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ABSTRACT  

Research into security enhanced kernel architecture has been on going by computer corporations, 

research institutions and Kernel development engineers for several decades now. Even though the 

paradigm-shift from performance enhanced kernel development to application level security 

operating systems improved the safety of operating systems use, it was apparent that more kernel 

retrofitting need to be implemented at the kernel level since it is a highly privileged section of the 

architecture, and therefore a compromise in the kernel could affect the security of the entire 

systems including the performance of security applications which runs on the kernel. This research 

introduces the Convoluted Kernel Architecture (CKA) which is a security enhanced Linux server 

based monolithic architecture that re-modifies the original monolithic kernel architecture with 

additional layer of virtual module within the kernel to improve the security and availability of the 

Kernel. The system make use of Operating System level virtualization with an integrated security 

module, which otherwise would have been implemented at the application layer, with a novel 

authentication module called the Stealth Obfuscation Zero Knowledge Proof algorithm. This 

research describes how the CKA abstracts the hardware and software layers of conventional 

servers to implement the operating system all in one security appliance that at the same time, 

providing High Availability. Finally, this work describes how the CKA protects the core kernel 

from attacks when upper kernel becomes compromised through vulnerabilities of applications that 

executes on them or the kernel utilities itself.   
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CHAPTER 1  

INTRODUCTION  

This thesis addresses a critical research question of how security of current Server Operating 

Systems using Virtual Private Servers (VPS) be ameliorated, and yet, address the challenges 

associated with High Availability via improved throughput in monolithic Operating System. Since 

the last decade, Universities, Research Institutions, Computer Corporations and Operating System 

Development Engineers have been involved in the development of multiple isolated user-space 

instance operating system architecture. This transformation has been met by commensurate 

improvement of super hardware performance enhancement and device miniaturization, allowing 

operating system kernels originally designed for high specification servers to be executed on a 

single server unit.    

Server operating system security has undergone a tremendous evolution due to increased 

complexity of attacks. Network communications on the other hand (since the early 90’s) have also 

witnessed a remarkable revolution from a hitherto, ‘mundane’ store-and-forward applications like 

electronic mails, to present real-time and ‘resource-hungry’ collaboration tools such as instant 

messaging (IM), media streaming among others, with each presenting its own channels for 

potential attack. The vulnerability to Kernel exploits and rootkits can be partially ascribed to lack 

of focus on kernel level system architectural security in modern operating systems (Loscocco et 

al, 1998). The traditional security mechanism in UNIX, DAC, is limited in scope since it only 

covers filesystem access. To guarantee the enforcement of a system-wide policy, MAC was 

adopted. MAC does not necessarily extend the security domain of DAC, but allows system 

administrators to impose rules which cannot be circumvented by users. However, MAC is not 

solution to everything: It provides protection for the Kernel before an attack but not after the 

incident has eventually occurred and it is not an extension to the Kernel architecture  

 The complexities, which associates current server vulnerabilities, have necessitated the need for 

an auxiliary system, referred to as Unified Threat Management (UTM), to augment the security of 

server operating systems. This however comes with its overhead cost against performance of the 

server operating systems such as security, efficiency, responsiveness among others. The other side 
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is the budgetary cost of the component which allows only well established businesses and 

institutions to afford.   

1.1 Convoluted Kernel Architecture  

The thesis presents an implementation of a modified novel algorithm which implements an 

advanced authentication system for remote server verification that utilizes Signature Proof 

Knowledge model based on Zero Knowledge Proofs. The algorithm is integrated into the frontend-

interface of the cluster servers via the Portable Authentication Module (PAM) in Linux. As a result 

of this model, another level of security is added to address the challenges associated with 

authentication vulnerabilities that could lead to terrible security breach.  

Beyond the above situations, one of the major challenges faced by most cluster servers, which this 

investigation also touches on, is that of high availability. Until recently, the only technique that 

was via host-per-host redundancy. Even though this approach is considered as the best and easy 

way of achieving high availability, it is also met with high human and hardware costs. This 

therefore provides the opportunity for only big corporations to engineer and afford such an 

infrastructure. However, in this thesis, we shall present how operating system level virtualization 

can be used to construct on a pre-compiled kernel thereby reducing cost.   

The other security protection issue faced with most of the kernel engineers has to do with how 

multiple kernel security modules could be combined to enhance the Discretionary Access Control 

policies of the kernel. This became a major challenge because most of the experiments conducted 

in the lab could not allow two or more different modules e.g. AppArmor and SELinux to coexist 

on the same kernel platform. It is however one of the cardinal highlights of proposed framework 

since security assurance is the main objective for its development. GRsecurity module is therefore 

embedded into the framework to serve that purpose for such challenges aforementioned. Details 

of which will be captured in the subsequent chapter.  

In view of all these challenges, today a new operating system development model - code named – 

the “Integrated Approach” which is an all-inclusive model in ensuring that, modules required for 

operating system ‘hardening’ is presented and their associated developments are encapsulated as 

a single unit rather than separate independent application layer compartments. This framework is 
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ostensibly aimed at developing a novel server operating system architecture with strong resilience 

against attacks and that could address the challenges of current operating system level 

vulnerabilities.  

1.2 Problem Statement  

Due to the strict-intransigent and inflexible architecture of the Monolithic operating system, 

adopting a dynamic modular integration has become almost impossible without recompiling the 

entire kernel (Lindskog, 2000). Moreover, Kernels are written in C and C++ and therefore suffer 

the same security vulnerabilities that applications suffer including buffer overflow and integer 

overflow attacks. (Piromsopa, 2011). Meanwhile, Legacy authentication problems for UNIX 

Kernels (old protocols and compatibility) has contributed to Authentication bypass and 

vulnerabilities in the Linux PAM. With these stated kernel vulnerabilities, a lot of research interest 

have been generated into the development of a more secured and efficient commodity operating 

system kernels by various universities and computer science research labs for over two decades 

now using various kernel development techniques (Criswell et al, 2014).  

1.3 The Goal of the research   

The goal of this research is the design and implementation of the “Convoluted-OS Kernel 

Architecture”. This architecture is intended to make the development of the operating system 

kernel complex as a result of the multifaceted nature of the core utilities integrated into the kernel, 

yet, easy to operate with high availability and enhanced security to frustrate the efforts of the 

attacker. Due to the emphasis on security in its architecture, a novel security authentication module 

is also designed as part of achieving the overall objective or goal of the system in order to enhance 

the security of this architecture.  

   

1.4. The Objectives of the Research   

The objectives of this research seek to provide the following:  

1. To design a novel OS Kernel Architecture to improve and protect the security of the core 

kernel against internal threats and attacks.  
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2. To analyze the extent to which the kernel integrated UTM, could improve performance of 

the overall operating system.  

3. To identify the extent to which the performance of monolithic kernels could be improved 

via the use of High Availability (HA) techniques and OS level virtualization.  

4. To develop an authentication module in the OS Kernel to improve the legacy authentication 

algorithm from UNIX in Linux, PAM.  

5. To Design a prototype Operating System to integrate the Kernel Architecture to simulate 

the model.  

The subject of enhancing the security in monolithic operating system is the focal point in this 

thesis, and key concern to most computer corporations and operating system development 

engineers around the globe for several decades now. This however, cannot be resolved in isolation 

as it inter-connects to features such as high availability, increased throughput and resilience. The 

work therefore described in this thesis focuses on the design and implementation of the convoluted 

operating system architecture with its TrendOS prototype as novel server operating system in 

monolithic kernels to improve security, availability and reliability of the monolithic kernel 

architecture.  

  

The continuous reported incidents of computer security breaches globally, and their associated 

operating system vulnerabilities has inspired fresh investigations of the current operating system 

kernel architecture. This has therefore renewed the interest of operating system engineers, research 

institutions and computer corporations into the domain of emerging security in operating systems 

design.  

  

Finally, a unique authentication cryptographic algorithm is introduced in which it falls under the 

taxonomy of zero-knowledge authentication, to improve the server level authentication via remote 

service connection. This design is code-named ‘Stealth-Obfuscation-0K Authentication’ and its 

goal is to hide the existence of authentication and to improve on the existing zero knowledge 

authentication algorithms. It is an all in one security enhanced authentication model using a public 
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key cryptosystem that involves the activity of the client side with an exchange of a token (random 

key value) to make the channel of the cryptanalyst more secured.  

  

1.5 Background of the Architecture  

Growing from 2008, after the successful design of a new algorithm for firewall implementation 

using a FreeBSD prototype operating system, the desire for further study in the development of a 

more secured operating system architecture, to mitigate the extent to which operating system 

vulnerabilities are exposed to malicious programs has been the key motivation.   

Even though several attempts have been made to provide safe and trusted commodity operating 

systems kernels for user protection, it is still susceptible to various forms of attacks because of the 

fact that, these kernels are written in C and C++ which therefore carry the same baggage of 

vulnerabilities such as buffer overflows, code injection attacks, string manipulation, memory 

corruption vulnerabilities among others (Piromsopa, 2011)  

Research into a more secured commodity operating system kernels have currently generated an 

active field of research in various universities and research labs due to the increase in kernel 

exploits (Wang et al, 2009), (Criswell et al, 2014).  

With the setting up of a private virtual laboratory to serve as a test-bed for this new operating 

system architectural prototype, and support from research scientists and engineers in commodity 

operating systems in institutions such as Rochester University-US, Kwame Nkrumah University 

of Science and Technology and Fredan Computers Inc. (a Research and Development Lab) - have 

made significant strides in the success of this novel development.   

The past five (5) years have however witnessed a consistent and coherent computer laboratory 

experiments in operating system vulnerabilities and penetration testing across most operating 

system platforms. This thesis analyses the performance of monolithic kernel architecture when 

subjected to various kernel development approaches such as retrofitting techniques, integrated 

approach after a complete transfiguration and the effectiveness of a kernel retrofitted security 

integrated modules instead of the user space model of the kernel architecture which has been the 
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practiced in kernel development. This prior methodological approach has contributed to the several 

reported security breaches in operating systems. The current trend of increased application level 

security has been necessitated because, security was not a major issue when operating systems 

were first introduced. Moreover, the subsequent deployment of policies such as “Mandatory  

Access Control” (MAC) and the “Discretionary Access Control” (DAC) in operating systems at 

the application layer was considered as pragmatic enough to provide security.   

1.6 Motivation  

Four factors contributed to the exploration in this research. These are: the increase in the number 

of reported incidents of operating system vulnerabilities (National Vulnerabilities Database, 2016) 

the weakness of the strict-intransigent-structured monolithic operating system architecture, the 

challenges that characterizes the various kernel development approaches and the opportunity to 

exploit the performance of operating system extensibility using the integrated approach.   

  

First of all, vulnerabilities related to operating systems could be largely associated with the fact 

that the advent of early operating systems were developed in a friendly, collaborative environment 

without much considerations to predefined persistence. Several decades later, as the environments 

became less friendly in addition to increased functional complexity, coupled with their associated 

user sophistication and technical competence, vulnerabilities began to expose the cracks in the  

‘robustness’ and security of the operating systems in use (Bishop, 2009).   

  

Secondly, the traditional monolithic architecture of Linux operating system, inherited from UNIX, 

has always managed large part of the systems functions in a strict-intransigent-structure at the 

kernel mode while only limited part is managed at the user mode. Legacy authentication problems 

for UNIX Kernels (old protocols and compatibility) have contributed to Authentication bypass and 

vulnerabilities in the Linux PAM (Lindskog, 2000). This therefore requires that any core system 

configuration necessitates a re-compilation of the entire kernel in order to update the kernel. 

Therefore, such architecture becomes inflexible and intractable to manage, as the slenderest 

modification obligates a re-compilation of the kernel.  
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The third motivation is centered on the numerous approaches adopted by operating system 

engineers in optimizing and enhancing the security of latest kernels in ongoing development. Even 

though several research has been carried out and still ongoing, there is the need for additional 

reengineering be made to exploit new opportunities to make the operating systems more resilient 

against attacks.  

  

Finally, to present an enhanced implementation of a zero knowledge authentication algorithm 

called Stealth-0K that improves the current state of zero knowledge by correcting an anomaly in 

the original zero knowledge algorithm with the stealth-0K algorithm. Furthermore, a vulnerability 

identified in the original algorithm is also revised to further enhance the security of the algorithm 

against man-in-the-middle attack and cryptanalyst.  

1.7 Structure of the Thesis  

Chapter one provides the overview of the Linux architecture and their impact is also discussed in 

this chapter. The first section introduces the architecture and its implementation. The subsequent 

section also looks at the design goal of the architecture and an introduction to the key part of the 

algorithm which provides security and protection to the PAM which shields the entire 

authentication systems of the architecture from various forms of attacks. The third section looks at 

the background study of the architectures including the various efforts made by commodity 

Operating System developers to develop systems which are resilient to all forms of attacks. Finally, 

the concluding section of the chapter looks at the motivation for the development of a new 

architecture for the kernel.  

  

In the second chapter, various literature on operating system kernel architecture were reviewed. A 

description of the Linux Security Module (LSM) framework is carried out and the function of each 

layer explained. A thorough discussion on the several security modules are also explained. Their 

strengths and vulnerabilities captured in literature are also expatiated.     
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In the third chapter, various research design methods are introduced. Three of the methodologies 

used in the research design are discussed; Structured Analysis & Design Technique, Data 

Structured Systems Development and Integrated Design Approach. The rational for the selection 

of the three research design methodologies and the roles they play explained.  

In the fourth chapter, the various kernel architecture and framework that enhances security of 

Linux kernel is discussed. Several of these frameworks were discussed as well as the various 

modules that constitute their implementation. The framework of the Convoluted Kernel 

Architecture is introduced as well as the goal and objectives of the entire design. Detailed analysis 

of the key parts of the architecture was also discussed with their functions.  

  

In the fifth chapter, the thesis looked at the Stealth-Obfuscation Zero Knowledge Authentication 

Protocol and its performance in the architecture. It brings out the extent to which this protocol 

could address the several security vulnerabilities in the authentication process of PAM.   

  

In the sixth chapter, the various reports generated from the experiments and testing of the 

architecture is analyzed. Several reports of the comparative study between the Convoluted Kernel 

Architecture with the Generic Kernel Architecture are analyzed and the performance trend 

simulated on a graph.   

Finally, the seventh chapter summarizes it all with the conclusion and future work of the proposed 

architecture.  

    
CHAPTER 2  

LITERATURE REVIEW  

Advanced data structures and kernel exploits are implemented on commodity OS Kernel on a daily 

basis. However, over the years, most security organizations, government agencies, universities and 

computer corporations around the world have been involved in study to further strengthen the 

native security policy built in commodity operating system kernel. One of such successful projects 

is the Security Enhanced Linux (SELinux) which was developed by America’s National Security 

Agency for their own internal use for Linux patches and later became an official security module. 
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Later, several computer kernel development scientists and engineers also began pushing for their 

own security module to be integrated into the mainstream kernel until Linus Torvalds proposed 

the idea of a project dubbed, the Linux Security Module (LSM) to allow dynamic loadable security 

modules to protect the kernel (Edge, 2012).  

In this chapter, we will examine the various Linux security Modules and other integrated kernel 

retrofit techniques which have been developed to enhance the protection of commodity operating 

system kernels from exploits. The various strengths and weaknesses of these technologies shall 

also be addressed.   

2.1 Overview of LSM Framework   

LSM Framework creates an Application Programming Interface (API) to permit the Linux kernels 

to provide support to the several kernel security models that has implemented the framework’s 

standard. The motivation behind its creation is to allow uninhibited selection of kernel security 

model of choice while avoiding a fixed hard-wired module.   

The LSM project was developed to effectively implement Mandatory Access Control (MAC) 

without altering the base kernel yet augmenting the traditional Unix Discretionary Access Control 

(DAC) service already provided by the Linux kernel. The rationale behind the development of an 

additional security mechanism (MAC) to enhance the kernel security is because, the extent to 

which DAC is implemented relies on user discretion on access constraints. While DAC provides 

restrictions for file system access, the need for security mechanism to enforce defense against 

threats of secured objects in systems such as Network Sockets, IPC among others which cannot be 

circumvented by users became inevitable.   

A more intelligent implementation of the Linux Security Module architecture is the preventive 

access control mechanism. The architecture of the LSM is as shown in figure 2.1. It uses a 

technique of hooks by adding a security field to the Linux structure. In so doing it loads the 

credentials of the program in order to know the module to load and whether it meets the policy 

requirements (Wright et al, 2003).  
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Figure 2.1 Linux security module architecture (Source: Wright et al, 2003)  

  
2.2 Evolution of OS Security Framework  

Traditional UNIX (the mother of Linux) architecture was created without adequate emphasis to 

security (Alm, 2006).   

This was not however considered as a weakness to the architecture since data protection and 

operating system level vulnerability did not exist at the time as a threat. In the early 90’s, the first 

worm attack across the globe exposed the vulnerabilities of operating system and the debate of 

data protection. The only form of protection at the time was the Discretionary Access Control 
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(DAC) which is user defined to protect user files and directories and are subject to the discretion 

of the user.   

The weaknesses of DAC became so highly evident when during the over reliance on networking 

and therefore led to the development of other frameworks. The MAC framework where the 

mandatory access control is managed was introduced to protect the kernel. Subsequently, other 

framework such as the, SESBD, Flask and SELinux frameworks were introduced to further 

enhance the architecture of the monolithic kernel.   

  

2.3 Generalized Framework for Access Control  

Generalized Framework for Access Control (GFAC) model divides the method of access control 

into two parts which falls under Access Decision Facility (ADF) and Access Enforcement Facility 

(AEF). When an instance of a task is meant to be performed the AEF queries the ADF for a policy 

decision. The AEF presents the access control list required of ADF to reference in order to match 

the policy. The architecture shown in figure 2.2 gives further details of the design.   
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Figure 2.2. Overview of GFAC Architecture (Source: Karlsson, 2010)   

Figure 2.2 depicts the GFAC access control process containing numbered units referenced in the 

following manner of the access control process. Anytime a process say (1), tries executing an 

operation, the AEF queries, (2), the ADF for decision on a policy. Being part of the query, the AEF 

provides the information for the ADF to make a decision, denoted Access Control Information 

(ACI). The ADF then utilizes the gained information to search for relevant access rules, (3), in the 

Access Control Rules (ACR) database. Afterwards there is returns thus, (4), to the AEF. The AEF 

then enforces the ADF's decisions about the needed control requests to deny or allow access.  

  

The enforcement facility, AEF, is described as a state machine where each system call is 

represented by a transition rule, to accurately model the operations of the target system. The rules 

can also be chosen as generalizations of several operations, using a mapping between system calls 

and rules (Karlsson, 2010).  
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2.4 Flux Advanced Security Kernel   

Flux Advanced Security Kernel (FLASK) model was created with the goal of allowing random 

policy flexibility to protect any part of the system flagged that need to be protected. It also has two 

main parts namely the object managers and the security servers. The object manager enforce 

security decisions made while the security server maintains the policy.   

  

  

Figure 2.3. Overview of FLASK architecture (Source: Karlsson, 2010)   

Smalley et al as part of a Defense Advanced Research Projects Agency (DARPA) funded project 

are credited with the invention of the Flux Advanced Security Kernel (FLASK) model. The model 

is based on the prototype system Distributed Trusted Operating System (DTOS), similar design, 

although lacks mechanism flexibility. Superficially, FLASK is consistent with the GFAC model, 

but attempts to secure non-atomic policy operations (Spencer et al., 1999).  
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FLASK is basically meant for allowing arbitrary policy flexibility in order to cater for as many 

security interests as possible. This is achieved by allowing the access controls refined grained and 

propagation of access rights conformity to policy. Moreover, in order to fully support dynamic 

policies and policy changes, the model must support revocation of previously granted access rights. 

Secondary goals of the model include application transparency, ease of assurance and minimal 

performance impact (Bugiel et al, 2013).  

  

Considering a computer system as a state machine is one of the surest ways of achieving total 

policy flexibility whose state transition and operations and where the policy then can mediate any 

operation atomically. The complexity of a real system makes it difficult to model this way, and in 

FLASK a compromise is sought by subjecting a security relevant part of the system to such policy 

control.  

  

Figure 2.3 shown above depicts an overview of the architecture of the FLASK model whose 

architecture is similar to that of GFAC, and the policy enforcement is sub divided into two parts 

namely: the Object Managers and Security Contexts (Liaropoulos & Tsihrintzis, 2014).  

  

Object managers which enforce security decisions made by security servers based on the security 

policy. The object managers implement a control policy which allows the security policy to govern 

the object managers' subjugated objects, by defining the actions taken for security decisions made 

by security servers. They are also required to define a mechanism for assigning labels to their 

objects (Manual, 2011).  

  

Security contexts or labels are strings which can be interpreted by applications or users, but are 

opaque to object managers. Security contexts are passed onto the security servers, which maps 

them to security identifiers (SIDs) which is a unique identifier used to reference a specific security 

context, within the security server, where it represents a policy permission statement (Haines, n.d.).  
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Access Vector refers to permissions returned by a security server in return of an access request. 

Access requests are made using the SIDs of the requesting subject and the target object as 

parameters, signified source SID (SSID) and target SID (TSID) respectively. Since access requests 

are often made multiple times for the same object, the model defines an Access Vector Cache 

(AVC) which allows object managers to cache access vectors made by the security servers 

(Melorose et al, 2016).  

  

2.5 Domain and Type Enforcement  

Domain and Type Enforcement (DTE) designed by Badger and Sterne as an alternative to 

pervasive military-style security frameworks with focus on confidentiality. The greatest motive 

for this work was to ease adoption of MAC by providing low system administration overhead, 

application compatibility, as well as unobtrusive operation (Badger et al, 1995).  
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Figure 2.4. Domain and Type Enforcement (Badger et al, 1995)   

  

  

  

In order to satisfy these requirements, DTE extends on Type Enforcement (TE), a table-oriented 

MAC mechanism. TE also assigns attribute domain to each subject and type to each object. The 

allowed interactions between domains and types are then kept in a universal or global table, the 

Domain Definition Table (DDT), which is an ACM with domains and types in place of subjects 

and objects. Similarly, interactions between subjects are mediated using the Domain Interaction 

Table (DIT). (Watson, 2013)  

  

On the other hand, the strictly table-oriented approach in TE has several limitations addressed in 

DTE by expressing policy in a high level language through implicit typing of managed objects. 

The Domain and Type Enforcement (DTE) policy language looks at how express the information 

of the DDT and the DIT appears in a human-friendly or readable form. It further adds features 

such as macros and automatic domain transition rules. Implicit typing means that the security 

attributes of subjects and objects are kept in memory instead of being stored on disk. The database 

for memory is created upon system initialization from log files updated on file system changes 

such as file creation or renaming. Attributes are kept or stored sparsely, applying recursively to 

directory structures if possible.  

  

2.6 Distributed Security Infrastructure    

The Ericsson Research in Canada developed the Distributed Security Infrastructure (DSI) for use 

in Linux Clusters with intentions of moving the scope of MAC from unique nodes to an entire 

cluster, enforcing a common, distrusted, security policy. The DSI mode is divided into 

management as well as services components. The management components basically includes a 

security server, security managers and a security communication channel and the Security server 

is designed to take care of the distributed security policy. The security manager enforces the 
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security policy at each node and the security communication channel provides encrypted and 

authenticated communication between the management components (Pourzandi et al, 2002).  

  

The service components provide security mechanisms for the security managers and consists of 

two types; security services and security service providers. The latter which provides services for 

the former, such as secure key management. For access control, the DSI model divides access 

types into four categories; local, remote, outside, and no cluster access modes (Klemm, 2001, 

Zakrzewski, 2002).  

  

Only the first two are considered by the model. During local accesses, in which the subject and 

object are on the same node, access permissions are based on the subject's SSID and the target's 

TSID, much like in the FLASK model. For remote accesses, where the subject and object are on 

different nodes in the same cluster, the access queries are extended to include node identifiers for 

both the subject and the object (Dallas, n.d.).  

  

2.7 Security Mechanisms  

Security mechanisms, also known as protection mechanisms, are operations of security concepts 

which basically protects a subset of an entire system. This concept is quite wide, as one may choose 

to encompass an entire system implementation. Mechanisms are usually considered to lie in one 

of the following security domains; authentication, authorization, auditing, or encryption (Brinkley 

& Schell, n.d.).  

  

Authentication is the process of verifying the identity of a user to a system.   

  

Authorization is the act of determining which resources of a system to make available to a, usually 

authenticated, user.   

  

Auditing is the gathering of security information, such as access violations, for use in security 

assessments.   
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Encryption, or cryptography, is the practice of hiding information, usually in plain sight, by 

scrambling it using a reversible mathematical process.  

● Discretionary Access Control  

Discretionary Access Control (DAC) is defined in the Trusted Computer System Evaluation 

Criteria. (TCSEC) to control access between users and objects, and to allow users to specify and 

control sharing of those objects to other users or groups of users. Most DAC implementations 

further restricts this definition in that the objects have an owner, who will have primary control 

over their owned objects' permissions. It is common to make use of ACLs for specifying the policy 

used in systems employing DAC (Department of Defense, 1985).  

  

● Mandatory Access Control  

Mandatory Access Control (MAC) is also defined in the TCSEC to be mainly associated with 

Multilevel Security (MLS), primarily used in military systems, which makes it too narrow for 

public or general use.  

Generally, MAC can be said to enforce policy decisions on access control made by a central 

authority, for example a system administrator, as opposed to the owner of an object in DAC. The 

enforcement must be performed reliably, for instance by the operating system's kernel to see to 

users inability to override the policy (Publications & Publications, 2008)   

  

● Role-Based Access Control  

Role-Based Access Control (RBAC) enforces access decisions based on the roles of the subjects. 

With RBAC, subjects are authorized to pick roles, which represents a set of permissions through 

assuming a role, the subject will also gain use of the permissions of that role (Finin et al., 2008).  
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Figure 2.5. Role Based Access Control Source: (Fernandez, Pernul, & Larrondo-Petrie, 2008)  

●  Reference Monitor  

The reference monitor describes the necessary and sufficient properties for achieving secure access 

controls in a system. It is an abstract model which does not require a specific implementation or 

policy. In any case, any specific implementation will enforce a specific policy set. The model 

describes three properties of a reference monitor; it must be invoked for every access request, be 

tamperproof, and be small enough to be tested for completeness (Control, 2007)  

  

The first property of been invoked for every access request makes sure that the security policy is 

always invoked when a policy decision is needed, as it would otherwise be possible to circumvent 

the policy. The mechanism must be tamperproof to be safe from attacks directly against the 

mechanism, causing a Denial of Service (DoS) for example (Hu et al., 2014).  

  

Lastly, the mechanism must be verifiably secure, as it could not otherwise guarantee enforcement 

of the policy. Reference monitors are often used as the most basic entities in secure systems, and 

are required to implement some security models, such as FLASK.  
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2.8. OTHER CONCEPTS   

Roles are usually used as a way of describing responsibility, where multiple subjects can share the 

same role, or responsibility. This enables roles to be updated without updating the permissions of 

individual users. Role hierarchies can be created to more closely reflect the natural structure of an 

organization, than other access control mechanisms (Reilly, 1998).   

  

In modern Linux distribution, netfilter is responsible for caring for network security as compared 

to security in traditional Linux kernel consisting of file system, or Discretionary Access Control 

(DAC). Netfilter as a framework for manipulating network packets in the Linux network stack is 

commonly associated with designing firewalls purposes. Other tools for network security as well, 

such as OpenSWAN for IPSec (Red & Enterprise, n.d.) (Krátký et al., 2016)  These are however 

beyond the scope of this thesis   

  

●  Linux Security Modules  

The Linux Kernel did not initially permit Loadable Kernel Modules (LKMs) facilitating access to 

kernel objects out of their scope. Thus, several previous attempts at creating security modules have 

used system call interposition which is not suitable for access control, due to the ease with which 

it can be circumvented. There is the requirement for these wrappers to request frequent patches to 

the kernel or even re-implement certain kernel functionality because of the limited LKMs scope 

(Wang, 2012).  

  

In the 2001 Summit of the National Security Agency (NSA) a presentation was made on their new 

security framework Security-Enhanced Linux (SELinux). They argued for the need for a flexible 

access control architecture in the Linux kernel, but Linus Torvalds, the kernel maintainer, took 

heed by instead suggesting a new infrastructure for implementing security using LKMs.   

  

Through the suggestions by Linux Torvalds, there was creation of a lighter weight access control 

framework that allows multitude of security models implemented as LKMs bringing about the 

Linux Security Modules (LSM) framework. The design goal of LSM was to allow modules to 
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answer the question “May a subject S perform kernel operation OP on the internal kernel object 

OBJ?" Moreover, the design had to be generic, simple, minimally invasive, efficient, and be able 

to support the existing POSIX.1e1 capabilities logic.  

  

The Linux Security Modules places hooks in the kernel right before accesses to internal objects 

are granted, where these accesses may be rescinded by the policy implemented in an LSM module. 

Due to the effortlessness design constraint, LSM hooks are mainly restrictive, in that they are only 

used when the kernel is about to grant access, not when about to deny access. The comprehensive 

solution, authoritative hooks, would have been significantly more complex. A few permissive 

hooks exist, to allow the implementation of POSIX.1e capabilities as a LSM module (Zakrzewski, 

2002).  

  

In order to allow modules to keep track of special security properties of objects, LSM attaches 

security fields to mediated objects. The modules are responsible for managing the data in these 

fields themselves (Leggieri et all, 2014).  

  

The LSM implementation has been comprehensively tested automatically, regarding the placement 

of hooks. While most studies found exploitable bugs in the placement of hooks in early 

implementations, they also agreed with the already manually chosen hook placements (Jaeger et 

al, 2004, Ganapathy et al, 2005).  

  

  

●  Available Security Frameworks  

A number of projects has designed and brought about security modules following the inclusion of 

LSM in the Linux Kernel. There are also frameworks which does not employ LSM, because of 

technical reasons. The examples of policy language presented with some of the following 

frameworks are intended to highlight the configuration syntax complexity and readability (Wright 

et al., n.d.) (Corbet, 2008).  

  



 

 22  

  

  

  

● POSIX.1e Capabilities  

Currently, the POSIX draft 1003.1e bids to standardize UNIX security measures by introduction 

to the Portable Operating System Interface for UNIX (POSIX) standard. Linux includes an 

implementation of a part of this draft, the capabilities framework (Howard et al, 2010).  

  

This framework in Linux work by partitioning the all-encompassing root privilege into separate 

privileges, called capabilities which can be assigned to processes allowing these processes to run 

under other user identifiers (UIDs) other than root, but with some of its privileges (Works, 2000).  

  

With this capability-enabled system, the processes has three sets of bitmaps each describing which 

capabilities are available to it: inheritable (I), permitted (P), and effective (E) respectively. These 

effective set contains the capabilities a process can use, the permitted set contains the capabilities 

a process is permitted to put in its effective set, and the inheritable set contains the capabilities 

which are allowed to be inherited by a program executed by the process (Linux & Works, n.d.).  

  

● AppArmor  

This is an application-centric MAC framework built using LSM first developed by the company 

Immunix, which used it in its GNU/Linux offering between 1998 and 2003. When Immunix was 

acquired by Novell in 2005 and maintained AppArmor until 2007, when the AppArmor team was 

laid off (Cisco, 2013).  

  

The framework has the following design goals: It needs to be secure to keep applications in 

confinement, fast to avoid overhead, and transparent to allow normal operation of software. 

Security is achieved by using LSM which is more secure than system call interposition, as 

described in Section 3.1. Speed is achieved by a simple security model with fast lookup which 

does not need caching. Transparency is achieved by reusing UNIX security semantics on 

applications instead of users (Universit, 2010).  
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AppArmor policies, called profiles, consists of sets of POSIX.1e capabilities and file permissions 

attached to programs. The identical of rules to programs is done via path lookup or search, with 

spawning discussion with primarily SELinux proponents on the relative security merits of this 

method and other design aspects of AppArmor (“SUSE Linux Enterprise Server 10 SP1 EAL4  

High-Level Design,” n.d.).  

  

Listing 2.1 shows an example of an AppArmor profile with use of capabilities, files and network 

controls.  

  

Initial execution of AppArmor automatically generates profiles in a so called “learning mode", 

where all rule violations are logged, and then analyzing these logs interactively. This method can 

also be used to incrementally improve a profile.  

  

Listing 2.1: Example of an AppArmor profile for /bin/ping  

#include <tunables/global> /bin/ping 

{  

#include <abstractions /base>  

#include <abstractions /consoles>  

#include <abstractions /nameservice>  

capability net raw , capability setuid ,  

network inet raw ,  

/bin/ping mixr ,  

/etc/modules . conf r , }  

● DISEC  

DISEC developed by Ericsson Research in Canada between 2002 and 2004 is the collective name 

for a set of utilities implementing the DSI security model but it is now outdated.  
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DSI’s access control enforcement is implemented using LSM, and the distributed security policy 

is specified with XML (DISEC, 2015).  

  

Though the model does not point out the mediated object types, DISEC implements access control 

with process level granularity. This means that it only concerns itself with the spawning of 

processes, the execution of programs, and the communication between processes on the cluster 

network (Pourzandi et al, 2005).  

  

● GRsecurity  

GRSecurity birthed by Brad Spengler in 2001 as a port of the Openwall kernel patch from Linux 

2.2 to 2.4 is a patch-set for the Linux Kernel which emphasizes the security-in-depth principle and 

enforces MAC through RBAC. It has since become a project of its own. Included in the GRsecurity 

patch-set is a broader security which is allowed through the memory protection patch PaX ( 

Spengler & Security, 2012).  

  

Custom hooks in targeted systems calls and kernel functions are used in implementation of 

GRsecurity, as opposed to system call interposition or use of LSM. Among the reasons for not 

using LSM are the greater functionality requirement of GRsecurity than available through LSM, 

and that LSM could further enable root-kits rather than hamper them (Grattafiori, 2016).  

  

The goals of GRsecurity are  

● Simplicity via configuration free operation  

● Protection against address space modification bugs  

● Feature-rich ACL and Auditing   

● Support for multiple processor architectures  

  

ACLs and the user space tool gradm are basically used in managing the configuration of 

GRsecurity. The ACLs consists of roles and their subjects, which in turn contains file, capability, 
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socket and computational resource controls. Roles can define transitions into other roles and 

subject properties can be inherited from parents in the file system (Spengler, 2003).  

  

Listing 2.2 shows an example of an ACLs with a role and a subject with file and socket controls 

for the sshd Unix daemon.  

  

  

Listing 2.2 Example of a GRsecurity ACL  

role sshd u subject /  

 /  h  

/var/run/sshd r −CAP ALL 

bind disabled  

connect disabled  

ACLs can be automatically created with gradm for either the entire system, a specific subject, or a 

specific role. This learning mode will attempt to create a minimal ACL for the task presented and 

can take hints on how expressively to generate rules for certain subjects (Spengler & Security, 

2012).  

  

  

● Linux Intrusion Detection Systems  

The Linux Intrusion Detection System (LIDS) developed by Xie Huagang and Philippe Biondi is 

contrary to its name, a MAC framework but also includes a port scan detector and process 

protection facilities. The patch-set has been maintained since version 2.2 of the Linux Kernel and 

has since been ported to the 2.6-series, and is now using LSM (Biondi, 2002).  

  

Mediated objects are files, sockets, directories and POSIX.1e capabilities. Configuration of access 

rights is handled by the command-line program lidsconf which is stored in text files and can be 

edited by hand, but the command-line tool is the preferred way of changing the security policy. 
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Listing 2.3 shows an example of lidsconf usage which will generate a configuration based on the 

current file system information. This means that the configuration command will have to be re-run 

when, for instance, a file is overwritten and its inode2 number changes (Phones, 2008).  

Listing 2.3: Example of a LIDS ruleset  

/sbin/ lidsconf −A −R −o /etc/log −j APPEND  

/sbin/ lidsconf −A −o /var/log/wtmp −j WRITE  

/sbin/ lidsconf −A −s /bin/ login −o /etc/shadow −j READONLY /sbin/ lidsconf −A −s /bin/su −o  

/etc/shadow −j READONLY /sbin/ lidsconf −A −s /bin/ login −o CAP SETUID  

  

● Rule Set Based Access Control   

Rule Set Based Access Control (RSBAC) is a security framework for the Linux Kernel designed 

by Amon Ott, with similar goals as LSM, but with some design difference and level of abstraction.  

It is based on the GFAC model (Ott & Fischer-hübner, 1995).  

  

The framework uses system call interception as its system call mediation method. It avoids LSM 

because of, for example, limited scope of mediation, lack of concurrent capability support, and 

stateless calls (Provos, 2003). In RSBAC, the GFAC model has been modified to include a specific 

metapolicy for the ADF policy decision process, breaking up the ACI into loadable modules, and 

further abstract the AEF by not allowing it to update ACI after a successful access control request. 

The metapolicy is the boolean AND operator, with concessions for the different return types of the 

policy modules. The ACI policy modules have four different return values: granted, not granted, 

don't care, and undefined.  Table 2.1 illustrates the results of the metapolicy on two operands (Ott 

& Fischer-hübner, 1995).  

  

Table 2.1: Policy result combination in RSBAC’s ADF  

  

Result 1  Result 2  Final Result  

Granted  Granted  Granted  
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Granted  Don’t care  Granted  

Not granted  Granted  Not granted  

Not granted  Don’t care  Not granted  

Undefined  *  Undefined  

The currently available modules are shown in Table 2.2.  

Table 2.2: Available RSBAC ACI modules  

Name  Code name  Description  

Authenticated User  AUTH  Advanced user authentication  

Role Compatibility  RC  Role-Based Access Control  

Jail  JAIL  Encapsulation of processes  

Linux Capabilities  CAP  Manages Linux capabilities  

Pageexec  PAX  Prevents against unwanted code execution  

Dazuko  DAZ  On-access anti-virus scanner  

File Flags  FF  Per file access control flags  

Linux Resources  RES  Manages Linux resources  

User Management  UM  In-kernel user management  

Access Control Lists  ACL  Extensive Access Control Lists  

Privacy Model  PM  Controls data privacy  

Mandatory Access Control  MAC  Bell-La Padula with modifications  
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Overview of SELinux  

  

Figure 2.6. Overview of SELinux (Source: Karlsson, 2010)  

  

The operating system subject (process) attempts to perform a certain action on a particular object  

(file, process, socket), which is permitted within the Linux standard discretionary security system 

(DAC). This launches a stream of requests to the object. Every request to perform the action with 

the object is intercepted by the Linux Security Modules and is transferred, along with the subject’s 

and object’s security context, to the SELinux Abstraction & Hook Logic subsystem, which is 

responsible for interaction with LSM. The information received from the SELinux Abstraction and 

Hook Logic subsystem is forwarded to the basic Policy Enforcement Server module, which is 

directly responsible for making the decision about allowing the subject to access the object. To 

receive the decision as to whether the action is allowed or prohibited, the policy enforcement server 

contacts the special Access Vector Cache subsystem, which most often caches the rules being used. 
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If AVC does not contain the cached decision for the relevant policy, the request for the necessary 

security policy is forwarded again to the security policy database.  

When the security policy has been found, it is transferred to the policy server receiving the 

decision. If the requested action complies with the policy that has been found, the operation is 

permitted. Otherwise, it is prohibited and all the decision-making information is written to the  

SELinux log file.  

  

Security-Enhanced Linux (SELinux) is an implementation of the FLASK security model in the 

Linux kernel, initially developed by the NSA and the Secure Computing Corporation (SCC) (Kim 

et al, 2008).  

  

The Initial prototype of SELinux was built with custom hooks in Linux 2.4, however, it was 

triggered for the creation of the LSM framework. It was the first implementation of LSM to be 

accepted into the Linux kernel, aside the POSIX.1e capabilities module. File security contexts are 

stored in Linux' file system extended attributes, for performance reasons (Ben-Cohen et al, 2008).  

  

Similar to its mother project, FLASK, SELinux's main priority is policy flexibility. As an example, 

the security server implements a security policy which is a combination of TE, RBAC and MLS. 

The security context is defined as a string containing a user identity, a role, and optionally a MLS 

level. Roles are only used for processes, so the role object r is used for all file security contexts 

(Papachristodoulou & Antakis, 2008).  

  

The policy configuration language is based on TE and contains definitions of domains, types, roles, 

and their respective interactions. These include domain and role transitions, which specifies which 

changes in security context may occur at and during program execution. Listing 2.4 shows a 

snippet of a policy configuration for the dhcpd daemon, where the dhcpd t type, or domain, is 

given access to network domains.  

Policy configurations can become quite complex, and a reference policy containing rules for  

Listing 2.4: Snippet of a SELinux policy  
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allow dhcpdt netif type : netif { tcp send udp send rawip send}; allow 

dhcpdt node type : node { tcp recv udp recv rawip recv };  

  

● SMACK  

Simplified MAC Kernel (SMACK) is a MAC framework written for the Linux kernel by Casey 

Schauer and implemented using LSM and is included in the kernel since 2.6.24.  

  

The security model in SMACK is a mix of DTE and Bell-La Padula. The security attributes of 

objects are case sensitive strings between 1 and 23 characters in length, and are called labels. There 

are four predefined labels listed in Table 3.3. Subjects, or processes, are called tasks and system 

tasks are given the oor label. Access permissions are enforced by the following rules, in order:  

  

i. Any access requested by a task labeled “*” is denied  

ii. A read or execute requested by a task labeled “^” is permitted  

iii. A read or execute requested on an object labeled “_” is permitted  

iv. Any access requested on an object labeled “*” is permitted  

v. Any access requested by a task on an object with the same label is permitted  

vi. Any access requested that is explicitly defined in the loaded rule set is permitted  

vii. Any other access is denied  

  

Table 2.3: Predefine SMACK lables  

Label  Pronunciation  

  Floor  

ˆ  Hat  

*  Star  

?  Huh  
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The policy configuration language consists of one statement: subject-label object-label 

accessmode  

  

Permissions for labels are given using the traditional access modes of Unix - read, write, and 

execute - with the addition of append for some object types.  

  

● TCPA  

The TCPA framework is not technically a MAC framework, but includes MAC functionality and 

is therefore included in this thesis. It was developed by IBM but has been abandoned. The 

framework consists of the modules Extended Verification Module (EVM) and Simple Linux 

Integrity Module (SLIM), and provides a chain of trust for applications with the goal of minimizing 

security impacts of application vulnerabilities. The modules are implemented using LSM and are 

a rare example of LSM stacking. The EVM module is used for validating executables before 

execution, using a Trusted Platform Module (TPM) (Safford et al, 2005).  

  

The cryptographic verification key is stored in the file system's extended attributes, much like 

SELinux. The SLIM module is used to constrain privileges for untrusted applications, via MAC. 

It uses a combination of the Caernarvon and the Low Water-mark models for managing 

information integrity. All files are given two labels – an Integrity Access Class (IAC) label which 

contains the classes SYSTEM, USER, UNTRUSTED, and EXEMPT; and a Security Access Class 

(SAC) label which contains the classes SYSTEM, USER, PUBLIC, and EXEMPT. Process are 

given the labels IRAC, IWXAC, SWAC, and SRXAC, where the letter R stands for read, W for 

write and X for execute (Thion, 2008).  

  

SLIM defines the following access control rules, based on the previously given classes:  

Read:  

 IRAC(process)  < IAC(obje 

 =  ct)  
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SRXAC(proce 

ss) Write:  

> 

=  

SAC(obje 

ct)  

IWXAC(proce 

ss)  

> 

=  

IAC(obje 

ct)  

SWAC(proce 

ss) Execute:  

< 

=  

SAC(obje 

ct)  

IWXAC(proce 

ss)  

< 

=  

IAC(obje 

ct)  

SRXAC(proce 

ss)  

> 

=  

SAC(obje 

ct)  

Additionally, the module demotes high-classed processes which attempts to read or execute 

low-classed objects, and vice versa.  

  

● TOMOYO Linux  

Task Oriented Management Obviates Your Onus (TOMOYO) Linux is a MAC framework for the 

Linux kernel developed by NTT Corporation. Version 2.2 of the framework is included in the 

Linux kernel since version 2.6.30. It is implemented using LSM and features an automatic policy 

generation system. This system is based on process execution history (Harada et al, 2007).  

  

In Unix, the only way to create new processes is using the scheme “fork-exec”, where a process is 

divided into two identical processes and then differentiated by replacing the running program in 

one of them. TOMOYO assigns a domain to each process, and when a new process is started, the 

security context transitions into this new domain from its parent process' domain. Since the domain 

transition rules considers the entire process lineage, the same program can belong to several 

domains, depending on the parent processes (Harada, 2007).  

  

The automatic policy generation simply monitors the process invocations of the system and 

automatically divides them into domains dependent on their lineage. Other access requests are then 
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transformed into accepting access rules within each domain. In addition to MAC controls, 

TOMOYO provides an API which allows applications to relinquish access rights granted by the 

kernel, to allow for further increase in security (Masumoto et al, 2007).  

  

The policy configuration language is modelled after a user-space view of the kernel, instead of 

exposing the available internal kernel objects. Permissions are attached to domains, which are 

string-concatenated process lineage, for example:  

  

<kernel> /sbin/init /sbin/getty  

However, the lineage may be abbreviated to match more instances of a program, like so: <kernel> 

/sbin/getty  

This will match more instances since it less specific, whereas the previous example would require 

that init is a parent of getty.  

Permissions are given via absolute paths prefixed by keywords. Wildcards are allowed in all paths 

except for domain transition specifications, where they could lead to ambiguous transitions. An 

example configuration snippet is shown in Listing 2.5.  

Listing 2.5 Example of a TOMOYO policy  

<kernel> /usr/sbin/smbd use profile  

3 allow read /etc/samba/smb. conf allow 

write /var/log/samba/\ . log allow create  

/var/tmp/smbd.\+  

The version of TOMOYO currently in the mainline kernel only supports mediating access to files, 

directories, and domain transitions; while the older, non-LSM version, supports wider variety of 

kernel objects, such as network access.  
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2.9 Summary of Strengths and Limitations of the related work.   

Over the past two decades, efforts have been made by researchers and kernel development 

engineers in enhancing the existing Security of Operating System Kernels. Even though these 

approaches (as discussed in the literature review) such as the design of numerous security 

frameworks, development of various kernel level algorithms, and the creation of several kernel 

design techniques did achieve significant impact in improving the security of commodity operating 

system kernels, there still is the absence of a single archetypical framework that addresses the 

seaming challenges of current commodity operating system kernels.   

The use of an all integrated kernel level integrated virtualization alongside Highly Available 

Heartbeat technique via improved throughput in monolithic kernels with an enhanced PAM 

authentication security module have not been completely implemented by these related work. 

Moreover, the security framework of the existing commodity Operating Systems is built to be 

implemented on only a single security model that makes it subject to the vulnerabilities of that 

model. The solution to this challenge is to design a security framework that could harness the 

multiple security modules in addition to the novel architectural design to control the various 

multiple instance virtualization which is non-existent in related works.   
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CHAPTER 3  

RESEARCH METHODOLOGY  

3.1 Introduction  

Every research is grounded on a core theoretical postulations that establishes 'valid' research. The 

appropriateness of the approach in the development of knowledge is centred on the research 

method. This chapter examines the theoretical assumptions and also the design strategies 

underpinning this research study. Traditional philosophical assumptions in operating system 

Kernel architecture development which provided a more effective and enhanced prototype was 

adopted. Furthermore, the chapter examines the research methodologies, and design used in the 

study including strategies, while explaining the stages and processes involved in the study.   

The type of methodology adopted in this research is the Design Methodology which is referred to 

as a development of a system or method through research philosophies, principles, processes and 

techniques for a unique situation which is mainly applied in technological fields (Simplicable, 

2016).  Various conventional methods for investigating the methodology through conceptualizing, 

verifying, proving, designing implementing and testing operating system Kernels Architecture 

were implemented during the research. The outcome of the methodology resulted in the design of 

the Convoluted Kernel Architecture and the Stealth Obfuscation Zero Knowledge Proof 

Authentication which also occasioned the development of the TrendOS prototype to enable testing 

of the various segments of the designs for testing of the complete system. The techniques used in 

the actual programming of the kernel prototype involves the Compiler Instrumentation Techniques 

and Retrofitting Techniques.   

  

3.2 Research Design Methodologies   

Three of the research design methodologies were implemented in this chapter which are Structured 

Analysis & Design Technique, Data Structured Systems Development and Integrated Design 
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Approach. The three research design methodologies were carefully chosen to provide a detailed 

step-by-step implementation of the overall design of the framework, to provide the implementation 

of the internal data structures of the architecture and finally, the design of a modular integrated 

prototype to effectively carry out a comprehensive evaluation and analysis of the framework.  

3.2.1 Structured Analysis and Design Techniques  

In this approach to the design methodology, the goal and objectives are first determined to afford 

the researcher the opportunity to outline the various parameters that will be needed in the design 

of the Convoluted Kernel Architecture and the Stealth Obfuscation Zero Knowledge Proof. The 

next phase of this technique is the determination of an acceptable performance success criteria to 

define the scope of the research as well as the framework of the research. This is also important as 

the goal and the objectives because, without benchmarks to analyze the kernel architecture, it will 

be impossible to measure the expected outcome of the product as there will be no performance 

metrics to measure and compare.   

The third stage of this method in the research is the evaluation of the several approaches in OS 

Kernel development and choosing the basic level of all in achieving similar or same result with 

reference to the complexity. The most important motivation to selecting the basic level of 

complexity yet meeting the requirements and objectives is that, in OS Kernel Security 

development, the more complex the architecture the more computational resources required and 

the slower the overall system performance. The fourth stage is the qualitative reviews which 

admitted inputs from various reviewer comments to re-modify the design to meet expected result. 

The fifth step is the constraint assessment of the architecture to determine whether the design is 

achievable or not and if so, whether it could add value to the overall outcome of the framework.   

  

In the next segment of this method, detailed performance based engineering design to put together 

all the various modular designs are conducted. This will therefore require series of validation, 

review and verification while comparing the analysis with acceptable criteria. Finally, a 

presentation of the prototype submitted to third parties including NITA, KNUST Cyber Security  
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Lab and Computer Science students of the Department for assessment. A full description of the 

Design Methodology as shown below in Figure 3.1.    

  

Figure 3.1 Design Methodology Flow Chart (Source: Colin, 2005).  
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3.2.2 Data Structured Systems Development   

This section describes the Data Structures of the internals of the kernel. The following are the 

details.  

Process table: this table contains an entry for each process. Additional data about each process is 

maintained in the u-area. The u-area and process table entry point to each other. In addition, entries 

in the process table point to each other. For example, each process points to its parent, and 

processes are linked to each other in the run queue and various wait queues.  

  

File related tables: the u-area of each process contains the file descriptors table for that process. 

Entries in this table point to entries in the open files table. These, in turn point to entries in the        

i-node table. The information in each i-node contains the device on which the file is stored.  

  

Memory related tables: the u-area also contains a per-process region table, whose entries point 

to entries in the global region table, which describe different memory regions. Data maintained for 

a region includes a pointer to the i-node used to initialize this region, and a page table for the 

region. This, in turn, contains a pointer to where the backup for each page is stored in the swap 

area.  

  

  
Figure 3.2 Data Structures Source: (Steven & Rago, 2005)  
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KERNEL FILE SYSTEM DATA STRUCTURE  

  
To understand the file system, you must first think about how the kernel organizes and maintains 

information. The kernel does a lot of bookkeeping; it needs to know which process are running, 

what their memory layout is, what open files processes have, and etc. To support this, the kernel 

maintains three important tables/structures for managing open files for processes: the process table, 

the file table, and the v-node/i-node info.  

  

  
Figure 3.3 Kernel File System Data Structure Source: (Steven & Rago, 2005)  

  
THE PROCESS TABLE  

  
The first data structure is the process table, which stores information about all currently running 

processes. This includes information about the memory layout of the process, current execution point, 

and etc. Also included is the open file descriptors.  

As we know, all process start with three standard files descriptors, 0, 1, 2, and these numbers and 

other file descriptors are indexes and stored in the open file table for that process's entry in the 

process table. Every time a new file is open a new row in the open file table is added, indexed at the 

value of the file descriptor, e.g., 3 or 4 or 5 or etc.  



 

 40  

  

Each row in the open file table has 2 values. The first are the flags, which describe disposition of the 

file, such as being open or closed, or if some action should be taken with the file when it is closed. 

The second value is a reference to the file table entry for that open file, which is a global list, across 

all process, of currently opened files.  

  

  
  

Figure 3.4. The Process Table Source: (Steven & Rago, 2005)  

THE FILE TABLE  

  
Whenever a new file is open, system wide, a new entry in the global file table is created. These 

entries are shared amongst all process, for example when a file is opened by two different process, 

they may have the same file descriptor number, e.g., 3, but each of the file descriptors will 

reference a different entry in the file descriptor table.  

  



 

 41  

  

  
  

Figure 3.5. The File Table Source: (Steven & Rago, 2005)  

  
V-NODE and I-NODE   

The v-nodes ad i-nodes are references to the file's file system disposition and underlying storage 

mechanisms; it connects the software with hardware. For example, at some point the file being 

opened will need to touch the disc, but we know that there are different ways to encode data on a 

disc using different file systems. The v-node is an abstraction mechanism so that there is a unified 

way to access this information irrespective of the underlying file system implementation, while 

the i-node stores specific access information  
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Figure 3.6. The v-node and i-node Source: (Steven & Rago, 2005)  

  

STANDARD FILE DESCRIPTORS  

To the kernel, all open files are referred to by file descriptors. A file descriptor is a non-negative 

integer. When we open an existing file or create a new file, the kernel returns a file descriptor to 

the process. When we want to read or write a file, we identify the file with the file descriptor that 

was returned by open or createe as an argument to either read or write.  

By convention, UNIX System shells associate file descriptor 0 with the standard input of a process, 

file descriptor 1 with the standard output, and file descriptor 2 with the standard error. This 

convention is used by the shells and many applications; it is not a feature of the UNIX kernel. 

Nevertheless, many applications would break if these associations weren't followed.  

The magic numbers 0, 1, and 2 should be replaced in POSIX-compliant applications with the 

symbolic constants STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO. These constants are 

defined in the <unistd.h> header.  

https://www.usna.edu/Users/cs/aviv/classes/ic221/s16/lec/21/img/fs-vnode-table.png
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Figure 3.7. Standard File Descriptors Source: (Steven & Rago, 2005)  

  

3.2.3 Integrated Design Method  

This is a proposed kernel design methodology that views the kernel elements in some modular 

Iterative elements which considers the best approach in integrating the various modules in forming 

the whole architecture. Integrated Approach is an all-inclusive model which ensures that, modules 

required for operating system ‘hardening’ is integrated and the various elements that it is framed 

from are encapsulated as a single unit rather than separate independent application layer 

compartments. It also considers a repeated process of quickly implementing prototypes, gathering 

feedback and refining the design. The hardcode development is implemented using the best-

fittechnique in the overall architectural development.   

The TrendOS platform was implemented in a 3-part sequence. Namely OS Host Setup and 

Configuration, Secure Kernel Build, ISO Distro Pipeline (iso-build-script). The following sections 

describe this process in much greater detail.  
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3.3 OS Host Setup  

A dedicated host system is chosen upon which the TrendOS platform will be built. This system 

provides the necessary environment to support building the secure kernel in subsequent steps and 

also to provide a working environment for generating the distributable “iso”. In addition to that, the 

host system creates a highly configurable environment where its creators have the flexibility and 

ability to make adjustments to all parts of the operating system by essentially using it. This allows 

its creators to configure and customize user space binaries with so much precision. The TrendOS 

platform was built on a dedicated host with the following properties:  

  

Table 3.1 Dedicated host properties  

Property  Value  

Base Distro  Ubuntu 14.04  

Package Manager  DPKG (Debian Package Manager)  

Linux Kernel Version  4.4.0-21-generic  

Codename  Trusty Thar  

OS Arch  x86_64, amd64  

Shell  /bin/bash  

  

  

3.4 Secure Kernel Build Step  

The TrendOS platform runs on a 64bit Linux kernel patched with security features from 

grsecurity. The platform is heavily endowed with security features that prevent kernel based attach 

vectors throughout execution.   
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The integration of grsecurity was done by compiling it directly into the TrendOS Linux kernel by 

source. The Linux kernel version chosen for this implementation was 4.4.0. The steps below 

show the process involved in compiling the TrendOS Linux kernel with the necessary grsecurity 

patches.   

  

NB: The following commands must be executed on the host operating system as described above  

  

Build Requirements  

The   following   packages   need   to   be   installed   to   process   with   the   compilation   

procedure.  

  

● libncurses5-dev  

● build-essential   

● kernel-package   

● git-core  

● gcc-4.8  

● gcc-4.8-plugin-dev   

● make  

Command   Line (Execute the following commands)  

  

sudo   apt-get   update sudo   

apt-get   upgrade sudo   

apt-get   dist-upgrade sudo   



 

 46  

  

apt-get   install   

libncurses5-dev   build-

essential   kernel-package   

git-core gcc-4.8   gcc- 

4.8-plugin-dev   make  

  

After you   are   done   with   the   software   installations   create   the   folder we   will   use   for   

the   build.  

  

mkdir   build cd   

build  

  

Step 1  

  

Download the Linux kernel source package for the 4.4.0 version from http://kernel.org and get the 

corresponding grsecurity patches based on the kernel version  

  

Command Line Steps (Execute the following commands) wget 

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.4.0.tar.xz  wget 

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.4.0.tar.sign  wget 

http://sw.1h.com/grsecurity/grsecurity-3.0-3.2.61-201407232156.patch  wget 

http://sw.1h.com/grsecurity/grsecurity-3.0-3.2.61-201407232156.patch.sig  git 

clone git://kernel.ubuntu.com/ubuntu/ubuntu-trusty.git   

  

You have now downloaded the Linux kernel source and the required grsecurity patches for it. In 

the next step, we will apply these patches and proceed to configuring the kernel   
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Step 2  

  

Apply the downloaded grsecurity patches to the Linux kernel using the following commands.   

  

Note: You should have the following files in your build folder from the previous step  

grsecurity-3.0-3.2.61-201407232156.patch   spender-gpg-key.asc    

grsecurity-3.0-3.2.61-201407232156.patch.sig 

  ubuntu-package/   linux-4.4.0.tar.sign   

ubuntu-trusty/   linux-4.4.0.tar.xz    

  

  

Command Line Steps   

cp ubuntu-trusty/debian/control-scripts/p* ubuntu-package/pkg/image/   

cp ubuntu-trusty/debian/control-scripts/headers-postinst  ubuntu-package/pkg/headers/    

  

The above command copies the required directories from the Ubuntu kernel overlay directory to 

the correct ubuntu-package directory. We now proceed to the patching of the kernel.   

  

Command Line Steps  

tar -xf linux-4.4.0.tar  cd 

linux-4.4.0/   

patch -p1 < ../grsecurity-3.0-3.2.61-201407232156.patch   

Step 3 Configure the kernel using the “ncurses” interface with the following options. This 

process involves choosing the set of secure options that will make up the features of the resultant 

kernel output.   

  

Command   Line   Steps  

make   menuconfig  
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The   following   screen   would   be   presented  

  

   

Figure 3.8 Kernel Configuration  

  

Step 6   

Start build with Debian package build options to order the build system to create installable “.deb” 

files after the process is complete  

  

Command Line Steps  make-kpkg 

clean   

sudo make-kpkg --initrd --overlay-dir=../ubuntu-package kernel_image kernel_headers  Step 7  

  

Install the generated “deb” files to test them on the host computer   
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Command Line Steps dpkg 

–i linux-*   

  

The command displayed above will install all the debian packages in the current directory so ensure 

you remain in the build process throughout this section.  

  

ISO Distro Pipeline  

  

In order to generate a distributable and bootable “iso” file, a command line utility was created to 

enable this functionality. The utility makes use of a configuration file named “config.env” that 

contains all the configuration variables for the build process. The figure below shows the contents 

of the configuration file.  
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Figure 3.9 Configuration environment  

  

The utility goes through the following steps to generate the distributable “iso” file  

  

Scaffold OS root folder structure  

Copy template files from host into working directory  

Remove Host specific configuration files  

Remove Host specific cache and temporary files  

Generate empty log files   

Remove all users   

Clean APT cache with chroot  
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Configure autologin for live user  

Configure “casper”  

Apply OS properties to the lsb_release file  

Setup the Ubiquity installer for the live system  

Prepare ISO tree  

Copy intial ramdisk, memtest files and secure kernel into ISO tree  

Apply compatibility patches to ISO tree  

Squash the rootFS into a “filesystem.squashfs”  

Generate MD5sums of all files in ISO  

Generate ISO with “genisoimage”  

  

To run the TrendOS utility execute the following command whilst in the project root folder  

  

./install.sh  

  

  

    
CHAPTER 4  

CONVOLUTED KERNEL ARCHITECTURE  

4.1 Overview of Kernel Architecture  

An operating system (OS) kernel is the core of its architecture upon which all other modules or 

programming files (within the OS) are integrated. The kernel defines the architecture of the 

operating system and the hardware it supports. Over the past six decades, universities, research 

institutions, corporations and operating system engineers have all contributed to the development 

and expansion of Kernels. Since the late 1990’s, there has been a paradigm shift in OS development 

from distributed environment to OS Security. This paper introduces a novel Kernel architecture, 
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dubbed the – Convoluted Kernel – which is designed with the goal of contributing to the on-going 

research on operating system kernel security to protect the kernel against itself from vulnerabilities 

such as un-authorized kernel modification and privilege escalation. The scope of this research is 

tailored to mechanisms in developing a novel security architectural framework that could easily 

retrofit into monolithic kernels to further augment the already existing frameworks that falls under 

the Linux Security Module (LSM) to protect the kernel against itself and other applications.  

The traditional OS architecture is generally made up of four major subsystems that work together 

to form a whole complete system which can be further classified into Kernel space and User space. 

The fundamental OS Architecture is made up of the hardware Controllers, which encompasses all 

the conceivable physical devices in the OS installation such as the CPU, memory module, network 

devices, Hard Drives among others. The next upper layer is the OS Kernel which serves as the 

integral part of the entire OS. In this layer, the kernel abstracts and mediate access to the hardware 

resources as captured in the previous layer which completes the kernel space   (Engler et al, 1998).  

The proceeding layers forms the user space section of the model. It is however made up of an 

interface level between the kernel space and the user space called the OS Services layer. This layer 

of the model essentially has two key sides. The lower part interfacing the kernel, which has 

compiler tools, libraries etc., and are considered part of the Kernel while the upper part interfacing 

the application, is considered part of the OS like the command shells etc. The top most layer of the 

architecture is referred to us the User Application which consists of set of applications executed 

by clients and servers (Bowman, 1998). Users are more familiar with this layer since their day to 

day interactions with the OS is interfaced with the various applications they install. The 

decomposition of an OS into four main subsystem architecture is as shown in figure 4.1.   

  

User Applications  

OS Services  
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System Call Interface  

  

Kernel  

  

  

Architecture-Dependent Kernel Code  

  

Hardware Controllers  

Figure. 4.1. – Breakdown of an Operating System into four major Subsystem.  

  

OS kernel architecture is changing and expanding very fast to meet the ever increasing 

complexities of computer hardware designs and ever improving sophistication of software 

applications. The multicore hardware designs of processes has made it possible for a complex 

programs which hitherto could only run on huge, high-end and expensive servers, to currently run 

on low-end personal computers. These development have also been engineered by the numerous 

research by universities, corporations and computer engineers, to meet the growing need for 

secured yet fast kernel designs with minimal vulnerabilities.   

However, core Linux architecture is monolithic by design (Reilly, 2002) and thereby, lack a 

resilient self-protection scheme when the security of the kernel space is breached (Dautenhahn et 

al, n.d.). Due to this characteristic feature, a single bit exploit in the kernel could lead to a fissure 

of the entire kernel mode of the OS including the MBR, memory module and other resource 

dependencies. Furthermore, vulnerabilities in most Linux based monolithic kernels have also made 

it predisposed to an array of kernel malware which exploits an internal kernel breach without any 

defense mechanism against internal attacks.   
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Kernel   

Mode  

  

Applications↓  

↑VFS, System Call  

IPC, File System  

Scheduler, Virtual Memory  

Device Drivers, Dispatcher  

Hardware  

  

Figure 4.2. Monolithic Design  

Even though copious developments have been made over the past decades to mitigate the drawback 

associated with the initial architectural design - the monolithic kernels – the evolvement of a 

principal alternative architecture to the traditional design became imperative. The Microkernel 

therefore became a perfect substitute to the monolithic as shown in Figure 4.2. The principal 

difference between the monolithic and the microkernel is that, in the former, every part of the 

kernel is executed in the unwieldy bottom-large kernel space which incidentally, happens to also 

run in the same address space. The key drawback therefore is a single process failure in any part 

of the kernel could have a grave consequence on the entire address space which frequently lead to 

a kernel panic (Chip et al., 2016).  

In the microkernel however, unlike the monolith’s huge kernel space, part of it is moved from the 

risky kernel space into a convenient and safer user space which is not susceptible to frequent crash 

of the kernel. This approach is considered less dangerous for the reason that, in the user space, 

each process runs in an isolated mode (aka servers) and therefore any bug in this design will 

obviously have a far less consequence since the processes involved may crash but the rest of the 

kernel will be operating in a safe mode.   
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Even though the microkernel appeared to have resolved the key challenges of the monolithic 

kernel, it also brought other limitations which are alien to the monolithic.  Those weaknesses are 

code complexities which also leads to performance overheads (Holwerda, 2007).   

Unlike the monolithic kernel’s huge disproportionate kernel space with respect to the user space, 

the microkernel has the reverse forming its design. With this new design in the microkernel, it is 

therefore expedient to have effective communication of the various services which hitherto was 

located in the kernel space now situated in the user space. This service in the microkernel is 

referred to as the inter-process communication (Nteziryayo et al, 2015).  

4.2 Linux Kernel Security Framework  

With the increase in the number of software vulnerabilities recorded across the world, the global 

challenge by computer security scientists and engineers to develop various access control utilities 

to curb the increasing rate of software vulnerabilities also led to the proliferation of numerous 

security software. Even though this was considered as a breakthrough to improve commodity 

operating system security on most especially Linux and Unix OS, there is however the lack of 

coordination on the best framework and direction to follow to allow vendors to choose from their 

own flavors. This therefore created a lack of single standardized Application Programming 

Interface (API) at a time (Wright, et al, 2002).  

With the wide acceptance of the need to develop a standard API for policy enforcement module 

by Linus Torvalds therefore had to resort to a policy framework to encapsulate all security modules 

to be able to function under a single API. The Linux Security Module (LSM) framework was 

therefore implemented to encapsulate the divers’ access control modules to enhance the security 

of the operating system. The LSM framework supports the loading of secured kernel modules. 

Some of these enhanced security include POSIX.1e capabilities, SELinux, Domain and Type 

Enforcement (DTE) and Linux Intrusion System (LIDS) (Wright et al., 2002), Rule Set Based 

Access Control (RSBAC),  GRsecurity, Trusted Computer System Evaluation (TCPA) among 

others (Biondi, 2003).  
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4.3 Drawback of Linux Security Module  

With the adoption of LSM as a standard API for loadable access control modules for the kernel to 

enhance the security of the architecture, there were however some challenges associated with the 

implementation of the framework. While some engineers were considering the use of an integrated 

kernel structure, the founder of Linux and top maintenance group rejected such idea. Such kernel 

implementation were considered to be inflexible and uncompromising and as a result, some earlier 

development modules which could not adopt to the framework such as GRsecurity and RSBAC 

were obliterated from the list of standardized loadable modules because of their un-support for 

LSM API (Wright et al., n.d.).  

This therefore denies an otherwise potentially best approach to enhancing security. With this 

reason, it also denies majority of users the opportunity to experiment and select from their own 

best kernel security module. Reason for the deprecation of others could be attributed to inactivity 

and excessive inflexibility in allowing the modules to easily port and other compatibility issues 

(Karlsson, 2010).   

Even though modules such as SELinux, AppArmor, SMACK, TOMOYO and YAMA are among 

others are highly rated, the first two appears in some distributions as the default kernel security 

module precompiled, they also have their own vulnerabilities that keeps operating system 

developers a bit apprehensive on the best option to choose from as far as kernel security modules 

were concerned. The key challenge arising out of the use of Linux Security Modules is the 

capability to disable and enable the module as and when it becomes required (Backes et al, 2013, 

Merrill, 2012).  

4.4 The Convoluted Kernel Architecture  

Due to various concerns raised on the adoption of a single framework (Linux Security Module) to 

interface kernel security modules, the need for the development of an integrated kernel framework 

to provide enhanced security and resilience became indispensable. Even though some efforts have 

been made by operating system engineers and scientists such as capsicum and Secure Virtual 

Architecture (SVA) which are the two widely pronounced kernel architectural framework, 
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however, their emphasis do not involve amalgamation of other useful features of kernels such as 

High Availability and cryptography using zero knowledge (Mauerer, 2008).  

  

In the absence of a kernel which could harness these functionalities to support server environment, 

the idea of an integrated kernel architecture with sandbox-virtualization (Yu & Science, 2007) and 

its prime focus on High Availability and secured authentication scheme was conceived. This kernel 

with these framework was referred to as the Convoluted Kernel architecture.   

  

Beginning from the bottom "Kernel mode" division (as shown in Figure 4.3) the Linux Kernel 

Layer contains the various subsystems that make up the kernel namely, the IO Manager, the Device 

Drivers, the Process manager, Virtual Memory Manager and more (Stallings & Hall, 2008).   

  

Above this layer is the TrendOS Linux Security Module (TLSM) which aims at enabling the 

efficient and concurrent use of multiple LSMs in a well-coordinated manner. This module is 

included as a built-in module in the TrendOS Linux Kernel. TLSM enables capabilities that allow 

the coexistence of multiple LSMs (e.g. SELinux, AppArmor etc.) which greatly enhances system 

wide security (Gorman, 2003).  

  

Above this layer is the system call interface where standard system call function (e.g. exec) are 

evaluated and handled. This layer denotes the beginning of the Kernel Mode Division.  Moving 

upwards, the User mode Division also known as Secure Trust Level 1 (STL1). This layer begins 

with System binaries the libraries that eventually make contact with the System call interface 

(Bridge). These are stored programs and procedures that users and applications constantly make 

heavy use of (Mauerer, n.d.).  
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Figure 4.3. Convoluted Kernel Architectural Design  

  

Above this Layer lies the High Availability Monitoring Unit as shown in Figure 4.4, which lies as 

a backbone to the Sandbox Environment. This layer is responsible for ensuring the all sandboxes 

are available 99.9% of the time. The services and operation of the High Availability technology 

ensures that continuous service is available between the private and secondary services at all times.   

  

  

 

Figure 4.4. Heartbeat architecture of the of the Convoluted Architecture  

  

Techniques including the Heart Beat mechanism are utilized efficiently to ensure downtime and 

recovery time is greatly reduced (Shahapure, 2015).  
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Figure. 4.5. Simplified High Availability (HA) Source (Manual et al., n.d.).  

  

  

Next above the HA Monitoring Unit is the Sandbox Environment where Application services run 

in a safe isolated environment that is actively protected by UTM enabled system-default 

sandboxes. This Layer allows the creation of as many application sandboxes as desired that will 

run in a Secure Sandbox environment that is protected by system-default UTM enabled sandboxes 

using state-of-the-art techniques such as Content Inspection as shown in Figure 4.5 (Manual et al., 

n.d.).  

  

Figure 4.6 shows the detailed design of the Secure UTM Layer of the main Architecture.  The 

expanded design comprises of several Unified Threat Management (UTM) modules that make up 



 

 61  

  

the UTM stack. This stack consists of security applications for Intrusion Detection Systems (IDS) 

and Intrusion Prevention Systems (IPS) which Snort was adopted as well as an IPFirewall (ipfw).   

  

What happens is that when network traffic arrives from the internet to or from the virtual machines. 

The UTM layer filters all traffic to ensure all network traffic is safe and provides a high level of 

protection to the sandboxes. It does so through a chaining mechanism that allows packets to be 

filtered thoroughly before they are finally routed to their final destinations.   

  

The UTM stack has been built in such a way that, it is able to co-locate with third party security 

tools without any conflict. This UTM stack works transparently with the virtual machines and 

sandbox technique.    
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Fig. 4.6 Expanded Unified Threat Management  

  

Above these levels is the ZKP Security module. This layer is essentially a Pluggable  

Authentication Module (PAM) responsible for System-wide authentication using the 

ZeroKnowledge Authentication technique. Using such a transparent framework, the all great 

benefits of using the ZKP technique can be realized seamlessly through PAM-aware system-based 

application like "ssh" (Soares, 2013).  

  

The Last Layer that ends the STL1 is the Web Based Control Panel. This layer presents a Web 

GUI that provides a general overview of system performance and enables system administrators 

to regulate TrendOS system functionality in as simple a manner as just turning knobs and setting 

values. This Control panel is the official TrendOS dashboard that Trend System Administrators 

will be familiar with.  

  

4.5 Security Enhanced Framework   

There has been several security framework that over the years have been developed to secure the 

Linux kernel and to improve the security of the architecture in general. Several kernel and 

operating system developers are beginning to adopt the use of virtualization to protect the core 

kernel structure from unauthorized manipulation from illegitimate users to expose its 

vulnerabilities (Watson et al., 2014).  

OS-level integrated level virtualization technique was therefore implemented into the framework 

in order to enhance the security of the core kernel to improve the resilience of the architecture 

(Shan, 2011).  

The diagram presented in Figure 4.7 shows an expansion of the virtualization component of 

TrendOS System architecture which is the prototype of the Convoluted Kernel Architecture. 

Starting from the bottom, we installed Linux Containers (LXC) as the underlying technology 

behind the virtualization component. LXC (which is an abbreviated way of saying Linux 

Containers) is an operating system-level virtualization method for running multiple isolated Linux 
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systems which are called containers on a single control host. This creates a high performance 

environment for the VMS (sometimes referred to as containers).  

Above this layer exists the virtual machines or containers which essentially achieves virtualization 

at the OS Level. This is achieved through Linux cgroups and is beyond the scope of our discussion 

(Katzer, 2015).  

As established earlier, the virtual machines share the host's kernel facilities. Above that is Bridge 

networking rules configured directly into every VM. This allows packets flowing from and to these 

containers to be analyzed by our UTM layer to protect application services from possible attack 

(Pa, n.d.).  

Above this layer lies system libraries that make constant repetitive use during their execution. On 

top of this lies the actual application services that clients make use of. This is the ultimate goal of 

a secure server environment - To protect its application services (e.g. Apache) (Assurance & 

Report, 2011).  

  

Fig. 4.7 The LXC design in the Architecture  
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4.6 Overall Privilege Separation of the Design  

The architecture in its implementation is divided into three levels of rings. It begins with the highest 

privilege level ring 0, which is the core kernel which directly communicates with the hardware 

resources including the processor. The next higher level is the ring 1 which is the modified kernel 

of the architecture being implemented (Convoluted Kernel Architecture) to be able to execute the 

services integrated into the framework for smooth execution. It also contains the Stealth-

Obfuscation Zero Knowledge Authentication which is integrated into the Portable Authentication 

Module of the Kernel to conceal any attempt by an intruder to intercept client server authentication. 

It also maintains Control Groups (CGs) among the various sandboxes and virtual machines to 

ensure a synchronized update of transactions between the various services. It implements both 

inter-process and intra-process communication using the heart-beat protocol (Bittau, 2009). A 

diagram of which as shown in figure 4.8.    
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Fig. 4.8 Privilege Separation of the architecture  

Figure 4.8 shows the High Availability setup which is an expansion of the High Availability Layer 

of the TrendOS architecture (O’Neil et al, 2013).  

Installed is a Heartbeat daemon that enables the virtual machines to know about the presence of 

peer virtual machines. This enables the Heartbeat protocol to immediately determine whether a 

VM is unavailable. This triggers failover mechanisms such as VM Replication. The Heartbeat 

services also performs load balancing (Yang et al, 2011).  

  

4.7. The implementation of the Convoluted Kernel Architecture – Trend-OS   

The development of the Trend-OS operating system is based on the Convoluted Kernel 

Architecture which combines multiple user instances of virtual private servers with Stealth 

Obfuscation Zero Knowledge Proof for all its application level security authentication in place of 

the inbuilt authentication module in Linux PAM. It implements redundant layers of security in its 

kernel ostensibly to protect the kernel against itself in case it is attacked. The redundant security 

policy of this architecture ensures that all applications installed on this operating system runs on a 

virtual environment to abstract the Kernel’s inner core from malicious or threats of the applications 

that runs on them with an additional kernel layer in a monolithic architecture.    

The architecture also makes wide use of the GRsecurity kernel enhancements. Grsecurity is an 

extensive security enhancement to the Linux kernel that defends against a wide range of security 

threats. The PaX project is included, hardening both user space applications and the kernel against 

memory corruption-based exploits. Grsecurity includes a powerful Mandatory Access Control 

system with an effortless automatic learning mode and a host of other miscellaneous hardening 

features.  

  

4.8. Adoption of Chroot Hardening Technique for compatibility  

The Convoluted Kernel Architecture also adopted the Chroot Hardening technique in its design. 

Chroot is a common isolation mechanism for services. The technique adopted in the Convoluted 
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Kernel with the Grsecurity includes features for eliminating many common escape routes from 

chroots and can lock them down to the point where the confinement is equivalent to a container.  

These features can all be toggled on and off via sysctl switches. The following features are enabled 

in /etc/sysctl.d/05-grsecurity.conf file by default and are unlikely to cause any compatibility issues 

as shown in Listing 4.1.  

  

Listing 4.1. grsecurity modules   

kernel.grsecurity.chroot_deny_fchdir      = 1 kernel.grsecurity.chroot_deny_shmat      = 1 

kernel.grsecurity.chroot_deny_sysctl      = 1 kernel.grsecurity.chroot_deny_unix      = 1 

kernel.grsecurity.chroot_enforce_chdir     = 1 kernel.grsecurity.chroot_findtask      = 1  

  

The remaining features are left off by default, to remain compatible with containers as shown in Listing  

4.2.    

Listing 4.2. kernel integration with grsecurity.  

#kernel.grsecurity.chroot_caps            =       1  

#kernel.grsecurity.chroot_deny_chmod          =       1  

#kernel.grsecurity.chroot_deny_chroot          =       1  

#kernel.grsecurity.chroot_deny_mknod          =       1  

#kernel.grsecurity.chroot_deny_mount          =       1  

#kernel.grsecurity.chroot_deny_pivot           =       1  

#kernel.grsecurity.chroot_restrict_nice          =       1  

  

4.9. Insertion of Socket restrictions  

In order to ensure that applications that exploits the vulnerabilities associated with remote 

procedure invocation does not manipulate the kernel, it utilizes three level of restricted access to 

sockets. Users in the socket-deny-client group are forbidden from connecting to other hosts. Users 

in the socket-deny-server group are unable to listen on a port. The socket-deny-all group includes 

both of the restrictions. The virtual private service of the architecture requires a utility to easily 

manage the system to perform all administrative tasks. The gradm tool allows you to administer 
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and maintain a policy for your system. With it, you can enable or disable the RBAC system, reload 

the RBAC roles, change your role, set a password for admin mode, and other privileges only 

allowed on servers.   

The integration of the gradm in the CKA architecture has a default policy which is installed in 

/etc/grsec/policy. By default, the RBAC policies are not activated. It is the system administrator’s 

job to determine when the system should have an RBAC policy enforced. The system allows 

passwords to be set in order to activate the module. Once the password is entered, the module 

becomes active.  

The development of this architecture relies on the Linux 4.1 kernel for the base kernel and the 

reconfiguration of a User Mode (STL1) which is a higher layer mode to accommodate the various 

modules to create the platform for abstract interaction with the various third – party applications 

and utilities which will be generally installed by the user. A secondary system binaries and libraries 

is configured with a High Availability monitoring unit. The following figures shows the 

development of the system from the kernel level as shown in the Figure 4.9 and sample code as 

shown in listing 4.3.  
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Figure 4.9 Kernel deployment into the architecture 



 

 

Listing 4.3 General Configuration   

  
# General Configurations  
DISTRO_NAME="Trend-OS"  
DISTRO_VERSION=1.0  
DISTRO_AUTHOR="Engr. Danso Ansong"  
DISTRO_BUILD_DATE="11-04-2016"  
DISTRO_HOSTNAME="nothing"  
DISTRO_CODENAME=pioneer  
DISTRO_DESC="Powerful and Secure Linux OS"  

  
# Important Directories  
DIR_RES=resources  
DIR_CONF=conf  
DIR_EXT=extensions  
DIR_WORK=work  
DIR_EXTRAS=extras  
DIR_LOGS=logs  
DIR_LISTS=lists  
DIR_OUTPUT=outputs  
DIR_TMP_ROOT=$DIR_WORK/ROOT  
DIR_TMP_ISO=$DIR_WORK/ISO  
DIR_RES_BG=$DIR_RES/backgrounds  
DIR_RES_AUDIO=$DIR_RES/backgrounds  
DIR_RES_ICONS=$DIR_RES/icons  
DIR_COPY_TMP_ROOT=/  
DIR_COPY_TMP_ROOT_1=$DIR_WORK/bootstrap/  

  
# Important Files  
FILE_BOOT_SPLASH=$DIR_RES_BG/grub/splash.png  
FILE_LOGS_STDOUT=$DIR_LOGS/stdout  
FILE_LOGS_STDERR=$DIR_LOGS/stderr  
FILE_INSTALL_LIST=$DIR_LISTS/requirements.list  
FILE_EXCLUDES_LIST=$DIR_LISTS/excludes.list  
FILE_RM_CONFIG_LIST=$DIR_LISTS/remove-config.list  
FILE_RM_TMP_VAR_CONFIG_LIST=$DIR_LISTS/remove-tmp-var.list  

  
# Script Configuration  
EXT_LOAD="helper.sh"  

  
# File Configurations  
TRENDOS_DETECT_FILE=.trendos  

  
# ISO Linux Configuration  
ISOLINUX_TIMEOUT=100  
LIVE_CD_LABEL="$DISTRO_NAME Live CD"  
LIVE_CD_URL="www.fredancybersecurity.com"  
SQUASHFSOPTS="-no-recovery -always-use-fragments -b 1M -no-duplicates"  

  
# ISO Configuration  
ISO_FORMAT=squashfs  
ISO_FILENAME="trend-os-1.0-desktop-amd64.iso"  



 

 

ISO_SFSCOMPRESSION=gzip  

ISO_MENU_TIMEOUT=10  

 69  
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The modification of the script and deployment of the kernel into the architecture continues with the loading of the various modules as 

shown in Figure 4.10.  

  

  

Figure 4.10. Loading of the various security and driver modules into the kernel.  
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The generic monolithic Linux kernel lacks several modules that can meet the design of the new architecture. Therefore, several modules 

were removed while others modified to ensure that the novel CKA’s design is replicated in the new architecture. Figure 4.11 shows part 

of the result during the building of the new kernel.    
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Figure 4.11 modifying the generic kernel to suit the convoluted kernel Architecture  

Because the architecture required several security enhancements in its design, several multi-level security enhancements is built into the 

architecture in the development stage in order to meet the objectives of the system as shown in Figure 4.12.  
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Figure 4.12 Integrating redundant security modules to protect the kernel against itself.  

Figure 4.13 shows sample compilation of various files and how they are integrated into the various security protocols for compatibility.   
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Figure 4.13 Building the various files and integrating into inbuilt protocols for compatibility 

The installation process of the operating system has great user friendly experience. The screenshots from Figure 4.14 – Figure 4.20 

shows some selected stages of installation processes from beginning to the completion of the prototype architecture.  
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Figure 4.14 Good user friendly installation experience 
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Figure 4.15 Step by step system Installation guide.  
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Figure 4.16 Effective Disk space utilization.  
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Figure 4.17 Minimum load system resource utilization.  
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Figure 4.18 Support for multiple server instances running on same system – Linux containers.  
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Figure 4.19 Live backup systems for High Availability.  

 
  

Figure 4.20 Minimum CPU and Memory utilization. 
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4.10. Summary  

This chapter discussed the overview of the Convoluted Kernel Architectural framework and a 

comparative study with the traditional Linux kernel. The architecture is specially designed for 

trusted sever environment. It has an integrated layer of a customized Unified Threat Management 

(UTM) which filters all traffic to ensure all network traffic is safe and provides a high level of 

protection through a chaining mechanism that allows packets to be filtered thoroughly before they 

are finally routed to their final destinations. The framework used is a combined monolithic and 

microkernel based (hybrid) architecture code-named – the integrated approach, to trade in the 

benefits of both designs. The architecture serves as the base framework for the Trust Resilient 

Enhanced Network Defense Operating System (TREND-OS) currently experimented in the lab. 

The aim is to develop an architecture that can protect the kernel against itself and applications 

(Snyder & One, n.d.).  

  

   



 

 83  

  

CHAPTER 5  

STEALTH-OBFUSCATION ZKP AUTHENTICATION PROTOCOL  

5.1 Introduction  

In this chapter, we present a password authentication protocol over untrusted networks. This 

password authentication protocol stores user password in a non-plaintext equivalent therefore, a 

breached database would not reveal enough information about the user password. This protocol 

relies on the strength of discrete logarithms with the Schnorr Signature Scheme and also goes 

further to satisfy all properties of a zero knowledge proof system.  

User authentication systems have evolved throughout the years with the focus on securely proving 

a party’s legitimacy to another. These user authentication systems can be categorized as 

“Biometrics”, “Tokens – Cell Phone”, “Password – Pin”, Location to a combination of these 

factors which is known as a Multi-factor user authentication scheme. Although all these factors 

are designed to offer some protection against security attacks, the current trends in computing 

keeps introducing new threats.  

Table 5.1 Categories of user Authentication Systems  

Biometrics  What a Person is?  

Tokens – Cell Phone  What a Person has?  

Password – Pin  What a Person knows?  

Location  Where a person is?  

  

This model deals with a mechanism for authentication for “What the person knows” (Knowledge 

Factor) category of user authentication. In this scheme, the user’s password and pin are the only 

secret available to the client whereas the network between the client and server is perceived to be 

untrusted. The only trusted parties in this authentication are client and the server application 

requesting the authentication hence the need to verify the knowledge of the secret keys without 

disclosing enough information about them on the network. Such a scheme requires no more than 



 

 84  

  

just the client and the server requesting the authentication hence it is easy to implement in almost 

all Knowledge factor user authentication scheme since no additional hardware devices are 

required. To increase the entire security of such a scheme, other factors such as “What the person 

has” and “What the person is” can be employed as well to make it multi factor.  

Knowledge factor authentication schemes have been the primary type of authentication to almost 

all web and software services. They are basically easy to design and implement in any architecture 

due to simplicity and low overhead in its implementation as compared to other factors like 

biometrics and location. Although a factor like the biometrics has proven to be more secure than 

the traditional Knowledge Factor authentication scheme, most of it implementation is still 

susceptible to over a decade old trick where fingerprint are raised from readers and used for 

authentication. Location based authentication is also a good contender for secure authentication 

but device latency, availability of device and its services hinders it implementation. Many 

researches have been carried out in the area of location based authentication and they lay out 

techniques for authentication, STAT I (Space – Time Authentication Technique) use a GPS for 

determining a user’s location for authentication whiles the STAT II uses a proprietary IQRF 

technology for determining its user’s location for authentication (Ghogare et al, 2012). As an 

alternative to just location-based authentication, Hang et al. proposed a two-factor authentication 

scheme (location-based authentication with security questions) as a fallback mechanism to other 

authentication mechanism like a knowledge-based scheme. After implementation and testing of 

their proposed scheme, they found out that around 90% of their users were able to remember the 

locations to security questions within a 30 meter range whiles attackers could not successfully 

guess such locations (Hang et al, 2015).  

5.2 Existing Models  

Building authentication schemes with zero-knowledge proofs has been researched and 

implemented in many flavors along the years. The need to provide such secure authentication 

schemes for web applications and services has been driven by the influx of mobile devices and 

internet in our daily lives. Some of the researches in Zero Knowledge Proof Authentication  
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Schemes are as follows: “NARWHALL-An implementation of zero knowledge authentication” (Cheu 

et al, 2014). In this paper they discussed several vulnerabilities in existing website authentication 

systems and NARWHALL as a more secure alternative to such authentication systems. NARWHALL 

fixes most of the discussed vulnerabilities by building on an original protocol described by Lum Jia 

Jun. The protocol described by Lum Jia Jun is based on the Zero Knowledge Authentication with Zero 

Knowledge framework which allows an easy implementation of Zero Knowledge Authentication (“at-

commerce-7,” n.d.).  

 In the available values to the prover of the system is his password and a public key, and the 

available values to the verifier of the system is the same public key as the prover’s and a 

pseudonym of the user which would will be calculated for during any authentication round. 

NARWHALL builds on such protocol by adding more components for more secure authentication. 

During a signup session with NARWHALL, a username, password of the user is entered and also 

the websites public unique identifier, the password is hashed and a public key is generated from 

it. The website unique identifier prevents users with the same username and password from two 

website to have the same public key and also the username prevents users of the same website to 

have the same public key. During a login session to a random challenge is sent to the users login 

form and stored in a cookie; on any login attempt the cookie information is updated to prevent 

brute forcing. Some implementation issues were identified the worse of all being the dependence 

of Javascript for client side processing. In browsers with disabled Javascript, the whole 

authentication fails. Another issue could be attributed to salting the user’s password before 

generating a pseudonym for the user. The user’s password were not salted hence an attacker could 

pre-compute values of the credentials and submit it for authentication.  

Sławomir et al. proposed a Zero Knowledge Proof Authentication based on isomorphic graphs 

which allows authentication with varying confidence and also security level (Grzonkowski et al, 

2008). This protocol follows strictly the ZKP challenge – response round for an authentication, so 

AJAX and xml are used to meet the requirement. During authentication a user makes a request 

and a server responds with a challenge and a user replies with a response and the server sends its 

final response denoting a successful or failed login attempt this is simulated with AJAX and XML. 

In an authentication process, a user enters his username and password and the browser calculate a 
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public and private key pair. The browser then calculate a challenge graph and sends it to the server 

and the server replies with a random challenge to the browser and the browser then chooses a 

response to the challenge and sends it to the browser. A response is finally sent from the server to 

the browser which denotes a successful authentication or failure. The public keys in this protocol 

are represented with two isomorphic graphs 𝐺1 = 𝜋𝑎(𝐺2) and the permutation of 𝜋𝑎 is the private 

key. During authentication a prover will generate a random permutation and sends a graph 𝐺𝑟 to 

the verifier (server) and depending on the challenge sent to the prover, the prover responds with 

either 𝜋𝑟 𝑜𝑟 𝜋𝑟 𝑜 𝜋𝑝−1 then the verifier is able to check if the private and public keys are valid. In 

this implementation there could be attacks on the Graph isomorphism if an algorithm with Corneil 

et al. (Corneil, 1970) algorithm which determines if two graphs are isomorphic thereby increasing 

the speed of brute force attacks on it. Furthermore this implementation is also susceptible to 

dictionary attacks, hence when a website is breached and user login details are stolen, it could be 

used to attack this implementation.  

Thiruvaazhi et al. proposed an elliptic curve discrete logarithm zero knowledge proof protocol for 

proving a user’s binding to a public key and also his possession of a private key (Lomte, 2012).   

In their scheme a user’s visited domain is hashed and encoded and sent to the web server and the 

web server responds with its actual public key and it is hashed and encoded by the user and also 

verified against the original encoded hash of the domain name during registration to check it 

validity. In proving the private key, an elliptic curve will be generated over a finite field; a prover 

will choose a random value and compute the witness and send it to a verifier. A verifier will also 

randomly choose a challenge as either 0 or 1 and sends it to the prover and the prover will respond 

based on the challenge and finally the verifier will compute the validity of the response based on 

the prover’s response. In this implementation there were some performance issues because of the 

iterations needed for the Zero Knowledge Proof challenge – response authentication round which 

could be detriment to its implementation on mobile platforms.  
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5.3 Zero Knowledge Proofs  

A zero-knowledge proof is a method by which one party can prove to another that a statement is true 

by disclosing no other information than the fact that the statement is true. A derivative of this scheme 

is the Zero Knowledge Proof of Knowledge which allows a prover to prove to a verifier that a statement 

is true and also possesses a witness for the fact (Fiege, Fiat, & Shamir, 1987). For an authentication 

system to be zero knowledge it has to be  

• Complete  

• Sound  

• Zero-Knowledge   

A system is complete when a prover can convince the verifier that a statement is true and no 

cheating prover can convince the verifier otherwise and it is sound if when a statement is false no 

cheating prover can convince the verifier that it is true and it is zero-knowledge when a cheating 

verifier can only learn that the statement is true. Zero knowledge proofs are interactive protocols 

with zero knowledge. Interactive proof system was introduced (Babai, 1985) and the Zero 

Knowledge (Goldwasser et al, 1989). Although the study of Zero Knowledge Proofs is primarily 

focused on user authentication, it can further be implemented in digital payment systems and 

electronic voting systems (Boneh, 2004).  

5.4 Schnorrs Identification Protocol  

This is a three move protocol in which the exchanged messages; the commitment, challenge and 

response are exchanged between a prover and verifier to be able to prove the knowledge of a secret 

key. The first step involves the prover sending a commitment to the verifier and the verifier 

responding with a challenge and finally the prover sending its response for final verification of the 

knowledge secret key. To describe this scheme we can define the values available to the prover as 

(g, q, y, and x) and that of the verifier as (g, q, and y) where g, q and y are public keys and x is the 

secret key only known by the prover  

• Commitment  
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Prover: 𝑟 ∈𝑅 𝑍𝑞 => 𝑡 = 𝑔𝑟 (𝑆𝑒𝑛𝑑 𝑡 𝑡𝑜 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟)  

• Challenge  

𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟: 𝐶 ∈ {0,1}𝑘 (𝑆𝑒𝑛𝑑 𝐶 𝑡𝑜 𝑃𝑟𝑜𝑣𝑒𝑟)  

• Response  

Prover: 𝑠 = 𝑟 − 𝑐𝑥 (𝑚𝑜𝑑 𝑞) (𝑆𝑒𝑛𝑑 𝑠 𝑡𝑜 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟)  

Verifier: 𝑡 = 𝑔𝑠𝑦𝑐 (𝑌𝑒𝑠 / 𝑁𝑜)  

Let 𝑔𝜖𝐺 be a generator of G (a finite group of order q). Let 𝑦 = 𝑔𝑥 be the public key of the prover and 

x the secret key, we can then prove the knowledge of the secret key.  

𝑠 = 𝑟 − 𝑐𝑥 𝑎𝑛𝑑 𝑦 = 𝑔𝑥  

 𝑡𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 = 𝑔𝑟−𝑐𝑥𝑔𝑐𝑥  

𝑡𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 = 𝑔𝑟  

𝑡𝑝𝑟𝑜𝑣𝑒𝑟 = 𝑡𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟  

Such proofs of knowledge are useful in the construction of signature schemes.  

5.5 Schnoors Signature Scheme  

This is a digital signature scheme which is a variant of the ElGamal Signature scheme. It is efficient 

and generates shorter signatures as compared to the ElGamal signature scheme. A Schnorr 

signature of message 𝑚 ∈ {0,1}∗ is a pair (c, s) with 𝑐, 𝑠 ∈ 𝑍𝑞 and satisfying the verification equation 

𝑐 = 𝐻(𝑚‖𝑔𝑠𝑦𝑐) where H is a collision-resistant cryptographic hash function {0,1}∗ → {0,1}𝑙 that 

maps to a fixed hashed output.  

• Key Generation Phase: Secret Key = x, 𝑦 = 𝑔𝑥  

• Message Signing Phase:  

1. Choose a Random r from a set  

2. 𝑅 = 𝑔𝑟  
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3. 𝑐 = 𝐻(𝑚‖𝑅‖𝑦) 4. 𝑠 = 𝑟 − 𝑐𝑥 (mod q) • Verification Phase:  

𝐻(𝑚‖𝑦𝑐𝑔𝑠) =𝐻(𝑚‖𝑔𝑟)  

For correctness of the scheme we can verify it by using the values 𝑔𝑟𝑎𝑛𝑑 𝑦𝑐𝑔𝑠.  

𝑠 = 𝑟 − 𝑐𝑥 𝑎𝑛𝑑 𝑦 = 𝑔𝑥  

𝐻(𝑚‖𝑔𝑐𝑥𝑔𝑟−𝑐𝑥) = 𝐻(𝑚‖𝑔𝑟)  

The verification phase shows how a signed message can be verified by the other party.  

5.6 Signatures Based Proof Knowledge – (SPK)  

Signature based on proofs of knowledge is used to prove the possession of secret keys (Schnorr,  

1990). For a pair (𝑐, 𝑠) ∈ {0,1}𝑙 × 𝑍𝑞 satisfying 𝑐 = 𝐻{𝑉|𝑚} with s =𝑔||𝑦 and V = 𝑔𝑠𝑦𝑐 is an SPK 

of the discrete logarithm of a group element y to the base of g of the message 𝑚 𝜖 {0,1}∗ and is 

denoted 𝑆𝑃𝐾1{(𝛼): 𝑦 = 𝑔𝛼}(𝑚). For an 𝑆𝑃𝐾1, the secret value can be expressed in terms of the 

public key as 𝑦 = 𝑔𝑥 where x is the secret value and the random integer from the set 𝑍𝑞 can be 

expressed as 𝑡 = 𝑔𝑟 as shown in Listing 1.2 . The challenge can be expressed as 𝑐 = 𝐻(𝑡|𝑚) and 

the response as 𝑠 = 𝑟 − 𝑐𝑥 (𝑚𝑜𝑑 𝑞). A general notation of a proof of knowledge of the secret keys 

𝛼 𝑎𝑛𝑑 𝛽 can be expressed as 𝑆𝑃𝐾1{(𝛼, 𝛽): 𝑦 = 𝑔𝛼 ∧ 𝑧 = 𝑔𝛽ℎ𝛼}(𝑚).  

  

5.7 Stealth Obfuscation ZKP Scheme  

The scheme relies on 𝑆𝑃𝐾1 for website authentication. The strength of our scheme as compared to 

NARWHAL (a challenge-response model authentication based on zero knowledge proofs) (Cheu 

et al, 2014) is based on the complexity of how passwords are stored. It doesn’t share weakness 

with hashed passwords since an attacker with pre-computed values of passwords would not be 

able to look it up. Our scheme offers a stealth authentication over networks since not much 

information is leaked on the network during an authentication round.  
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5.8 Implementation of Stealth Obfuscation ZKP  

a) User Registration  

  

Figure 5.1 Stealth ZKP User Registration (Client Side).  
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SIGN UP ALGORITHM – CLIENT SIDE   

1. Clients browser requests for the login page  

2. The server responds with the login page and two public keys g and p  

3. Client enter a password, pin and username  

4. The pin and password are hashed and converted to BigInteger values  

5. If the hash of the password in BigInteger value is greater than hash of the pin 

BigInteger Value you subtract the pin’s value from the password value.  

i.e.   Difference = Password – Pin  

else  

Subtract the Password from Pin’s BigInteger Values i.e.  

 Difference = Pin – Password  

6. We find the public values Y y string on the server  

𝑌 = 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦(𝑦)𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑜𝑑 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦  

𝑌 = 𝑔𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑜𝑑 𝑝  

  

In the user registration process, a user chooses a username, password and pin of their choice and 

their pin and password are hashed with a collision -resistant hash function and converted to big 

integers (Schnorr, 1990).  

  

A difference of the larger value from the smaller value is taken and computed with the 

cryptographic group element 𝑔0 as 𝑦 = 𝑔0𝑥𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and stored with the username to the server. The 

value stored on the server does not reveal enough information about the private key of the client 

being (𝑥). The value stored on the server (𝑦) becomes the user’s public key.  

  

  



 

 92  

  

b) User Sign In (Client Side)  

During sign-in the user enters his username, password and pin as they registered with and the password 

and pin are hashed using the same collision-resistant hash function as at signup and the values 

converted to big integer values for further computation. From 𝑆𝑃𝐾1{(𝛼): 𝑦 = 𝑔𝛼}(𝑚) we can set our 

message parameter to null (𝑆𝑃𝐾1{(𝛼): 𝑦 = 𝑔𝛼}) and deduce the signing as follows:  

1) 𝑦 = 𝑔0𝑥𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  

2) 𝑇𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑔0𝑟𝑟𝑎𝑛𝑑𝑜𝑚  

3) 𝐶 = 𝐻(𝑇𝑐𝑙𝑖𝑒𝑛𝑡‖𝑌)  

4) 𝑧 = 𝑟𝑟𝑎𝑛𝑑𝑜𝑚 − 𝐶𝑥𝑑𝑖𝑓𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  

  

Figure 5.2 Stealth ZKP User Authentication (Client Side).  
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SIGN IN ALGORITHM – CLIENT SIDE  

1. Clients browser requests for the sign in page  

2. Server responds with a sign in page and public keys g and p  

3. User enters username, password and pin  

4. Password and Pin is hashed and connected to Big Integer Values  

5. If the Big Integer value of the password is greater than that of the pin; You subtract 

the pin from the password i.e.  

Difference = Password – Pin  

Likewise, if the Pin is greater than the password, you subtract the password from the pin.  

NB: This is done to ensure that the value is always going to be a non-negative value. 6.  

Find the positive value Y as  

𝒀 = 𝒈𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒎𝒐𝒅 𝒑  

7. Generate a random number (r) and convert it to BigInteger NB. This random value is the 

protocol secret key.  

8. Perform the computation   

𝑻 = 𝒈𝒓 𝒎𝒐𝒅 𝒑  

9. Hash the value of the computation on the secret key and Public Y key and convert to 

BigIntegers  

      C = Hash (T, Y)  

      Convert C to Big Integer  

10. Finally, Get the difference of the product of C and Difference of the pin and password 

from the random private key r.  

      Z = r – C * Difference  

      Send Z, C and Username for authentication.  
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The client sends (C and z) to server for authentication. The sample code for this process is as shown in 

Listing 4.2.  

Listing 5.1 Client side Login Sample Code  

      
    function random() {         

var wordCount = 4;         

var randomWords;  

  
        if (window.crypto && window.crypto.getRandomValues) {             

randomWords = new Int32Array(wordCount);             

window.crypto.getRandomValues(randomWords);  
        }  
        else if (window.msCrypto && window.msCrypto.getRandomValues) {             

randomWords = new Int32Array(wordCount);             

window.msCrypto.getRandomValues(randomWords);  
        }           
        var string = '';  

          
        for( var i=0; i<wordCount; i++ ) {           

var int32 = randomWords[i];           if( int32 

< 0 ) int32 = -1 * int32;           string = 

string + int32.toString(16);  
        }   
        return string;  
    }       
    function hash(x) {  
    return SHA256(x).toLowerCase();  
    }  

  

  
    $(function(){  

  
        $('#frm_login').submit(function(e){  

              
            var r = random();             

var p = new  
BigInteger("EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C9C256576D 

674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE48E495C1D6089DAD15DC7D7B46154D6 
B6CE8EF4AD69B15D4982559B297BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976 
EAA9AFD5138FE8376435B9FC61D2FC0EB06E3", 16);             

var g = new BigInteger("2",16);             var 

username = $('#login_username').val();             var 

password = $('#login_password').val();  

  
            var x = hash(password);             

var xbig = new BigInteger(x, 16);             

var y = g.modPow(xbig, p);  
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            var rbig = new BigInteger(r, 16);             

var t = g.modPow(rbig, p);             var yt 

= t.add(y);             var c = 

hash(yt.toString());             var cbig = 

new BigInteger(c, 16);  
             var cx = cbig.multiply(xbig);             

var sub_r_cx = rbig.subtract(cx);  

  
            var p1 = p.subtract(new BigInteger("1",16));  

  
            if(cx.max(rbig)){  
                sub_r_cx = cx.subtract(rbig);  

                  
                sub_r_cx = sub_r_cx.mod(p1);  

                  
                sub_r_cx = p1.subtract(sub_r_cx);  
            }  

  
            var z = sub_r_cx.mod(p1);  

  
            $("#c").val(c);      
            $("#z").val(z);  
            $("#y").val(y);  
            $("#login_password").val("");   
        });  

  

          
        $('#frm_signup').submit(function(e){             

var p = new  
BigInteger("EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C9C256576D 

674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE48E495C1D6089DAD15DC7D7B46154D6 

B6CE8EF4AD69B15D4982559B297BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976 
EAA9AFD5138FE8376435B9FC61D2FC0EB06E3", 16);             

var g = new BigInteger("2",16);             var 

username = $('#new_username').val();             var 

password = $('#new_password').val();  

              
            var x = hash(password);             

var xbig = new BigInteger(x, 16);             

var y = g.modPow(xbig, p);               
            $("#new_password").val(y);  
        });  

          

  
    });  
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The choice of a random module also requires a number of processes in order to make this possible.  

Part of the code for the execution of this process is as shown in Listing 5.2.  

Listing 5.2 Random Module Sample Code  

  
var random16byteHex = (function() {   

function random() {     var 

wordCount = 4;     var randomWords;  

  
    // First we're going to try to use a built-in CSPRNG     

if (window.crypto && window.crypto.getRandomValues) {         

randomWords = new Int32Array(wordCount);         

window.crypto.getRandomValues(randomWords);  
    }  
    // Because of course IE calls it msCrypto instead of being standard     

else if (window.msCrypto && window.msCrypto.getRandomValues) {         

randomWords = new Int32Array(wordCount);         

window.msCrypto.getRandomValues(randomWords);  
    }  
    // Last resort - we'll use isaac.js to get a random number. It's seeded 

from Math.random(),  
    // but we can run it for 100ms/0.1s to advance it a distance which will 

be dependent upon   
    // hardware and js engine. Also we will have the onkeyup skip a char 

worth of values.   
    else {  
        randomWords = [];  
        for (var i = 0; i < wordCount; i++) {             

randomWords.push(isaac.rand());  
        }  
    }       
    var string = '';  

      
    for( var i=0; i<wordCount; i++ ) {       

var int32 = randomWords[i];       if( int32 

< 0 ) int32 = -1 * int32;       string = 

string + int32.toString(16);  
    }   
    return string;  
  };  

         
  function isCrypto() {  
    if (window.crypto && window.crypto.getRandomValues) {       

return true;  
    }  
    else if (window.msCrypto && window.msCrypto.getRandomValues) {       

return true;     } else {       return false;  
    }  
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  };     
  var crypto = isCrypto();  

    
  function advance(ms) {     if( 

!crypto ) {       var start = 

Date.now();       var end = start 

+ ms;       while( Date.now() < 

end ) {  
          var r = isaac.random() * 128 + (Date.now() - start);            

isaac.prng(Math.floor(r));  
      }  
    }  
  }      

return {  
    'random' : random,  
    'isCrypto' : crypto,  
    'advance' : advance   
  };  
})();  

  
// if it is isaac spend 0.1s advancing the stream 

random16byteHex.advance(100);   

  

c) User Sign In – (Server Side)  

At the user authentication at server side, the process has to be proved for correctness.  

1) 𝑇𝑆𝑒𝑟𝑣𝑒𝑟 = 𝑦𝑐𝑔𝑧  

2) 𝑇𝑆𝑒𝑟𝑣𝑒𝑟 = 𝑔𝑥𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑐𝑔𝑟𝑟𝑎𝑛𝑑𝑜𝑚−𝐶𝑥𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  

3) 𝑇𝑆𝑒𝑟𝑣𝑒𝑟 = 𝑔𝑟𝑟𝑎𝑛𝑑𝑜𝑚  

4) 𝑇𝑆𝑒𝑟𝑣𝑒𝑟 = 𝑇𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑔𝑟𝑟𝑎𝑛𝑑𝑜𝑚  

For any round of authentication valid credentials can be verified. The process for the signup at the 

server side is also required as part of the protection and security measures as explained earlier.    

  

Listing 5.3 Signup Server Side Sample Code  
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    $db = mysqli_connect('localhost', 'root', '', 'zkp');     if( 

$db->query("insert into account (username, password) values  
('".$username ."', '".$password."')")){  
        echo "User : ".$username." created succesfully with password  
".$password;  
    }  
}  

  

?>  

  

  

Listing 5.4 Login Server Side Sample Code  

 

  
$db = mysqli_connect('localhost', 'root', '', 'zkp');  

  
$result = $db->query("select password from account where username =  
'".$username."' limit 1");  

  
$_password = "";  

  

 

  

$c = $_POST['c'];    

$z = $_POST['z'];   

  
var_dump($_POST);  

  
$zkp = new Zkp($_password, $c, $z);  

  

< ?php   
  
if   ( $_POST['action'] == 'new_user' ){   
  
     $username = $_POST['username'];   
     $password = $_POST['password'];   
  

< ?php   
  
require   "zkp.php";   
  
$username = $_POST['username'];   

while ( $row =  mysqli_fetch_assoc ( $result ))   
{   
     $_password = $row['password'];   
}   
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Figure 5.3 Stealth User Authentication (Server Side).  
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SIGN IN ALGORITHM – SERVER SIDE  

1. Recover C, Z and username from client  

2. Get the Pseudonym of password (Y) corresponding to the username stored on the server  

3. Compute T𝑇 = 𝑌𝑐𝑚𝑜𝑑 𝑝 ∗ 𝑔𝑧 𝑚𝑜𝑑 𝑝  

In our initial assumption from the ym users sign up process  

        𝑌 = 𝑔𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑜𝑑   

From our sign up process  

𝑍 = 𝑟 − 𝑐 [𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒]  

 So        (𝑔𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)𝑐 ∗ 𝑔𝑟−𝑐 [𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒]  

  Then 𝑔𝑟( 𝑐[𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒]+𝑐 [𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒])𝑚𝑜𝑑 𝑝  

From the client sign in process  

a. 𝑇 = 𝑔𝑟𝑚𝑜𝑑 𝑝  

b. So we reduce a  

𝑔𝑟𝑚𝑜𝑑 𝑝  

Therefore if the C and Z values submitted the correct value of Y, The random value generated r can 

always be proven  

i.e. 𝑇 = 𝑔𝑟 𝑚𝑜𝑑 𝑝 have logged in successfully else  

Login error  
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Listing 5.5 Zero Knowledge Proof Sample Code  

 

  
    $powYC = $this->y->powMod( $bigC , $this->p);  

      
    $powGZ = $this->g->powMod($this->z, $this->p);  

      
    $t = bcmod(bcmul($powYC, $powGZ), $this->p);  

?php <   
  
require   'BigInteger.php';   
  
class   Zkp {   
  
protected   $a;   
protected   $g;   
protected   $p;   
  
protected   $y;   
  
protected   ername; $us   
protected   $c;   
protected   $z;   
  
  
function   __construct ( $_y, $_c, $_z ){   
$this - p =  > new   
BigInteger("EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C9C256576D 

6 DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE48E495C1D6089DAD15DC7D7B46154D 674 
B6CE8EF4AD69B15D4982559B297BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976 
EAA9AFD5138FE8376435B9FC D2FC0EB06E3", 16); 61   
$this - > g =  new   BigInteger("2",16);   
$this - y =  > new   BigInteger( strtoupper $_y)); (   
$this - > c = $_c;   
$this - z =  > new   BigInteger($_z);   
$this - _authenticate(); >   
}   
  
public   function   setY($_y){   
     $this - > y =  new   BigInte ger($_y);     
}   
  
public   functio n   setC($_c){   
     $this - c = $_c; >   
}   
  
public   function   setZ($_z){   
     $this - > z =  new   BigInteger($_z);   
}   
  
public   function   _authenticate(){   
  
     $bigC =  new   BigInteger($this - > c, 16);   
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    $ty = bcadd($t, $this->y);  

      

  
  

?>  

     

     $hash = $this - > hash ( $ty);   
     if ( $hash == $this - > c ){   
         echo   "<br>You succesfully Authenticated";   
     }   
  
}   
  
public   function   hash ( $x)  {   
     return   strtolower ( hash ( 'sha256', $x));   
}   
  
}   
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Listing 5.6 SHA256 Hashing Code Sample  

/**  
 *  
* Secure Hash Algorithm (SHA256)  
* http://www.webtoolkit.info/javascript-sha256.html  
* http://anmar.eu.org/projects/jssha2/  
 *  
* Original code by Angel Marin, Paul Johnston.  
 *  
 **/  function 

SHA256(s) {  
   var chrsz = 8;   

var hexcase = 0;  

  
  function safe_add(x, y) {     var lsw = (x & 

0xFFFF) + (y & 0xFFFF);     var msw = (x >> 16) + 

(y >> 16) + (lsw >> 16);     return (msw << 16) | 

(lsw & 0xFFFF);  
  }  
   function S(X, n) 

{  
    return ( X >>> n ) | (X << (32 - n));  
  }    function R(X, n) 

{     return ( X >>> n 

);  
  }  
   function Ch(x, y, z) {     

return ((x & y) ^ ((~x) & z));  
  }  

  
  function Maj(x, y, z) {  
    return ((x & y) ^ (x & z) ^ (y & z));  
  }   
  function Sigma0256(x) {  
    return (S(x, 2) ^ S(x, 13) ^ S(x, 22));  
  }  

  
  function Sigma1256(x) {  
    return (S(x, 6) ^ S(x, 11) ^ S(x, 25));  
  }   
  function Gamma0256(x) {  
    return (S(x, 7) ^ S(x, 18) ^ R(x, 3));  
  }   
  function Gamma1256(x) {  
    return (S(x, 17) ^ S(x, 19) ^ R(x, 10));  
  }  

  
  function core_sha256(m, l) {  
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    var K = new Array(0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 

0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01,  
0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,  
0xE49B69C1, 0xEFBE4786, 0xFC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA,  
0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,  
0xC6E00BF3, 0xD5A79147, 0x6CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138,  
0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,  
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624,  
0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,  
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F,  
0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2);     

var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,  
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19);     

var W = new Array(64);     var a, b, c, d, e, f, 

g, h, i, j;     var T1, T2;  
     m[l >> 5] |= 0x80 << (24 - l % 

32);     m[((l + 64 >> 9) << 4) + 15] = 

l;  

  
    for (var i = 0; i < m.length; i += 16) {       

a = HASH[0];       b = HASH[1];       c = 

HASH[2];       d = HASH[3];       e = 

HASH[4];       f = HASH[5];       g = 

HASH[6];       h = HASH[7];  

  
      for (var j = 0; j < 64; j++) {         

if (j < 16) {  
          W[j] = m[j + i];  
        }         

else {  
          W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]),  
Gamma0256(W[j - 15])), W[j - 16]);  
        }  

  
        T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, 

g)), K[j]), W[j]);  
        T2 = safe_add(Sigma0256(a), Maj(a, b, c));  
         h = g;         g = 

f;         f = e;         e 

= safe_add(d, T1);         d 

= c;         c = b;         

b = a;  
        a = safe_add(T1, T2);  
      }  

  
      HASH[0] = safe_add(a, HASH[0]);  
      HASH[1] = safe_add(b, HASH[1]);  
      HASH[2] = safe_add(c, HASH[2]);  
      HASH[3] = safe_add(d, HASH[3]);  
      HASH[4] = safe_add(e, HASH[4]);  
      HASH[5] = safe_add(f, HASH[5]);  
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      HASH[6] = safe_add(g, HASH[6]);  
      HASH[7] = safe_add(h, HASH[7]);  
    }  
    return HASH;  
  }  
   function str2binb(str) {     

var bin = Array();     var mask 

= (1 << chrsz) - 1;  
    for (var i = 0; i < str.length * chrsz; i += chrsz) {  
      bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i % 32);  
    }     

return bin;  
  }    function 

Utf8Encode(string) {  
    // METEOR change:  
    // The webtoolkit.info version of this code added this  
    // Utf8Encode function (which does seem necessary for dealing     

// with arbitrary Unicode), but the following line seems  
    // problematic:  
    //  
    // string = string.replace(/\r\n/g,"\n");     

var utftext = "";  

  
    for (var n = 0; n < string.length; n++) {  

  
      var c = string.charCodeAt(n);  

  
      if (c < 128) {  
        utftext += String.fromCharCode(c);  
      }  
      else if ((c > 127) && (c < 2048)) {         

utftext += String.fromCharCode((c >> 6) | 192);         

utftext += String.fromCharCode((c & 63) | 128);  
      }       

else {  
        utftext += String.fromCharCode((c >> 12) | 224);         

utftext += String.fromCharCode(((c >> 6) & 63) | 128);         

utftext += String.fromCharCode((c & 63) | 128);  
      }  

  
    }   
    return utftext;  
  }  

  
  function binb2hex(binarray) {  
    var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";     

var str = "";  
    for (var i = 0; i < binarray.length * 4; i++) {  
      str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) &  
0xF) +  
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        hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8  )) & 0xF);  
    }     

return str;  
  }   
  s = Utf8Encode(s);  
  return binb2hex(core_sha256(str2binb(s), s.length * chrsz));  

  

}  

5.9 Strength of Stealth Obfuscation ZKP  

The strength of our protocol is based on the strength of the discrete logarithm problem. The 

protocol will be able to solve the problem of user authentication over unsecure networks. During 

authentication, a user submits his public key and private key for authentication hence no other 

knowledge of the password is known. On unsecure networks, data sniffed would not reveal 

anything much about the user’s secret key hence it cannot be replayed for another authentication 

session. The intractability of discrete logarithms and its easy implementation makes it a better 

candidate over Visual Cryptography, Pairing based Cryptography and Elliptic Curves for Zero 

Knowledge Proofs (Scott, n.d.) (Sahl, Samsudin, & Letchmunan, 2014).  

5.10 Conclusion   

With the defined problems addressed in this research, we can implement our zero knowledge proof 

scheme code-named Stealth Knowledge Authentication for devices with minimal computational 

resource. With HTTPS providing a secure transmission of authentication details and our Javascript 

assets files, we implement it to protect user details before and after transmission.  

Although our implementation requires JavaScript which is supported by most browsers, some 

users disable it which would prevent it to run on such systems and also the authentication scheme 

is not multi – factor, which would make it susceptible to attack when the user’s secret keys are 

known. Our implementation also doesn’t follow the classical Zero Knowledge Proof  

Authentication’s Challenge – Response round hence there could be a slight chance of a cheating 

verifier proving him or herself as an honest verifier hence Ajax and Sockets could be used to implement 

it hence reducing it iterating challenges.  
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CHAPTER 6  

RESULTS ANALYSIS   

6.0 Introduction  

The architecture having gone through development and implementation at the Lab was required 

of it to undergo a series of evaluation to identify the extent to which the objectives of the 

framework has been achieved. There was therefore the need to develop a prototype of the 

architecture using bare Debian kernel with a retrofit of the architecture modified in its kernel to 

begin the test experiment (Pourzolfaghar et al, 2011).  

6.1 Evaluation  

The architecture was made to undergo several comparative testing to establish the effectiveness of 

the architecture against its specified objectives. Evaluation on the architecture was carried out 

under the following parameters:  

✓ Security Testing of the User Interface. Figure 6.1 – Figure 6.4  
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Figure 6.1 Security Testing of the User Interface  

  

Figure 6.2 Tamper Popup  

  

  



 

 110  

  

Figure 6.3 Tamper with request  

  

Figure 6.4 Tamper Popup with encrypted Password  

The results show that, the actual password is hidden even after using software to intercept the http 

form request as this Man-in-the-Middle attack makes several protocols authentications vulnerable. 

A sample code of the program that implements the Stealth Obfuscation zero knowledge 

Authentication is also as shown in figure 6.5.  
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Figure 6.5 Code snippet  

  

✓ Scalability Testing  

✓ CPU Utilization  

Sysbench  

SysBench is a modular, cross-platform and multi-threaded benchmark tool for evaluating OS 

parameters that are important for a system running a database under intensive load. After the 

prototype was taken through the test, the performance was appreciate compared with the generic 

kernels. The statistics as shown in figure 6.6.   
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Figure 6.6 CPU System Benchmark  

  

  

  

  

DD Benchmark  

The dd benchmark command was carried out on the prototype while CPU stress testing 

benchmarks were still on going. The essence of the DD command is to provide simple sequential 

I/O performance measurements. The report of the analysis showed an appreciable output 

compared with the generic values as shown in figure 6.7 and figure 6.8.  
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Figure 6.7 DD Benchmark  

  

Figure 6.8 DD CPU  

  

  

IPERF CPU  
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The network speed test of the architecture was also tested using the IPERF benchmark tool. The 

output of the analysis produced a very impressive output where the architecture could generate 

between 26.7GBytes to 30.9 GBytes of bandwidth as shown in figure 6.9.   

  

  

Figure 6.9 IPERF CPU 2  

  

  

With these parameters in mind, a lab was setup to analyze the architecture using a TrendOS 

prototype which has the Convoluted Kernel Architecture (CKA) up against a Generic Kernel 

Architecture (GKA) to identify the performance level between the two. The GKA is a bare kernel 

architecture configured in the same manner as the TrendOS to run same applications and services 

(Srinivasan et al., 2009, Mallet et al, n.d.).  

6.1.1 Scalability Testing   

Scalability testing was carried out to determine the maximum user load the various programming 

applications could support. In view of this, the prototype architecture was taken through series of 

scalability testing. The initial result shows that, as more applications are added to the server, CKA 
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improves on performance as compared with the GKA which comparatively declines very sharply 

(Butler-Kisber, 2013).  

 The summary of the experiment as shown in figure 6.10  

  

  

Figure 6.10 Scalability Testing CKA and GKA  
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.1.2 CPU Utilization  

The CPU’s resource processing unit of the architecture was also tested. The benchmark technique 

used to gauge the system performance as the tasks assigned to the system increases. The result 

from the two architecture also shows a comparative reduction in of CKA CPU utilization as 

compared with the GKA. The result is shown in Figure. 6.11.  

   

  

Figure. 6.11 CPU Utilization performance of CKA and GKA  
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.1.3 Memory utilization  

With respect to memory utilization, the initial memory required to read the architecture is usually 

greater than the other generic kernel. However, the results shows that, the system becomes almost 

equivalent and even more efficient at a later stage as compared with other generic Linux kernel as 

shown in Figure. 6.12  

  

  

Figure. 6.12 Memory Utilization performance between CKA and GKA  
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.1.4 Operating System Limitations   

The key advantage of this architecture over most other architecture is that, the system is able 

function more efficiently under a certain amount of threshold persistently. However, when the 

server is idle, it rather use more resources compared with other generic architecture (Welsh et al, 

2003). The result is as shown in figure 6.13  

   

  

  

Figure. 6.13 Operating System Limitation between CKA and GKA  
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.1.5 Virtualization Techniques   

A comparative study of the various virtualization techniques adopted to identify which one is more 

efficient shows that, the use of virtual private servers in our framework seem to be the best option 

as compared with the Linux Kernel’s own internal Kernel Virtual Machine (KVM) technology 

and even worse when implemented on the Hypervisor Virtual Machine (HVM) (Burgess et al., 

2009).  

Therefore it is concluded that the convoluted architecture’s framework is more efficient as compared 

with the other two virtualization technologies as shown in figure 6.14  

  

Figure. 6.14 Forms of Virtualization Techniques available against the method adopted  
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6.1.6 Performance Throughout  

The server level throughput was considered to be more efficient with shorter response time when 

the load on the server was increased as compared with the other generic kernels as shown in figure 

6.15  
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Figure. 6.15 Performance Throughput of CKA against GKA  

  

6.2 Further Performance Analysis   

Further analyzes on the architecture also found that, the security of the architecture is further 

enhanced in several modes. One of such areas has to do with the authentication level of the 

architecture. The Stealth-Obfuscation Zero Knowledge Authentication algorithm as elaborated in 

chapter four is retrofitted into the Linux’s own Portable Authentication System (PAM) which 

forms an interface layer for the entire utilities and applications which is attempts to access services 

from the kernel. This helps address the challenges of remote scripts codes that attempts to steal 

passwords and PIN’s from browsers because of the protection mechanisms it provides (Linux et 

al, n.d.).  
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The architecture creates and runs its services on virtual services that when the system detects has 

been compromised, is able to restore itself and any attack on the server does not affect the core 

kernel of the base architecture. The High Availability technique also ensures that through the 

heartbeat architecture, runs a parallel service which guarantees availability of the service at all 

times (Platform, 2015).  

  

6.3 Summary of the Experiments  

The experiments show a good performance of the Convoluted Architecture as against the other 

generic kernels only when the load on the server is high. The explanation to these results is as a 

result of the fact that the system runs other services in the background to guarantee availability of 

services at all times. It is also realized that multiple virtual services are easily created after the 

initial ones which supports any increase in the loads whenever it becomes indispensable to have 

the system running at optimal capacity.  

  

  

    
CHAPTER 7  

DISCUSSION AND CONCLUSION  

7.0 DISCUSSION  

7.1 CONTRIBUTION TO KNOWLEDGE  

• The design of a novel OS Kernel Architecture to enhance the security of the core kernel against 

internal threats and attacks.  

• The use of a kernel integrated UTM within an OS level virtualization.  
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• To identify the extent to which the performance of monolithic kernels could be improved via 

the use of High Availability (HA) techniques and OS level virtualization.  

• The development of the Stealth Obfuscation Zero Knowledge Proof to be integrated in the 

PAM.  

• The design of a prototype Operating System to integrate the Kernel Architecture to simulate 

the model.  

7.2 CONCLUSION  

This thesis presented the convoluted Kernel Architecture as a new framework in monolithic kernel 

development approach. This framework which provides a robust security and protection 

mechanism in ensuring that kernel is built on two principal approach on security and availability. 

The architecture also addresses the challenges of malware that exploits a kernel should in case all 

other approaches fail. This leads to a novel area of kernel development referred to as intra-kernel 

protection mechanism. The research also creates a highly modified version of the zero knowledge 

authentication referred to as the “Stealth-Obfuscation Zero Knowledge Proof Algorithm”. This 

algorithm enforces itself on all applications within the commodity operating system that requires 

some level authentication during their execution to provide a secured environment.  

In as much as it could be argued that, some level of architecture modification has been developed 

over the past decades, it is equally clear that in most instances, some significant improvement in 

the overall security of the architecture is usually witnessed. This work even goes far by not just 

enhancing the security of the architecture but also integrating the framework with Virtual Private 

Service architecture to provide High Availability technique as part of its core operation. Its original 

goal is to enhance the performance of severs during their peak. The architecture improves the load 

balancer of the kernel integrated into its framework.    

One of the novel techniques in this architecture that makes it even more innovative is its integration 

with Unified Threat Management (UTM) which has been hitherto positioned at a gateway section 

of a network. The findings of the Kernel integrated UTM showed that the internal architecture is 
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even more protected from applications running on the operating system as well as the protection 

of the Kernel against itself (Welsh et al., 2003).  

Further study of the various Kernel architectures as well as Frameworks were also investigated. 

Even though most of them improved the existing security of those architecture, they however did 

not allow other security modules to run concurrently. Many of these security modules were only 

focused on the Mandatory Access Control (MAC) and moreover did not concurrent on other 

security options. The proposed architecture however, allows concurrent execution of the diverse 

security modules and also focused on High Availability to ensure the server is not easily attacked 

by Denial of Service attack (Kurmus, et al, 2011).  

Finally, the various benchmark tools implemented on the prototyped Convoluted Kernel 

Architecture as well as other generic kernels suggested that, the proposed system works more 

optimally when the server is kept busy over a period of time as compared with the other kernels. 

However, when the system is kept in idle state, the performance is not optimal and therefore is 

recommended on servers.  

7.3 Future work   

Even though systems and network engineers are mostly interested in servers that could have good 

performance especially when the load is very high, it was however unexpected that the system 

rather performs more efficiently when the load is rather high and almost same or less when the 

load is at its normal interaction. It is however envisaged that future work must look at how the 

system could switch between two modes that could support an idle server environment and switch 

back to the proposed mode when the server network becomes busy.  
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FIGURES  

  

    

  

Figure 2.1 Linux security module architecture (Source: Wright et al, 2003)  
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Figure 2.2. Overview of GFAC Architecture (Source: Karlsson, 2010)   

  

  

Figure 2.3. Overview of FLASK architecture (Source: Karlsson, 2010)   
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Figure 2.4. Domain and Type Enforcement (Badger et al, 1995)   

  

Figure 2.5. Role Based Access Control Source: (Fernandez, Pernul, & Larrondo-Petrie, 2008)  
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Figure 2.6. Overview of SELinux (Source: Karlsson, 2010)  
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Figure 3.1 Design Methodology Flow Chart (Source: Colin, 2005).  
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Figure 3.2 Data Structures Source: (Steven & Rago, 2005)  
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Figure 3.3 Kernel File System Data Structure Source: (Steven & Rago, 2005)  

  
  

Figure 3.4. The Process Table Source: (Steven & Rago, 2005)  
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Figure 3.5. The File Table Source: (Steven & Rago, 2005)  

  
  

Figure 3.6. The v-node and i-node Source: (Steven & Rago, 2005)  
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Figure 3.7. Standard File Descriptors Source: (Steven & Rago, 2005)  

  

  

Figure 3.8 Kernel Configuration  

  



 

 145  

  

Figure 3.9 Configuration environment  
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Figure 4.2. Monolithic Design  
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Figure 4.3. Convoluted Kernel Architectural Design  

 

  

Figure 4.4. Heartbeat architecture of the of the Convoluted Architecture  
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Figure. 4.5. Simplified High Availability (HA) Source (Manual et al., n.d.).  
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Fig. 4.6 Expanded Unified Threat Management  
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Fig. 4.7 The LXC design in the Architecture  

  

Fig. 4.8 Privilege Separation of the architecture 



 

 153  

  

  

  

Figure 4.9 Kernel deployment into the architecture  
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Figure 4.10. Loading of the various security and driver modules into the kernel.  
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Figure 4.11 modifying the generic kernel to suit the convoluted kernel Architecture  

  

Figure 4.12 Integrating redundant security modules to protect the kernel against itself.  



 

 157  

  

  

Figure 4.13 Building the various files and integrating into inbuilt protocols for compatibility.  
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Figure 4.14 Good user friendly installation experience 
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Figure 4.15 Step by step system Installation guide.  
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Figure 4.16. Adopts to minimum hardware resource.  
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Figure 4.17. Minimum load system resource utilization.  
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Figure 4.18 Support for multiple server instances running on same system – Linux containers.  
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Figure 4.19 Live backup systems for High Availability.  

 
  

Figure 4.20 Minimum CPU and Memory utilization.  
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Figure 6.1. Security Testing of the User Interface  

   



 

 167  

  

Figure 6.2. Tamper Popup  

   

Figure 6.3. Tamper with request  
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Figure 6.4. Tamper Popup with encrypted Password  

   

Figure 6.5. Code snippet  
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Figure 6.6. CPU System Benchmark  
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Figure 6.7. DD Benchmark  
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Figure 6.8. DD CPU  
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Figure 6.9. IPERF CPU 2  
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Figure 6.10. Scalability Testing CKA and GKA  
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Figure. 6.11. CPU Utilization performance of CKA and GKA  
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Figure. 6.12 Memory Utilization performance between CKA and GKA  
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Figure. 6.13 Operating System Limitation between CKA and GKA  

  

Figure. 6.14 Forms of Virtualization Techniques available against the method adopted   
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Figure. 6.15. Performance Throughput of CKA against GKA  
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Figure 6.10. Cgroup CPU Usage (Phoronix 3)  
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Figure 6.11. Hardinfo Memory  

  

Figure 6.12. Hardinfo Memory 2  
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Figure 6.13. Hardinfo Memory 3  

  

  

Figure 6.14. Global kernel and System load average usage  
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Figure 6.15. Filesystem usage and I/O activity  

  

Figure 6.16. Drive Read Speed  
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Figure 6.17. Drive Write Speed  

  

Figure 6.18. System Bench  
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Figure 6.19. HD PARM  

  

Figure 6.20. GLX Gears  
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Figure 6.21. Pipe Bench  

  

  

Figure 6.22. Stress  
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Figure 6.23. Devices Interrupt Activity  

  

  

  

Figure 6.24. Netstat statistics  
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Figure 6.25. Trend-OS 2.0  
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