, B is negative. Then B has the following representa- 

tions: 

1. Sign - magnitude 

(r−1)·d−1d−2··· p−k, 

2. Diminished radix complement 

 

(r− 1)·d−1d−2···d−k, where dj = (r− 1)−dj, −k ≤ j ≤ −1. The diminished 

 
radix complement representation of B can be found by B = r1−r−k −|B|. 

3. Radix complement 
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((r−1)·d−1d−2···d−k)+r−k, where d j = 

(r−1)−dj, −k ≤ j ≤ −1. 

 
The radix complement representation of B can be found by B = r1−|B|. 

2.2.4The Residue Number System. 

History of The Residue Number System. 

The origin of Residue Number System (RNS) can be traced to the puzzle given by Sun 

Tzu [61], a Chinese Mathematician and is illustrated as follows: How can we determine 

a number that has the remainders 2, 3, and 2 when divided by the numbers 7, 5, and 3, 

respectively? This puzzle, written in the form of a verse in the third century book, Suan 

-ching by the Chinese scholar Sun Tsu, is perhaps the first documented use of number 

representation using multiple residues. The answer to this puzzle, 23, is outlined in Sun 

Tzu’s historic work. The puzzle essentially asked us to convert the residues 

(2|3|2)RNS(7|5|3) into its decimal equivalent. Sun Tsu formulated a method for 

manipulating these remainders (also known as residues), into integers. This method is 

regarded today as the Chinese Remainder Theorem (CRT). The CRT, as well as the 

theory of residue numbers, was set forth in the 19th century by Carl Friedrich Gauss 

in his celebrated Disquisitiones Arithmetical [61]. 

This over 1700 - year - old number system is making waves in computing recently. 

Digital systems implemented on residue arithmetic units may play an important role 

in ultra - speed, dedicated, real - time systems that support pure parallel processing of 

integer - value data due to its inherent features such as carry free addition, borrow free 

subtraction, single step multiplication without partial product, parallelisms, and fault 

tolerant. These interesting properties of RNS have lead to its widespread usage in 

Digital Signal Processing (DSP) applications such as digital filtering, convolution, 

correlation, Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), image 

processing, cryptography, communications, and other highly intensive arithmetic ap- 

plications. 
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In the following, we give brief explanations on the above stated interesting inherent 

properties of RNS: 

• RNS supports carry-free arithmetic operations. In the WNS, when performing 

addition, carries propagate from the Least Significant Bit(LSB) to the Most 

Significant Bit (MSB). Carries are also borrowed from the MSB to the LSB 

when performing subtractions. However,in RNS, unlike the WNS, carry-free 

additions and borrow-free subtractions are performed. Also, when multiplying 

numbers in the WNS, partial products, which must be added in order to obtain 

the final result, is generated whereas single step multiplication without partial 

product is carried out in RNS. 

• RNS supports fast, parallel arithmetic operations. In RNS, digit by digit 

computations can be performed since there is no ordering significance between 

the digits. Thus, RNS supports parallel computations. As stated earlier, in RNS 

a weighted number is first broken down into a set of residues (also known as 

remainders). Arithmetic operations such as addition, subtraction, and 

multiplication are then performed on each of the residues simultaneously or, in 

parallel independent of one another. This advantage becomes even more 

apparent when the number of routine operations increases. 

• RNS supports error detection and correction. The inherent properties of RNS 

suggest that a Redundant RNS (RRNS) can be used for self checking, error 

detection, and correction in digital processors. Error detection and correction is 

usually achieved by adding one or more redundant residue digits. As discussed 

earlier, there is no interaction between the residue digits, so any error that occurs 

in a single arithmetic module has a local effect and errors can easily be detected 

or corrected. In fact, the faulty module can be disconnected and the remaining 

modules redistributed between non-redundant and redundant digits. Many 

research work has been carried out on fault tolerance in RNS. 
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However, RNS has not found wide spread usage in general purpose processors due to 

difficulties associated with magnitude comparison, sign representation, overflow 

detection, data conversion, moduli selection, division, and other complex arithmetic 

operations. 

2.2.5Definition of Residue Number System. 

RNS is defined in terms of a relatively - prime moduli set (m1,m2,...,mL) that is GCD 

(mi,mj) = 1 for i 6= j , where GCD means greatest common divisor. A binary number 

X can be represented by the residues (x1,x2,...,xL), where xi = Xmod mi ,0 ≤ xi < mi. Such 

a representation is unique for any integer X ∈ [0,M − 1], where M mi is the 

dynamic range of the system. For a signed number system, any integer in 

(−M/2,M/2) has a RNS n - tuple representation where xi = Xmod mi if X > 0, and (M 

−|X|) otherwise. The signed RNS system is often referred to as a symmetric system. 

Addition, subtraction, and multiplication in RNS are very efficient since digit by digit 

computations are allowed. Additionally, there is no ordering significance between the 

digits. However, division in RNS is rather complex since it is not a closed operation. 

For example, given that X, Y, and Z have RNS representations [16]: 

X −→ (x1,x2,...,xL) (2.9) 

Y −RNS→ (y1,y2,...,yL) (2.10) 

Z −RNS→ (z1,z2,...,zL) and supposing that op denotes 

the operation +, -, or *, then 

Z = X op Y, means 

(2.11) 

Zi = (XiopYi)mod mi (2.12) 
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RNS if Z 

belongs to ZM. 

This means that no carry information need be communicated between residue digits. 

This explains why RNS is applicable in high performance computing and thus widely 

used in highly intensive DSP applications. In order to fully exploit these RNS 

parallelisms, arithmetic units that efficiently implement the modular statement must 

be found. 

Moduli selection and data conversion are one of the greatest challenges for RNS 

hardware design since the moduli choice affects the representational efficiency and the 

complexity of the arithmetic algorithms. To that end, a set of efficient moduli must be 

chosen and the moduli must be made as small as possible since it is the magnitude of 

the largest modulus that dictates the speed of the RNS arithmetic operations. Figure 

2.1 shows that the n output words (corresponding to the number of moduli) that are 

generated by the binary to RNS converter (the front-end) are processed by the n-

parallel processors in the RNS signal processor block producing n output words, which 

are converted to a conventional binary number by the RNS to binary converter (the 

back-end). Generally speaking, any RNS architecture must be interfaced efficiently 
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with a binary/decimal number system and for that purpose data conversions are 

required. As shown in Figure 2.1, the input operands must be first converted to RNS 

(forward conversion) and after the arithmetic operations have been performed, the 

output must be presented in the same way as the input (reverse conversion). 

 

Figure 2.1: A typical RNS based Digital Signal Processor 

In the next subsection, we briefly present Data Conversion and how the challenges 

associated with data conversion are addressed. 

2.2.6Data Conversion 

Data conversion is one of the greatest challenges of RNS because the input operands 

are provided in either standard binary or decimal format and must be converted to RNS 

before the computation can be performed. Similarly, the final results must be 

represented in the same way as the input operands, thus RNS to binary/decimal 

conversion is very essential to a successful RNS design. 

This implies that RNS based processors make heavy use of data conversions, which 

are slow processes. For an RNS processor to compete favorable with a conventional 

processor efficient data converters must be developed so that the RNS speedup will 
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not be nullified by the conversion overhead. Data conversion can be divided into two 

categories, namely- forward and reverse conversion. Relatively, the reverse conversion 

is more complex but the forward conversion is not simple either. In the next section, 

we provide simple explanations on each of these two categories. 

2.2.7 Forward Conversion 

The input operands to the RNS processor are either in the decimal or binary format, 

and therefore need to be converted into their respective residues before they are used 

for the computation. This work of converting from decimal/binary to residue is done 

by the forward converter. 

For any n - bit nonnegative integer X in the range 0 ≤ X ≤ 2n − 1 can be represented in 

the weighted binary system as 

N−1 

 X = ∑ bi2
i (2.13) 

i=0 

where b ∈ (0,1) 

The binary value of X can be converted into a set of n residues as x , where xi = 

X mod mi . The values of xi can be found by the following steps: 

From equation 4, 

N−1 

 X = ∑ bi2
i (2.14) 

i=0 

 Let X mod mi = |X
|
mi (2.15) 

This implies 

mi (2.16)  |X
|
mi

mi 

The term mi can be pre - computed and stored in a Look Up Table (LUT). Also for 

any n - bit signed integer X in the range 0 ≤ X ≤ 2n − 1 , the residues of X can be 

represented in the 20s - complement form as; 
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n−1 

X20scompl = (bnbn−1...b1b0) = −bn2n + ∑ bi2i 

1=0 

(2.17) 

Let xi = X mod mi (2.18) 
n 

 Then xi bn mi −|2n|
mi mi  (2.19) 

1=0mi 

Again the value of mi can be pre - computed and stored in a LUT. 

2.2.8The Reverse Conversion 

Several reverse conversion techniques have been proposed in literature based on either 

the traditional Chinese Remainder Theorem (CRT) or the Mixed Radix Conversion 

(MRC) which may or may not rely on LUTs. The CRT is desirable because the data 

conversion can be parallelized while MRC is a sequential process by its very nature. 

However, many up to date RNS to binary/decimal converters are based on MRC due 

to the complex and slow modulo - M operation (where M is the system dynamic range, 

thus a rather large constant) required by CRT. In the next subsection, we present some 

necessary information about CRT. 
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2.2.9The Chinese Remainder Theorem 

The magnitude of RNS number can be obtained from the CRT formula: 

X(2.20) 

 
M 

where si 
= 

m
M

i and s−
i 

1 is the multiplicative inverse of |si
|
mi 

which implies that  

Figure 2.2 gives the schematic diagram of the CRT. This diagram clearly shows the 

inherent parallelism feature of the CRT [16]. The traditional CRT can be further 

simplified when certain moduli sets (whether relatively prime or not) are utilized [62–

64]. Recently, CRT that requires mod −s2s3...sL instead of mod −s1s2...sL required by 

the traditional CRT has been reported. This is called the New CRT and is presented in 

[65]. Based on the New CRT, many efficient reverse converters have been presented 

[62–64]. 

We briefly review the New CRT as follows [66]: 

 

Figure 2.2: A schematic diagram of the CRT 
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Given the residue number(x1,x2,...,xL) with respect to the moduli set (s1,s2,...,sL) , the 

corresponding decimal number X is computed as: 

X = x1+|k1s1(x2−x1)k2s1s2(x3−x2)+···+kL−1s1s2...sL−1(xL −xL−1)
|
s2s3...sL 

The main drawback of CRT emerges from the required modulo-M operation which, 

given that M is a rather large number, can be time consuming and rather expensive in 

terms of area and energy consumption. The MRC is an alternative method which does 

not involve the large modulo-M calculations. 

2.2.10 The Mixed Radix Conversion. 

Conversion from RNS to decimal is relatively fast using Mixed Radix Conversion 

(MRC) as it does not involve the large modulo-M calculations present in CRT. 

Suppose that we have an RNS number (x1,x2,...,xL) with the corresponding set of 

moduli(m1,m2,...,mL) and a set of digits(a1,a2,...,aL) which are the Mixed Radix Digits 

(MRDs), the decimal equivalent of the residues can be computed as follows: 

 X = a1+a2m1+a3m1m2+···+anm1m2m3...mn−1 (2.21) 

 

Figure 2.3: A schematic diagram of the MRC 
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where the the mixed radix digits are given as follows: 

a1 = x1 

 

a  

m2 

a 

m3 

· 

an 

(2.22) 
mn 

Figures 2.4 and 2.3 show how the decimal equivalent and the MRDs of the residues 

can be computed respectively [63]. For the MRD ai, 0 ≤ a1 < mi any positive number 

in the interval  can be uniquely represented. The only obstacle with the 

MRC is that by its very nature, it is a sequential process. Several attempts have been 

made to address this short-coming [67–69]. As stated earlier, data conversion and 

moduli selection are the two most important issues for a successful RNS design. Thus, 

this review will be incomplete without discussing moduli selection. Consequently, 

moduli selection is the subject of next section. 
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Figure 2.4: MRDs schematic diagram 

2.2.11 Moduli Selection 

The forms and the number of moduli selected determine the speed, the dynamic range, 

and the hardware complexity of the resulting RNS architecture. The magnitude of the 

largest modulus dictates the speed of the arithmetic operations. The moduli selected 

should therefore be made comparable in magnitude since there is no advantage in 

further fragmentation as the speed is already being dictated by the magnitude of the 

largest modulus. We present the classification of moduli selection in the following 

subsections. 
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computations. The solutions for realizing all arithmetic operations are based on ROMs, 

in order to speed up execution. The cost of implementing ROM based RNS data 

converters is generally very high. Thus, the need for restricted moduli selection [14, 

70–72], which is discussed next. 

2.2.13Restricted moduli Selection 

These restricted moduli sets are based on powers - of - two related moduli. This class 

of moduli set eliminates the need for ROMs in building RNS data converters [73]. 

Additionally, with the restricted moduli sets, the basic building blocks such as 

multipliers,adders, binary - to - RNS converters, and RNS - to - binary converters can 

also be easily realized using logic gates. Again, using restricted moduli sets, several 

adder based data converters have been proposed. For example, 

 In 

general, moduli sets have some unique common features [70, 74]. These features are 

discussed next. 

2.2.14Expected Features of the Moduli Sets. 

In selecting the moduli set {mis}i=1−L the following general rules are considered: 

1. They should be relatively prime; 

2. The moduli mis should be made as small as possible so that operations modulo 

require minimum computational time; 

3. The moduli mis should imply simple weighted to RNS and RNS to weighted 

conversions as well as simple RNS arithmetic. Sets with all their moduli being 

of the forms 2n1+1 and 2n2−1 and one of the form 2n3 satisfy the requirement of 

simple conversions and simple arithmetic. 
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4. The dynamic range should be large enough in order to avoid overflow; 

5. The moduli mis should create a balanced decomposition of the Dynamic Range. 

This implies that the differences between the number of bits of the different 

moduli should be very small; 

In the previous sections, we have presented a number of issues which are of paramount 

importance to the design of RNS based processors. The next section talks about the 

application of these arithmetic advantages of the RNS to bioinformatics in order to 

speed up the computational challenge of the SWA. 

2.2.15 Application of Residue Number System to Bioinformatics. 

The arithmetic advantages associated with these number systems are employed to 

address the computational challenge of the SWA in the next chapter. As we know, the 

main tasks of a computer is computing which deals with numbers all the times. The 

type of the number system used greatly impacts the performance and area of a digital 

system, and must therefore be carefully looked at when implementing any thing that 

has to do with computing. 



 

 

Chapter 3 

Design and Simulation 

n this chapter, we outline the digital system implementation process and how this process is 

used in the implementation of the Residue Number System - Smith - Waterman Algorithm 

(RNS-SWA) architecture. The inherent features of RNS as shown in Section 2.2.4 are used to 

speed up the computational challenge of the SWA. 

3.1 Digital System Implementation Process 

In general, a digital system is a sequential circuit made up of interconnected flip flops and gates. 

The system is partitioned into modular subsystems, each of which performs some functional 

task. The modules are constructed hierarchically from functional blocks such as registers, 

counters, decoders, multiplexers, buses, arithmetic elements, flip - flops, and primitive gates. 

Interconnecting the various subsystems through data and control signals results in a digital 

system. In this digital system, we partition the system into two types of mod- 

ules: 

• datapath, and 

• control unit. 

34 
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 3.1.1 Datapath 

The Datapath is responsible for all the operations performs on the data. It includes: 

I 
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• Functional units such as adders, shifters, multipliers, Arithmetic and Logic Units (ALUs) 

and, comparators. 

• Registers and, other memory elements for temporary storage of data and, 

• Buses and, multipliers for the transfer of data between the different components in the 

datapath through the data input lines. Results from the computation are returned through 

the data output lines. 

 3.1.2 Control Unit 

The control unit (controller) is responsible for controlling all the operations of the data path by 

providing appropriate control signals to the datapath at the appropriate times. At any one time, 

the control unit is said to be in a certain state as determine by the content of the state memory. 

The state memory is simply a register with one or more (D) flip - flops. 

The control unit operates by transitioning from one state to another - one state per clock cycle, 

and because of this behavior, the control unit is also referred to as finite - state machine (FSM). 

The next - state logic in the control unit will determine what state to go to next in the next clock 

cycle depending on the current state that the FSM is in, the control inputs, and the status signals. 

In every state, the output logic that is in the control unit generates all the appropriate control 

signals for controlling the datapath. The datapath, in return, provides status signals for the next 

- state logic. Upon compilation of the computation, the control output line is asserted to notify 

external devices that the value on the data output lines is valid. 

The Control signals are binary signals that activate the various data - processing operations. To 

activate sequence of such operations, the control unit sends the proper sequence of control 

signals to the datapath.The control unit, in turn, receives status bits from the datapath [75]. 

These variables describe aspects of the state of the datapath. The control unit uses the variables 

in defining the specific sequence of the operations to be performed. 

In implementing a digital system, we made use of Programmable Logic Device (PLD), these 

include Simple Programmable Device, Complex Programmable Logic Device (CPLD), and 

Field Programmable Gated Array (FPGA). This can be thought of as a “blank slate” on which 

you implement a specified circuit or system design using a certain process. This process requires 
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a software development package installed on a computer to implement a circuit design in the 

programmable chip. The computer must be integrated with a development board or 

programmable fixture containing the device. 

Any digital logic design based on PLD must pass through several design steps called the design 

flow as shown in Figure 3.1. The constituents of the module design flow are explained below. 

3.1.3 The Module Design Flow 

• Design Entry: This is the first programming step. The circuit or system design must be entered 

into the design application software using text - based, graphic entry (schematic capture), or 

state diagram description. Design entering is device independent. Text - based entry is 

accomplished with a hardware description language (HDL) such as VHDL, Verilog, AHDL, 

or ABEL. Graphic (Schematic) entry allows pre-stored logic functions from a library to be 

selected, placed on the screen, and then interconnected to create a logic design. State diagram 

entry requires specification of both the states through which a sequential logic circuit 

progresses and the conditions that produce each state change. 

Once the design has been entered, it is compiled. A compiler is a program the controls 

the design flow process and translates source code in format that can be logically tested 

or downloaded to a target device. The source code is created 

 3.1. DIGITAL SYSTEM IMPLEMENTATION PROCESS 
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Figure 3.1: The Module Design Flow Diagram 

during design entry, and the object code is the final code that actually causes the design to be 

implemented in the programmable device. 

• Functional simulation: The entered and compiled design is simulated by software to confirm 

that the logic circuit functions as expected. The simulation will verify that correct outputs are 

produced for a specified set of inputs. A device independent software tool for doing this is 

generally called a waveform editor. Any flaws demonstrated by the simulation would be 

corrected by going back to design entry and making appropriate changes. 

• Synthesis: Synthesis is where the design is translated into a netlist, which has a standard form 

and is device independent. 

• Implementation: Implementation is where the logic structures described by the netlist are 

mapped into the actual structure of the specific device being programmed. The 

implementation process is called fitting or place and route and results in an output called a 

bit - stream, which device dependent. 

• Timing simulation: This step comes after the design is mapped into the specific device. The 

timing simulation is basically used to confirm that there are no design flaws or timing 

problems due to propagation delays. 

• Download: Once a bitstream has been generated for a specific programmable device, it has 

to be downloaded to the device to implement the software design in hardware. Some 

programmable devices have to be installed in a special piece of equipment called a device 

programmer or on a development board. 
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 3.2 Hardware Implementation of the RNS - SWA 

Architecture 

In this section we give a brief description of the SWA and its pseudo code. The section 

also presents the hardware implementation procedures of the RNS-SWA architecture. 

3.2.1 The Smith - Waterman Algorithm 

The algorithm is explained below: 

In calculating the local alignment, matrix H(i, j) is used to keep track of the degree of 

similarity between the two sequences to be aligned, that is Ai and Bj. Each element of 

the matrix H(i, j) is calculated according to the following equation: 

 

 0H(i−1, j−1)+S(i, j) 

H(i, j) = max Diagonal Entry (3.1) 

d Upper Entry 

d Left Entry 

where: 

H(i, j) is the maximum similarity score between the two sequences. 

S(i, j) is the similarity score of comparing sequence Ai to sequence Bj and d is the gap 

penalty of mismatch 

Diagonal, Upper and Left entries are the matrices entry position relative to the current 

H(i, j) calculation. 

The pseudo code of the SWA is also shown below: 

As stated in Chapter 2 under Section 2.1.1, the SWA computation involves three main 

steps. The matrix fill step is computationally intensive and it is this very step that had 

been accelerated in hardware by various researchers. 
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In this section, we give a detail procedure of the hardware implementation of this step 

using RNS as tool, making use of its carry free, modularity and one step multiplication 

1 Declare an nxm similarity matrix; 

2 Initialize the top row (i = 0) and left column (j = 0) with 0; 

3 for i = 1;i < length(Sequence); i++ do 

4 for j = 1; j < length(Sequence); j++ do 

5H(i,j) = 

max{0,H(i−1, j−1)+S(i, j),H(i−1, j)−d,H(i, j−1)−d}; 

6 end 

7 end 

8 Save index of term that contributed to the calculated value in H(i,j); 

9 Find maximum value in nxm matrix; 

10 Using saved indices in 8, traceback to find 0 encountered; 

Algorithm 1: The Pseudo code of the Smith - Waterman Algorithm 

features as outline in Section 2.2.4 above. The complete implementation of the SWA 

involves basically three steps. These include: 

1. The Binary/Decimal to RNS Conversion stage. This step is christened the RNS 

Based SWA Forward converter (RSFC). 

2. The RNS based arithmetic operations stage. This is also termed the RNS base 

SWA microprocessor stage and, 

3. The RNS magnitude comparison stage. 

A block diagram of the RNS-SWA architecture is shown in Figure 3.2 with these three 

stages layout. In the next section these three stages are implemented on a PLD system 

employing the inherent arithmetic properties of RNS. 
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Figure 3.2: The RNS-SWA Architecture 

3.2.2 The RNS-SWA Forward Converter 

In this section, we shall describe the Residue Number System Based Smith-Waterman 

Algorithm Forward Converter (RSFC), which is one of the components of the 

hardware implantation of the RNS - SWA based architecture. 

The RSFC is made up of the binary/decimal input values which comprise of 

H(i− 1, j − 1), S(i, j), H(i− 1, j), H(i, j − 1) and d, as shown in the equation 3.1. These 

binary/decimal values are converted into residues numbers by the Binary to RNS 

Converter (BRC), which is termed the RNS forward conversion. The residues 

produced are then used to execute carry free addition, borrow free subtraction by the 

two RNS processors as shown in Figure 3.2. Each of the residue processors does 

concurrent data processing, independent of each other, and thereby speeding up the 

arithmetic operation involves in the calculation of the SWA. 
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Based on the architecture shown in Figure 3.2, we present a customized memoryless 

RNS forward converter using combinational logic; it does not need any memory or 

Processing Elements (PEs) in its residue computation. The converter also works for 

both signed and unsigned numbers. 

3.2.3Selection of Moduli Set 

As outline in Section 2.2.11, the forms and the number of moduli selected determine 

the speed, the dynamic range, and the hardware complexity of the resulting RNS 

architecture. The magnitude of the largest modulus dictates the speed of the arithmetic 

operations. 

In our work, we choose to use the moduli set {2n, 2n −1} for the following reasons: 

firstly, it provides simpler designs for converters and magnitude - related operations, 

thus is more applicable to our design; secondly, it is the most commonly used moduli 

set in literature, using this moduli set makes our work comparable to most existing 

designs. 

In order to be able to use a moduli set with this smaller dynamic range, matrix 

partitioning has been used based on the fact that the comparison of two long strings 

can be done in a divide-and-conquer fashion. The moduli set used in the 

implementation is m = {2n, 2n −1}, where n = 4 and, m = {16,15}, with a dynamic 

range of M = 240. 

The elements of this moduli set within the given dynamic range for signed numbers 

are shown in Table 3.1 

3.2.4The Memoryless RNS - SWA Forward Converter 

As most existing devices and applications use binary representations, such as fixed 

point or floating - point numbers, the first part of an RNS design is usually a converter 
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that converts binary numbers into residues format, which is usually termed as the 

forward converter or residue generator. 

Table 3.1: The Residues Table for Mod 16 and Mod 15 for signed numbers in 

hexadecimals 

Decimal Number Hexadecimal Number (Mod 16, Mod 15) 

-120 88 (8, 0) 

-119 89 (9, 1) 

-118 8A (A, 2) 

... ... ... 

-3 FD (D, C) 

-2 FE (E, D) 

-1 FF ( F, E) 

0 00 (0, 0) 

1 01 (0, 0) 

2 02 (2, 2) 

3 03 (3, 3) 

... ... ... 

117 75 (5, C) 

118 76 (6, D) 

119 77 (7, E) 

Early efforts [16,23,61,76] on forward converters decompose the binary value into an 

array of power - of - two values, and sum them up with modular adders, this concept 

is outline in Section 2.2.7 

In our implementation of the Memoryless Forward Converter, with the use of this 

specific moduli set m = {2n, 2n −1}, makes the generation of the residue values greatly 

simplified, just by the use of combinational logic without use of any memory. The 

implementation steps outline below were used in accordance with the design flow 

diagram shown in Figure 3.1. 

1. The Design Entry: The memoryless RNS forward converter is entered into a 

Quartus II version 4.0 VHDL application software using the graphic entry or 

schematic capture tool embedded in the software. This process allows pre-stored 

logic functions from the software library to be selected, placed on the screen, and 
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then interconnected to create the logic design. The implemented diagram of the 

converter is shown in Figure 3.3. 

A decimal number, D, which is an 8 - bit number is partitioned into two nibbles 

namely U and V. U (i.e. U0, U1, U2, U3) is the high order nibble of the binary 

 

Figure 3.3: The Memoryless RNS - SWA Forward Converter 

representation of D and V (i.e. V0, V1, V2, V3) is the low order nibble. For modulus 

2n, the residue is simply the lowest order n bits. However for modulus 2n −1, the 

forward conversion is not as simple. 

In the case of modulus 15 the high order nibble is added to the low order nibble by 

a parallel adder which is made up of one half adder and three full adders, labeled 

Parallel Adder1 in Figure 3.3. The sum from Parallel Adder1, namely R1, R2, R3, 

R4, forms an operand for a second stage of addition. The second operand for this 

stage is derived from U3, the carry-out and the sum from Parallel Adder1 as per the 

intervening logic shown between Parallel Adder1 and Parallel Adder2 in Figure 

3.3. The sum from this stage (without the carry-out) constitutes the D mod 15 

representation. D mod 16 is simply the nibble V. 



3.2. HARDWARE IMPLEMENTATION OF THE RNS - SWA ARCHITECTURE 47 

 

2. Compilation: After the design entry is completed, it is compiled, in order to 

translate the source object code into object code in a format that can be logically 

tested or downloaded to a target device. 

3. Functional Simulation: The next step that follows the compilation process is the 

functional simulation. This is done by the software to confirm that the logic circuit 

functions as expected. The simulation will verify that correct outputs are produced 

for a specified set of inputs, and it is the waveform editor (a device independent 

software tool) that is used to verify this. 

4. Timing Simulation: Finally, timing simulation was done to verify that the circuit 

works at the design frequency and that there are no propagation delays or other 

timing problems that will affect the overall operation of the circuit when 

implemented on the hardware device. 

The output of Parallel-Adder2 and the four LSBs of the decimal number are the result 

of the RNS representation of the decimal number in question. 

The VHDL codes of the memoryless forward converter are shown below. 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

LIBRARY work; ENTITY 

MODULUS15_16 IS port ( 

V0 : IN STD_LOGIC; 

V1 : IN STD_LOGIC; 

V2 : IN STD_LOGIC; 

V3 : IN STD_LOGIC; 

U0 : IN STD_LOGIC; 

U1 : IN STD_LOGIC; 

U2 : IN STD_LOGIC; 

U3 : IN STD_LOGIC; 

P0 : OUT STD_LOGIC; 
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P1 : OUT STD_LOGIC; 

P2 : OUT STD_LOGIC; 

P3 : OUT STD_LOGIC; 

Q0 : OUT STD_LOGIC; 

Q1 : OUT STD_LOGIC; 

Q2 : OUT STD_LOGIC; 

Q3 : OUT STD_LOGIC 

); 

END MODULUS15_16; 

ARCHITECTURE bdf_type OF MODULUS15_16 IS component and_5 

PORT(data0 : IN STD_LOGIC; data1 : IN STD_LOGIC; data2 : IN 

STD_LOGIC; data3 : IN STD_LOGIC; data4 : IN STD_LOGIC; 

result : OUT STD_LOGIC 

); end component; component paralell_adder2b 

PORT(R0 : IN STD_LOGIC; 

R1 : IN STD_LOGIC; 

R2 : IN STD_LOGIC; 

R3 : IN STD_LOGIC; 

F0 : IN STD_LOGIC; 

F1 : IN STD_LOGIC; 

F2 : IN STD_LOGIC; 

F3 : IN STD_LOGIC; 

A0 : OUT STD_LOGIC; 

A1 : OUT STD_LOGIC; 

A2 : OUT STD_LOGIC; 

A3 : OUT STD_LOGIC ); end component; component 

parallel_adder1 

PORT(V0 : IN STD_LOGIC; 

V1 : IN STD_LOGIC; 

V2 : IN STD_LOGIC; 

V3 : IN STD_LOGIC; 
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U0 : IN STD_LOGIC; 

U1 : IN STD_LOGIC; 

U2 : IN STD_LOGIC; 

U3 : IN STD_LOGIC; 

R0 : OUT STD_LOGIC; 

R1 : OUT STD_LOGIC; 

R2 : OUT STD_LOGIC; 

R3 : OUT STD_LOGIC; 

C0 : OUT STD_LOGIC ); end component; signal SYNTHESIZED_WIRE_17 : 

STD_LOGIC; signal SYNTHESIZED_WIRE_18 : STD_LOGIC; signal 

SYNTHESIZED_WIRE_19 : STD_LOGIC; signal SYNTHESIZED_WIRE_20 : 

STD_LOGIC; signal SYNTHESIZED_WIRE_4 : STD_LOGIC; signal 

SYNTHESIZED_WIRE_5 : STD_LOGIC; signal SYNTHESIZED_WIRE_6 : 

STD_LOGIC; signal SYNTHESIZED_WIRE_7 : STD_LOGIC; signal 

SYNTHESIZED_WIRE_21 : STD_LOGIC; signal SYNTHESIZED_WIRE_22 : 

STD_LOGIC; BEGIN 

P0 <= V0; 

P1 <= V1; 

P2 <= V2; P3 <= V3; 

b2v_inst : and_5 

PORT MAP(data0 => SYNTHESIZED_WIRE_17, 

data1 => SYNTHESIZED_WIRE_18, data2 => 

SYNTHESIZED_WIRE_19, data3 => 

SYNTHESIZED_WIRE_20, data4 => 

SYNTHESIZED_WIRE_4, result => 

SYNTHESIZED_WIRE_6); 

SYNTHESIZED_WIRE_4 <= NOT(U3); 

SYNTHESIZED_WIRE_7 <= SYNTHESIZED_WIRE_5 OR 

SYNTHESIZED_WIRE_6; 
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SYNTHESIZED_WIRE_21 <= SYNTHESIZED_WIRE_7 XOR U3; 

SYNTHESIZED_WIRE_22 <= U3 AND SYNTHESIZED_WIRE_21; 

b2v_inst7 : paralell_adder2b 

PORT MAP(R0 => SYNTHESIZED_WIRE_17, 

R1 => SYNTHESIZED_WIRE_18, 

R2 => SYNTHESIZED_WIRE_19, 

R3 => SYNTHESIZED_WIRE_20, 

F0 => SYNTHESIZED_WIRE_21, 

F1 => SYNTHESIZED_WIRE_22, 

F2 => SYNTHESIZED_WIRE_22, F3 

=> SYNTHESIZED_WIRE_22, 

A0 => Q0, 

A1 => Q1, 

A2 => Q2, 

A3 => Q3); 

b2v_inst8 : parallel_adder1 

PORT MAP(V0 => V0, 

V1 => V1, 

V2 => V2, 

V3 => V3, 

U0 => U0, 

U1 => U1, 

U2 => U2, 

U3 => U3, 

R0 => SYNTHESIZED_WIRE_17, 

R1 => SYNTHESIZED_WIRE_18, 

R2 => SYNTHESIZED_WIRE_19, 

R3 => SYNTHESIZED_WIRE_20, 

C0 => SYNTHESIZED_WIRE_5); 

END 
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VHDL codes of the memoryless RNS Forward Converter 

 3.2.5 The RNS Based Smith - Waterman Processor 

The next step after the binary/decimal conversion to RNS phase is the RNS base SWA 

processor stage. This stage shows how the inherent properties of RNS are used to do 

carry free arithmetics on the SWA. The design diagram consists of two multiplexers 

(MUXs), each consisting of eight inputs and four outputs, two modulus 15 parallel 

adder, one modulus 16 parallel adder and a control unit that controls the data selections 

in the two MUXs. 

Each of these components are implemented using the design flow diagram as outlined 

in Figure 3.1 and then interconnected to get the total design. The residues produced by 

the forward converter are added either to the S(i, j) or (-d), where d is 2 in this design, 

which is the default value in literature. The Sequence of the addition is as follows: 

Table 3.2: Control Unit Implementation Table and Excitation equations 
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H(i-1,j-1) is added to S(i, j), (this is called the Diagonal addition), H(i-1, j) is added to 

(- d), (this is called the Upper addition) and H(i, j - 1) is added to (-d), (this is called 

the Left addition). 

The logic in the control unit controls the multiplexer which in turn controls the 

sequencing of these additions. The implementation table (using D flip - flops) for the 

control unit is shown in Table 3.2 with their corresponding excitation equations. 

The excitation equations from implementation Table 3.2 which are used to design the 

 

control unit are: D0 = Q0 and D1 = Q0+Q1 which are obtained from the implementation 

table. 
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The results of the forward converter are used to do carry free arithmetic operations in 

accordance with Equation 3.1. The residues from the diagonal entry are added to S(i, 

j) modulus 16 and S(i, j) modulus 15 at one clock cycle. At another clock cycle, the 

upper addition is done. Here, the two complement addition is done on the H(i−1, j) 

with −2 modulus 16 and modulus 15. The last two complement addition is done on 

H(i, j−1) with −2 modulus 15 and modulus 16. 

In Figure 3.4 the Modulus16 block in the diagram does the modulus 16 addition of the 

data, the Modulu15 block does the modulus 15 addition and MUX-A and MUX-B do 

the data selections. The residues from the forward conversion process are added to the 

results Z01, Z11, Z22, Z33 of MUX-B of the Modulus16 adder. The results G1, G2, 

G3, G4 without the carry bit are the residues of the binary number with respect to 

modulus 16. Also the residues of the modulus 15 addition is obtained by first adding 

the residues values from the forward converter to the results Z0, Z1, Z2,Z3 of the 

MUX-A by the ParallelAdder. The results of the ParallelAdder are fed into the 

Modulus15 adder which finally gives the residue values of the number as A1, A2, A3, 

A4 as shown in Figure 3.4. 

These results are also loaded into a register ready for onward processing. After the 

design of the RNS - SWA Processor, it is compiled and then functional and timing 

simulation is done. The functional simulation is done to confirm that the logic 

functions as expected and also to verify that the correct outputs are produced for a 

specified set of inputs. The waveform editor within the software was used to perform 

this. The timing simulation is done to verify that the circuit works at the design 

frequency and that there are no propagation delays or other timing problems that will 

affect the overall operation of the circuit when implemented on the hardware device. 

The functional, circuit resource utilization and timing simulation results are posted in 

Chapter 4 under 
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Figure 3.4: The Schematic Diagram of RNS - SWA processor 

subsection 4.1.2. 

3.2.6Residue Number System Comparator 

The third component in the RNS - SWA architecture is the RNS Comparator. The RNS 

Comparator finds the maximum of the H(i, j) which consists of the 

0, H(i - 1, j - 1) + S(i, j), H(i - 1, j) -d, H(i, j - 1) - d entries 
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The schematic diagram of the RNS - SWA comparator is shown in Figure 3.5. It 

compares the residues values of 0, H(i - 1, j - 1)+ S(i, j), H(i-1, j) and H(i, j - 1) to 

obtain the maximum value which is then assigned to H(i, j) as the matrix score. 

 

Figure 3.5: The Schematic Diagram of RNS Comparator The RNS comparator 

architecture is made up of 256 words × 8 - bit ROM that contains the residue values 

and their decimal equivalents of all the decimal numbers within the dynamic range. 

The residue values, 8 - bit numbers, are used as the address of their various equivalent 

decimal numbers. Figure below shows the VHDL codes of the ROM 

and its content. 

--This is a 256 X 8 bits ROM that stores the RNS 
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--values at various address locations Library 

ieee; use ieee.std_logic_1164.all; use 

ieee.std_logic_arith.all; use 

ieee.std_logic_unsigned.all; 

-----------------------------------------------------------entity RNS_ROM2 is port( 

Clock : in std_logic; Clear : in std_logic; 

Enable : in std_logic; 

Read : in std_logic; 

A0,A1,A2,A3,A4,A5,A6,A7 : in std_logic; Data_out : out 

std_logic_vector(7 downto 0)); end RNS_ROM2; 

--------------------------------------------------------------architecture Behav of 

RNS_ROM2 is type RNS_ROM2_Array is array (0 to 255) of 

std_logic_vector(7 downto 0); constant Content: RNS_ROM2_Array := ( 

-- The ROM table representation of the RNS Values 

0=>"00000000", 

1=>"00010000", 

2=>"00100000", 

3=>"00110000", ... 

250=>"00000000", 

251=>"00000000", 

252=>"00000000", 

253=>"00000000", 

254=>"00000000", 

OTHERS => "ZZZZZZZZ" 

); signal Index:std_logic_vector(7 downto 0); begin process(Clock, Clear, 

Read, Index) begin 

if( Clear = ’1’ ) then 

Data_out <= "ZZZZZZZZ"; elsif( Clock’event and Clock = ’1’ ) then if Enable 

= ’1’ then if( Read = ’1’ ) then 

Index<=(A0&A1&A2&A3&A4&A5&A6&A7); 
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Data_out <= Content(conv_integer(Index)); else 

Data_out <= "ZZZZZZZZ"; end if; end if; end if; 

end process; end Behav; 

These decimal numbers are read into two different registers at various clock cycles and 

then compared by the RNS comparator.The RNS Comparator does two comparison, 

i.e H(i - 1, j - 1) + S(i, j) with H(i - 1, j) -d to get the maximum value. And then this 

maximum value is compared with H(i, j-1) -d to obtain the overall maximum value. 

The value 0 is read from the ROM into the Register only when any of these three 

H(i,j)’s entries are negative since the algorithm does not deal with negative values. 

In this implementation, the H(i - 1, j - 1) + S(i, j) value is loaded into Register A by 

asserting the Load control signal of the Register A (i.e., asserting LDA) at the first 

clock cycle. The actual storing of the value in Register A occurs at the beginning of 

the next active edge of the clock. In the next clock cycle, the H(i, j - 1) - d value is 

loaded into Register B by asserting the Load control signal of the register (i.e., 

asserting LDB) and these two register contents are compared by the RNS Comparator. 

The maximum of this first comparison is selected by the multiplexer (MUX) and 

loaded into Register A, by asserting the LDA of the register the second time. Then the 

last value of H, H(i - 1, j) - d, is loaded into Register B and the second comparison is 

made between the two register contents, and then output the final comparison result as 

the Max H(i, j), by asserting the TB3 which is also connected to the Done signal. The 

Done control signal is to notify the external world that the execution of the algorithm 

has been completed and that the data at the Data output is valid. Various tristate buffers 

namely TB1, TB2, TB3 are asserted at appropriate times to control the data movement 

within the datapaths. The RNS Comparator implementation table with the 

corresponding excitation equations are shown in Table 3.3 The next state table is 

shown in Table 3.4. Since there is a total of eight states, three flip-flops are needed to 

encode them. For simplicity, the straight binary encoding scheme is used for encoding 

the states. In the next state table, these eight states are assigned to eight rows, each 

labeled with the state name and their encoding. In addition to the eight current states 

listed down the rows of the table, the next state of the FSM is also depended on the 



58 CHAPTER 3. DESIGN AND SIMULATION 

 

status signal for the test condition(i.e. Start = 0) for when the condition is false and one 

column with the label (Start = 1)for when the condition is true. The three flip-flops 

Table 3.3: Control and Output Signals of the RNS Comparator 

State 

Q3Q1Q0 

TB1 TB2 TB3 LDA LDB Done 

0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 1 0 0 

0 1 0 1 0 0 0 0 0 

0 1 1 0 1 0 1 0 0 

1 0 0 1 0 0 0 1 0 

1 0 1 0 1 0 1 0 0 

1 1 0 0 0 1 0 0 1 

and one status signal give us a total of four variables (or 24 different combinations) to 

consider in the next-state table. Each next - state entry in the table is obtained from the 

state diagram by looking at the corresponding current state and the edges leading out 

from that state to see what the next is. 

From the next -state table, we get the implementation table, as shown in Table 3.4. 

Using D flip-flops to implement the FSM, the implementation is the same as the next 

state table because the characteristic equation for the D flip-flop is Qnext = D. The only 

difference between the two tables is that the bits in the entries mean something 

different. In the next-state table, the bits in the entries (labeled Q1nextQ0next)are the 

next states from the FSM to go to. In the implementation table, the bits (labeled 

D2D1D0) are the inputs necessary to realize those next states. 

From the implementation table, we derive the excitation equations. The excitation 

equations are used to derive the next-state circuit for generating the inputs to the state 

memory flip-flops. Since we have used three D flip-flops, three excitation equations 

(one for D2, one for D1, and one for D0) are needed, as shown in Table 3.4. The two K 

- maps for these two excitation equations are obtained from extracting the 

corresponding bits from the implementation table. These three excitation equations are 

depended on the three variables, Q1,Q0, and Start, which represent the current state and 

status signal respectively. Having derived the excitation equations, it is trivial to draw 

the next -state circuit based on these equations using the K - map method 3.5. 
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Table 3.4: The Next State and Implementation Tables of the Control Unit 

 
Table 3.5: The K - Map and Excitation Equations the Control Unit 
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The output logic circuit for the FSM is derived from the control word signals and the 

states in which the control words are assigned to. Recall that the control signals control 

the operation of the datapath, and now we are constructing the control unit to control 

the datapath. So what the control unit needs to do is to generate and output the 

appropriate control signals in each state to execute the instruction that is assigned to 

that state. In order words, the control signals for controlling the operation of the 

datapath are simply the output signals from the output logic circuit in the FSM. Once 

we have derived the excitation and output equations, we simply can draw the control 

unit circuit. The state memory simply consists of two D - flip-flops with asynchronous 

clear signals. All the asynchronous clear signals are connected to the global Reset 

signal. Both the next-state logic circuit and the output logic circuit are combinational 
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circuits and are constructed from the excitation equations and output equations 

respectively. The control signal and the output equations from the Table 3.3 are shown 

below: 

 

TB1 = Q2 Q1Q0+Q2Q1 Q0+Q2Q1 Q0 

 

TB2 = Q2Q1Q0+Q2 Q1Q0 

 

TB3 = Q2Q1Q0 

 

LDA = Q1Q0+Q0 

 

LDB = Q2Q1 Q0 

 

Done = Q2Q1Q0 

3.2.7The Implementation Strategy of the RNS - SWA Comparator 

The RNS - SWA comparator is entered into a Quartus II version 4.0 VHDL application 

software using the graphic entry or schematic capture tool embedded in the software. 
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Figure 3.6: Simulation results of the RNS Comparator 

This process allows pre-stored logic functions from the software library to be selected, 

placed on the screen, and then interconnected to create the logic design. 

After the design entry is completed, it is compiled, in order to translate the source 

object code into object code in format that can be logically tested or downloaded to a 

target device. 

The next step that follows the compilation process is the functional simulation. This is 

done by the software to confirm that the logic circuit functions as expected. The 

simulation will verify that correct outputs are produced for a specified set of inputs, 

and it is the waveform editor (a device independent software tool) that is used to verify 

this. 

Finally, timing simulation was done to verify that the circuit works at the design 

frequency and that there are no propagation delays or other timing problems that will 

affect the overall operation of the circuit when implemented on the hardware device. 

Figure 3.6 shows the simulation waveform results of the RNS - SWA comparator. 

The hardware resource utilization of the implementation are shown in Table 3.6. Form 

the table it is clear that the implementation is not hardware intensive as only 187 out 

of 10,570, making a negligible 1 of the logic cell within the device are used when 
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Table 3.6: The RNS - SWA Comparator Simulation status and circuit resource 

utilization table 

Resource Usage 

Logic cells 187 / 10,570 ( 1 % ) 

Registers 36 / 12,506 ( < 1 % ) 

Total LABs 27 / 1,057 ( 2 % ) 

Logic cells in carry 

chains 

8 

User inserted logic cells 0 

I/O pins 24 / 336 ( 7 % ) 

– Clock pins 5 / 16 ( 31 % ) 

Global signals 3 

M512s 0 / 94 ( 0 % ) 

M4Ks 0 / 60 ( 0 % ) 

M-RAMs 0 / 1 ( 0 % ) 

Total memory bits 0 / 920,448 ( 0 % ) 

Total RAM block bits 0 / 920,448 ( 0 % ) 

DSP block 9-bit 

elements 

0 / 48 ( 0 % ) 

Global clocks 3 / 16 ( 18 % ) 

Regional clocks 0 / 16 ( 0 % ) 

Fast regional clocks 0 / 8 ( 0 % ) 

DIFFIOCLKs 0 / 16 ( 0 % ) 

SERDES transmitters 0 / 44 ( 0 % ) 

SERDES receivers 0 / 44 ( 0 % ) 

Maximum fan-out node SWA_COMPARATOR_A:inst|RNS_ROM2:inst10|Index[6] 

Maximum fan-out 44 

Total fan-out 741 

Average fan-out 3.50 

implemented on EP1S10F484C5 device (a Stratix family). Also the worst - case clock 

-to -output delay (tco) between the specified source and destination points is 3.715 ns. 

These results show that the implementation is both speed and hardware efficient and 

will eventually improve the overall RNS - SWA architecture, thereby reducing the 

computational cost associated with the algorithm. 



 

 

Chapter 4 

Simulation Results and Discussion 

his chapter discusses the simulation results of the hardware implementation of 

the RNS - SWA architecture. 

After describing a digital system in VHDL either behaviorally or schematically, 

simulation of the VHDL code is important for two reasons. First, we need to verify 

that the VHDL code correctly implements the intended design, and second, we need 

to verify that the designs meets its specifications. Before the VHDL model of a digital 

system can be simulated, the VHDL code must first be compiled. The VHDL compiler, 

also called an analyzer, first checks the VHDL source code or schematic 

interconnections to see that it conforms to the syntax and semantic rules of VHDL. 

The compiler also checks to see that references to libraries are correct. If the VHDL 

code or schematics conforms to all of the rules, the compiler generates intermediate 

code which can be used by simulator or by a synthesizer. 

There are basically two types of simulations used in VHDL; Functional Simulation 

and Timing Simulation. The functional simulation is done by the software to confirm 

that the logic circuit functions as expected and the timing simulation is done to verify 

that the circuit works at the design frequency and that there are no propagation delays 

or other timing problems that will affect the overall operation of the circuit when 

implemented on the hardware device. 

63 

4.1Simulation Results 

As outlined in section 3.2.1,the complete implementation of the RNS - SWA 

architecture involves basically three components. These components include: 

T 
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• The Binary/Decimal to RNS Conversion stage. This step is christened the RNS 

Based SWA Forward converter (RSFC). 

• The RNS based arithmetic operations stage. This is also termed the RNS base 

SWA microprocessor stage and, 

• The RNS comparison stage. 

The simulation results of the various components and then the complete unit of the 

RNS - SWA architecture are explained in the following subsections. 

4.1.1The Simulation Results of the RNS Forward converter 

After the schematic design entry of the memoryless RNS (mRNS) forward converter 

of the SWA architecture is completed, it is compiled, in order to translate the source 

object code into object code in format that can be logically tested or downloaded to a 

target device. 

The next step that follows the compilation process is the functional simulation. The 

simulation will verify that correct outputs are produced for a specified set of inputs, 

and it is the waveform editor (a device independent software tool) that is used to verify 

this. 

Finally, timing simulation was done to verify that the mRNS forward converter circuit 

works at the design frequency and that there are no propagation delays or other timing 

problems that will affect the overall operation of the circuit when implemented on the 

target hardware device. The simulation result of the mRNS forward converter are 

shown in Figure 4.1. 
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Figure 4.1: Simulation result of the mRNS Forward Converter 

The hardware timing and resource utilization summary of the mRNS Forward 

Converter implementation are shown in Table 4.1 and Table 4.2 respectively. From 

the 

Table 4.1: Timing Results of the mRNS Forward converter 

Type Slacks Required 

Time 

Actual 

Time 

From To 

Worst-case minimum 

tpd 

N/A None 4.600 ns V0 P0 

Worst-case tpd N/A None 9.100 ns U3 Q1 

tables it is clear that the implementation is not hardware intensive as only 62% of the 

logic cell within the device are used. Also The worst - case point -to - point delay (tpd) 

between the specified source and destination points is 4.600ns making this converter 

both area and speed efficient. 



4.1. SIMULATION RESULTS 67 

 

4.1.2 The Simulation Results of RNS - SWA microprocessor 

After the RNS - SWA processor is designed and entered schematically into the design 

software, it is compiled and simulated. The functional simulation as explained in the 

previous subsection is done to confirm that the logic circuit functions as expected 

Table 4.2: The mRNS Simulation status and circuit resource utilization table 

Flow Status Successful - Tue Sep 07 00:00:49 

2010 

Revision Name MODULUS15_16 

Top-level Entity Name MODULUS15_16 

Family MAX7000AE 

Total macrocells 20 / 32 ( 62 % ) 

Total macrocells 20 / 32 ( 62 % ) 

Total pins 20 / 36 ( 55 % ) 

Device EPM7032AELC44-4 

User inserted logic 

cells 

0 

Shareable expanders 12 / 32 ( 37 % ) 

Registers used 0 / 32 ( 0 % ) 

Parallel expanders 9 / 30 ( 30 % ) 

Number of pterms used 87 

Maximum fan-out node V0 

Maximum fan-out 18 

Logic cells 20 / 32 ( 62 % ) 

I/O pins 20 / 36 ( 55 % ) 

Global signals 0 

Cells using turbo bit 20 / 32 ( 62 % ) 

Average fan-out 3.44 

– Dedicated input pins 0 / 2 ( 0 % ) 

– Clock pins 0 / 2 ( 0 % ) 

and the timing simulation was done also to verify that the circuit works at the design 

frequency and that there are no propagation delays or other timing problems that will 

affect the overall operation of the circuit when implemented on the hardware device. 

The simulation of the RNS - SWA processor are shown in Figure 4.2. 

Table 4.4 shows the flow summary of the RNS - SWA processor and the hardware 

utilization figures. Less than 1% of logic cells are employed in this implementation, 

making the implementation hardware efficient. 
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4.1.3The Simulation Results of the RNS Comparator 

The schematic of RNS - SWA comparator is entered into a Quartus II version 4.0 

VHDL application software using the graphic entry or schematic capture tool 

embedded in the software. This process allows pre-stored logic functions from the 

software library to be selected, placed on the screen, and then interconnected to create 

the logic 

 

Figure 4.2: Simulation results of the RNS - SWA Processor 

Flow Status Successful - Tue Nov 23 23:57:09 

2010 

Revision Name RNS_PROCESSOR 

Top-level Entity Name RNS_PROCESSOR 

Family Stratix II 

Total combinational 

functions 

27 

Total registers 10 

Total pins 26 / 343 ( 7% ) 

Total memory bits 0 / 419,328 ( 0 % ) 

DSP block 9-bit elements 0 / 96 ( 0 % ) 

Total PLLs 0 / 6 ( 0 % ) 

Total DLLs 0 / 2 ( 0 % ) 

Device EP2S15F484C3 
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Table 4.3: 

The RNS - SWA processor Simulation status and circuit resource utilization table 

design. 

After the design entry is completed, it is compiled, in order to translate the RNS SWA 

comparator source code into object code in format that can be logically tested or 

downloaded to a target device. 

What follows the compilation stage is the functional and timing simulation. These are 

done to check the circuit functionalities and timing constraints of the design in the 

target device. Figure 4.3 shows the simulation results of the RNS - SWA comparator. 

The hardware resource utilization of the implementation are shown in Table 4.4 

Total ALUTs 34 / 12,480 ( 1 % ) 
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Figure 4.3: Simulation results of the RNS Comparator 

Form the table it is clear that the implementation is not hardware intensive as only 187 

logic cell within the device are used when implemented on EP1S10F484C5 device (a 

Stratix family). Also the timing results show that the worst - case clock -to -output 

delay (tco) between the specified source and destination points is 3.715 ns. These 

results show that the implementation is both speed and hardware efficient and will 

eventually improve the overall RNS - SWA architecture, thereby reducing the 

computational cost associated with the algorithm. 

4.1.4The Simulation Results of the Complete RNS - SWA Archi- 

tecture 

The complete design of the RNS - SWA architecture is obtained when all the three 

stages outline above are interconnected to form a single unit using the schematic 

capture tool embedded in the VHDL software. This was done and functional and 

timing simulations carryout again on this single unit to get the overall resource 

utilization and delay within the design. 

Table 4.4: The RNS - SWA Comparator Simulation status and circuit resource 

utilization table 

Resource Usage 
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Logic cells 187 / 10,570 ( 1 % ) 

Registers 36 / 12,506 ( < 1 % ) 

Total LABs 27 / 1,057 ( 2 % ) 

Logic cells in carry 

chains 

8 

User inserted logic cells 0 

I/O pins 24 / 336 ( 7 % ) 

– Clock pins 5 / 16 ( 31 % ) 

Global signals 3 

M512s 0 / 94 ( 0 % ) 

M4Ks 0 / 60 ( 0 % ) 

M-RAMs 0 / 1 ( 0 % ) 

Total memory bits 0 / 920,448 ( 0 % ) 

Total RAM block bits 0 / 920,448 ( 0 % ) 

DSP block 9-bit 

elements 

0 / 48 ( 0 % ) 

Global clocks 3 / 16 ( 18 % ) 

Regional clocks 0 / 16 ( 0 % ) 

Fast regional clocks 0 / 8 ( 0 % ) 

DIFFIOCLKs 0 / 16 ( 0 % ) 

SERDES transmitters 0 / 44 ( 0 % ) 

SERDES receivers 0 / 44 ( 0 % ) 

Maximum fan-out node SWA_COMPARATOR_A:inst|RNS_ROM2:inst10|Index[6] 

Maximum fan-out 44 

Total fan-out 741 

Average fan-out 3.50 

Table 4.5 shows the summary results of the final implementation. The hardware timing 

and resource utilization of the implementation shows that the implementation is fast 

and efficient. For only 189 out of 12,480, making a negligible 1% of the logic cells 

within the device are used when implemented on EP2S15F484C3 device (a Stratix 

family). Also the worst - case clock -to -output delay (tco) between the specified source 

and destination points is 6.006 ns, a maximum clock speed of 185.53 MHz. 

The VHDL codes for the complete RNS - SWA design are posted at Appendix A. 
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4.1.5 Performance Evaluation of the RNS - SWA Processor 

In order to evaluate the performance of the design, it was compared with the work of 

Laiq Hasan and Zaid Al - Ars. Their work was chosen because of implementaTable 

4.5: Flow summary and circuit resource utilization table of the RNS - SWA 

Architecture 

Flow Status Successful - Mon Nov 29 13:48:01 

2010 

Revision Name FINAL_SWA_PROCESSOR 

Top-level Entity Name FINAL_SWA_PROCESSOR 

Family Stratix II 

Total combinational 

functions 

143 

Total registers 46 

Total pins 32 / 343 ( 9 % ) 

Total memory bits 0 / 419,328 ( 0% ) 

DSP block 9-bit elements 0 / 96 ( 0 % ) 

Total PLLs 0 / 6 ( 0 % ) 

Total DLLs 0 / 2 ( 0 % ) 

Device EP2S15F484C3 

Total ALUTs 189 / 12,480 ( 1 % ) 

Device EP2S15F484C3 

Total ALUTs 189 / 12,480 ( 1 % ) 

tion similarity and the facts that their work is currently claimed by them as the best 

implementation of the SWA. 

In [1], Laiq Hasan and Zaid Al - Ars in 2007, used the GNU profiler, gprof, to profile 

the SWA in order to get the function that consumes most of the computation time. 

Table 4.6 shows the profiling results that was obtained. The GNU profiler gives 

information about the number of times, each function is called and the number of 

Clocks Ticks consumed by each function. The code was run on the Intel Pentium - IV 

(3.2 

GHz) processor, for which the time period of the clock is 

1 

=  = 0·312ns 

3·2GHz 
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The matrix fill function, labeled “fill_matrix_2 ”in Table 4.6 was identify as the the 

most called function and consumed 72.33% of the total runtime, making it the right 

candidate to be implemented in hardware. In the table, the fill_matrix_2 function took 

5.23ms of the total time. This is actually the time when the code is repeated 100 times. 

So the actual time consumed by the matrix fill stage function is 

ms 

Also in Laiq Hasan and Zaid Al - Ars [1] 2007, the post place and route simulation 

Table 4.6: L. Hasan and Z. Al-rs Profiling Results for the Software implementation of 

the SWA 

Function No. of 

Calls 

No. of Clocks 

Ticks 

No. of Clock 

Cycles 

Total 

(ms) 

time % Time 

Init_Matrix 100 71944 2302208 0.718 9.93 

fill_Matrix_1 100 32392 1036544 0.323 4.47 

fill_Matrix_2 4800 524040 16769280 5.23 72.33 

trace_back_1 100 31232 999424 0.312 4.31 

trace_back2 500 64944 2078208 0.648 8.96 

showed that the total delay of their hardware implementation was 0·0146µs, whereas 

the time consumed by it’s software equivalent was 52·32µs. Their runtime 

improvement over that of the software implementation was calculated to be 3582% = 

35.82 times faster. The device utilization summary shows that 29 out of 13696 slices 

are used, so the design was claimed to be very efficient in terms of resource utilization. 

In our implementation, the same matrix fill stage, labeled as “fill_matrix_2 ”in the 

table 4.6 was implemented in hardware using RNS as a tool to further improves upon 

the computational cost associated with the fill_matrix_2. The VHDL implementation 

was run on the Intel(R) Pentium(R) Dual CPU T2330 1.60 GHz(2 CPUs) processor, 

for which the time period of the clock is 

1 

 =  = 0·625ns 

1·6GHz 

The flow summary of the implementation of the RNS - SWA is shown in Table 4.5. 

The timing simulation of the RNS - SWA architecture shows that the critical delay is 

equal to 6.006ns. 
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The comparison between the total delay of [1] hardware implementation, denoted as 

Hardward1_runtime, and the hardware implementation of our work, denoted as 

Hardware2_runtime, expressed as a percentage, will give us the percentage runtime 

improvement over their work and thereby gives us a good ground to argue. 

Mathematically, the percentage runtime improvement ratio of the RNS - SWA 

implementation to that of [1] is calculated as follows: 

 " 1 # 

 %Runtime Ratio = Hardware2_runtime ∗100% 
1 

Hardware1_runtime 

Substituting our hardware implementation total delay denoted as 

Hardware2_runtime and that of [1], denoted as Hardware1_runtime, we 

obtain; 

%Runtime Ratio 100% 

%Runtime Ratio = 243% 

It will also be of interest to find the percentage difference gained in term of 

speed of our implementation over that of [1]. This percentage gain is 

calculated mathematically below: 

" Hardware12_runtime − Hardware11_runtime # 

%Runtime Improvement over Hardware1 =∗100% 
1 

Hardware1_ru

ntime Substituting our hardware implementation total delay denoted as 

Hardware2_runtime and that of [1], denoted as Hardware1_runtime, we 

obtain; 

%Runtime Improvement over Hardware1 100% 

%Runtime Improvement over Hardware1 = 143·09% 

For the purpose of completeness and to be able to show the superiority of 

our work over the software implementation, our hardware implementation 
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result is also compared with the total time consumed by it’s software 

equivalent as shown below: 

 
" 

1 − Software1_runtime 
#
 

Hardware2_runtime 

%Runtime Improvement over Software =∗100% 
1 

Soft

ware

_ru

ntim

e 

where Software_runtime is the software implementation delay. Substituting our 

hardware implementation total delay and that of the software’s delay, we obtain; 

%Runtime Improvement over Software 100% 

%Runtime Improvement over Software = 871029% 

%Runtime Improvement over Software = 8710·29 times 

From the above three comparison, these deductions can be made: 

• Our hardware implementation is 243% better in term of speed over that of [1]. 

• In term of percentage difference gained in term of speed, our implementation is 

143% superior over that of [1]. 

• In comparing our implementation with it’s software profiling results, ours is 

871029% better in term of speed, that is 8710.29 times faster. 

What these outstanding results mean is that there is hope for the bioinformatics 

community so far as accurate sequence alignment is concern. The total time that will 

be needed to alignment two strings of DNA using the RNS - SWA architecture will be 

improved by 8710.29 times more than it’s software equivalent implementation or 

243% faster than that of the hardware implementation done by [1]. 
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These results also support the fact that RNS is a good platform to implement the SWA, 

since it has a high prospect of improving the overall computational cost and the 

hardware foot print of the algorithm. 
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Chapter 5 

Conclusion and Future Research 

Directions 

 5.1 Conclusion 

his thesis work investigated the possibility of accelerating the Smith - Waterman 

algorithm (SWA) using the arithmetic advantages of the Residue Number System (RNS). 

RNS is such an integer system exhibiting the capabilities that support parallel computation, 

carry free addition, borrow-free subtraction, and single step multiplication without partial 

product. The theoretical analysis shows the advantages of implementing the SWA on an RNS 

platform. These advantages are exploited in this implementation to build an RNS - SWA 

architecture in order to reduce the computational time of the SWA. The RNS - SWA 

architecture consists of a Binary to RNS converter, two RNS processors, and RNS to Binary 

converter cum comparator. 

As most existing devices and applications use binary representations, such as fixed point or 

floating - point numbers, the first part of an RNS design is usually a converter that converts 

binary numbers into residues format, which is usually termed as the forward converter or 

residue generator. Due to this, a customized memoryless RNS forward converter was 

implemented to convert the input binary representation into their respective residues forms. The 

RNS processors then use these residues to do 
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fast arithmetic operations in accordance with the SWA arithmetic operations. Various control 

units are built to control the sequencing of these arithmetic operations and the asserting of 

control signals and status signals at appropriate times. 

The results obtained from the processors were converted back to their equivalent binary values 

by the use of 256 words × 8 - bits ROM and then comparison was done to get the maximum 

matrix score. The VHDL implementation of the RNS - SWA architecture shows that our 

implementation is superior in term of speed as compare to [1]. The runtime ratio of our 

implementation to that of [1] expressed as a percentage shows a 243% improvement. In terms 

of comparison with the hardware implementation done by [1], our hardware implementation is 

superior by 143%. 

Also, comparing our hardware implementation result with it’s software equivalent shows a 

tremendous improvement of 871029%, that is 8710.29 times faster. These results also support 

the fact that RNS is a good platform to implement the SWA, since it has a high prospect of 

improving the overall computational cost and the hardware foot print of the algorithm. In terms 

of hardware utilization, our implementation consumed 189 logic cells when implemented on 

EP2S15F484C3 device (a Stratix family). 

What these findings mean is that there is hope for the bioinformatics community so far as 

accurate sequence alignment is concern. The total time that will be needed to alignment two 

strings of DNA using the RNS - SWA architecture will be improved by 8710.29 times more 

than it’s software equivalent implementation. These findings support the fact that RNS is good 

platform to implement the SWA, and therefore will go a long way to improve the computational 

constraints of the SWA. 



80 

 

 5.2. FUTURE RESEARCH DIRECTIONS 

 5.2 Future Research Directions 

• Since RNS is showing a high prospect in accelerating the SWA, it will be of interest 

to implement these finding in VLSI platform. 

• The nature of the moduli set use in an RNS implementations has effect on the speed 

and area of that device. It is of interest to investigate the possibility of implementing 

the SWA using different moduli set and then select the best moduli set in terms of 

speed, area or both. 

• It is of interest to research into the possibility of building a RNS-based SWA 

architecture with fault tolerant capabilities to detect and correct errors using 

Redundant Residue Number System (RRNS). 

• It could be a good research effort to investigate whether there will be gains in terms 

of speed and area if the SWA were implemented using Polynomial Residue 

Number System (PRNS). 

• It will be of research interest to find out whether there will be better results in terms 

of speed and area if the SWA is implemented on moduli set with a wide dynamic 

range that can take care of a long string of DNA without doing the divide- and - 

conquer approach assumed in this thesis. 
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Appendix A 

VHDL Codes implantation of the 

complete RNS - SWA Architecture 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

LIBRARY work; 

ENTITY FINAL_RNS_PROCESSOR IS port 

( 

H7 : IN STD_LOGIC; 

H6 : IN STD_LOGIC; 

H5 : IN STD_LOGIC; 

H4 : IN STD_LOGIC; 

H3 : IN STD_LOGIC; 

H2 : IN STD_LOGIC; 

H1 : IN STD_LOGIC; 

H0 : IN STD_LOGIC; 

S00 : IN STD_LOGIC; 

S01 : IN STD_LOGIC; 

S02 : IN STD_LOGIC; 

S03 : IN STD_LOGIC; 

S10 : IN STD_LOGIC; 

S11 : IN STD_LOGIC; 

S12 : IN STD_LOGIC; 

S13 : IN STD_LOGIC; 

READ : IN STD_LOGIC; 

START : IN STD_LOGIC; 

CLOCK : IN STD_LOGIC; 

CLEAR : IN STD_LOGIC; 

CLOCK1 : IN STD_LOGIC; 

CLEAR1 : IN STD_LOGIC; 

DONE : OUT STD_LOGIC; 

MAX : OUT STD_LOGIC_VECTOR(7 downto 0) 

); 

86 

END FINAL_RNS_PROCESSOR; 

ARCHITECTURE bdf_type OF FINAL_RNS_PROCESSOR IS 

component rns_processor 
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PORT(H7 : IN STD_LOGIC; 

H6 : IN STD_LOGIC; 

H5 : IN STD_LOGIC; 

H4 : IN STD_LOGIC; 

H3 : IN STD_LOGIC; 

H2 : IN STD_LOGIC; 

H1 : IN STD_LOGIC; 

H0 : IN STD_LOGIC; 

S00 : IN STD_LOGIC; 

S01 : IN STD_LOGIC; 

S02 : IN STD_LOGIC; 

S03 : IN STD_LOGIC; 

S10 : IN STD_LOGIC; 

S11 : IN STD_LOGIC; 

S12 : IN STD_LOGIC; 

S13 : IN STD_LOGIC; 

CLEAR : IN STD_LOGIC; 

CLOCK : IN STD_LOGIC; 

Q3 : OUT STD_LOGIC; 

Q2 : OUT STD_LOGIC; 

Q1 : OUT STD_LOGIC; 

Q0 : OUT STD_LOGIC; 

P3 : OUT STD_LOGIC; 

P2 : OUT STD_LOGIC; 

P1 : OUT STD_LOGIC; P0 : OUT STD_LOGIC 

); end component; 

component rns_comparator 

PORT(A0 : IN STD_LOGIC; 

A1 : IN STD_LOGIC; 

A2 : IN STD_LOGIC; 

A3 : IN STD_LOGIC; 

A4 : IN STD_LOGIC; 

A5 : IN STD_LOGIC; 

A6 : IN STD_LOGIC; 

A7 : IN STD_LOGIC; 

READ : IN STD_LOGIC; 

CLOCK1 : IN STD_LOGIC; 

START : IN STD_LOGIC; 

CLOCK : IN STD_LOGIC; 

CLEAR : IN STD_LOGIC; 

APPENDIX A. VHDL CODES IMPLANTATION OF THE COMPLETE RNS - SWA 
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DONE : OUT STD_LOGIC; 

MAX : OUT STD_LOGIC_VECTOR(7 downto 0) 

); end 

component; 



 

 

signal SYNTHESIZED_WIRE_0 : STD_LOGIC; 

signal SYNTHESIZED_WIRE_1 : STD_LOGIC; 

signal SYNTHESIZED_WIRE_2 : STD_LOGIC; 

signal SYNTHESIZED_WIRE_3 : STD_LOGIC; 

signal SYNTHESIZED_WIRE_4 : STD_LOGIC; 

signal SYNTHESIZED_WIRE_5 : STD_LOGIC; 

signal SYNTHESIZED_WIRE_6 : STD_LOGIC; 

signal SYNTHESIZED_WIRE_7 : STD_LOGIC; 

BEGIN 

b2v_inst : rns_processor 

PORT MAP(H7 => H7, 

H6 => H6, 

H5 => H5, 

H4 => H4, 

H3 => H3, 

H2 => H2, 

H1 => H1, 

H0 => H0, 

S00 => S00, 

S01 => S01, 

S02 => S02, 

S03 => S03, 

S10 => S10, 

S11 => S11, 

S12 => S12, 

S13 => S13, 

CLEAR => CLEAR1, 

CLOCK => CLOCK1, 

Q3 => SYNTHESIZED_WIRE_0, 

Q2 => SYNTHESIZED_WIRE_1, 

Q1 => SYNTHESIZED_WIRE_2, 

Q0 => SYNTHESIZED_WIRE_3, 

P3 => SYNTHESIZED_WIRE_4, 

P2 => SYNTHESIZED_WIRE_5, 

P1 => SYNTHESIZED_WIRE_6, 

P0 => SYNTHESIZED_WIRE_7); 

b2v_inst3 : rns_comparator 

PORT MAP(A0 => SYNTHESIZED_WIRE_0, 

A1 => SYNTHESIZED_WIRE_1, 

A2 => SYNTHESIZED_WIRE_2, 

A3 => SYNTHESIZED_WIRE_3, 

A4 => SYNTHESIZED_WIRE_4, 

A5 => SYNTHESIZED_WIRE_5, 

A6 => SYNTHESIZED_WIRE_6, 

A7 => SYNTHESIZED_WIRE_7, 
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READ => READ, 

CLOCK1 => CLOCK, 

START => START, 

CLOCK => CLOCK1, 

CLEAR => CLEAR, 

DONE => DONE, MAX => MAX); 

END;  



 

 

Appendix B 

VHDL Codes implantation of the RNS - 

SWA Comparator 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

LIBRARY work; 

ENTITY Comparator1 IS port ( 

LOAD : IN STD_LOGIC; 

CLOCK : IN STD_LOGIC; 

CLEAR : IN STD_LOGIC; 

A : IN STD_LOGIC_VECTOR(7 downto 0); 

B : IN STD_LOGIC_VECTOR(7 downto 0); 

MAX : OUT STD_LOGIC_VECTOR(7 downto 0) 

); 

END Comparator1; 

ARCHITECTURE bdf_type OF Comparator1 IS 

component rns_reg_a 

PORT(clock : IN STD_LOGIC; aclr : IN STD_LOGIC; aload : 

IN STD_LOGIC; data : IN STD_LOGIC_VECTOR(7 

downto 0); q : OUT STD_LOGIC_VECTOR(7 downto 0) 

); end component; 

component rns_reg_b 

PORT(clock : IN STD_LOGIC; aclr : IN STD_LOGIC; aload : 

IN STD_LOGIC; data : IN STD_LOGIC_VECTOR(7 

downto 0); 
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q : OUT STD_LOGIC_VECTOR(7 downto 0) 

); end component; 

component rns_comp 

PORT(dataa : IN STD_LOGIC_VECTOR(7 downto 0); datab : IN 

STD_LOGIC_VECTOR(7 downto 0); ageb : OUT STD_LOGIC 

); end component; 

component rns_mux 

PORT(sel : IN STD_LOGIC; data0x : IN 

STD_LOGIC_VECTOR(7 downto 0); data1x : IN 
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STD_LOGIC_VECTOR(7 downto 0); result : OUT 

STD_LOGIC_VECTOR(7 downto 0) 

); end component; 

signal SYNTHESIZED_WIRE_5 : STD_LOGIC_VECTOR(7 downto 0); signal 

SYNTHESIZED_WIRE_6 : STD_LOGIC_VECTOR(7 downto 0); signal 

SYNTHESIZED_WIRE_2 : STD_LOGIC; BEGIN 

b2v_inst2 : rns_reg_a 

PORT MAP(clock => CLOCK, aclr => 

CLEAR, aload => LOAD, data => A, q => 

SYNTHESIZED_WIRE_6); 

b2v_inst3 : rns_reg_b 

PORT MAP(clock => CLOCK, aclr => 

CLEAR, aload => LOAD, data => B, q => 

SYNTHESIZED_WIRE_5); 

b2v_inst4 : rns_comp 

PORT MAP(dataa => SYNTHESIZED_WIRE_5, datab 

=> SYNTHESIZED_WIRE_6, ageb => 

SYNTHESIZED_WIRE_2); 

b2v_inst5 : rns_mux 

9A2PPENDIX B. VHDL CODES IMPLANTATION OF THE RNS - SWA COMPARATOR 

 

PORT MAP(sel => 

SYNTHESIZED_WIRE_2, data0x => 

SYNTHESIZED_WIRE_6, data1x => 

SYNTHESIZED_WIRE_5, result => 

MAX); 

END; 


