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Characterization of complex 
fluvio–deltaic deposits in Northeast 
China using multi‑modal machine 
learning fusion
Cyril D. Boateng  1,2*, Li‑Yun Fu1* & Sylvester K. Danuor3

Due to the lack of petroleum resources, stratigraphic reservoirs have become an important source of 
future discoveries. We describe a methodology for predicting reservoir sands from complex reservoir 
seismic data. Data analysis involves a bio-integrated framework called multi-modal machine learning 
fusion (MMMLF) based on neural networks. First, acoustic-related seismic attributes from post-
stack seismic data were used to characterize the reservoirs. They enhanced the understanding of 
the structure and spatial distribution of petrophysical properties of lithostratigraphic reservoirs. The 
attributes were then classified as varied modal inputs into a central fusion engine for prediction. We 
applied the method to a dataset from Northeast China. Using seismic attributes and rock physics 
relationships as input data, MMMLF was performed to predict the spatial distribution of lithology in 
the Upper Guantao substrata. Despite the large scattering in the acoustic-related data properties, 
the proposed MMMLF methodology predicted the distribution of lithological properties through the 
gamma ray logs. Moreover, complex stratigraphic traps such as braided fluvial sandstones in the 
fluvio–deltaic deposits were delineated. These findings can have significant implications for future 
exploration and production in Northeast China and similar petroleum provinces around the world.

The era of easily discoverable and accessible petroleum is over, and geologically complex reservoirs are turning 
to be the most important sources of petroleum. These reservoirs are typically heterogeneous with significant 
spatial variations in lithology1. Therefore, improving the methods of reservoir characterization using geophysi-
cal data can be beneficial for exploration and production. However, this challenge is not easy due to the general 
inefficiency of geophysical inverse problems within the framework of information theory2. The challenge in 
characterizing such reservoirs is to deal with accurate inter-well correlation of major units, while simultaneously 
delineating subtle details for enhanced oil recovery and reservoir management. Furthermore, reservoir property 
estimation is usually dependent on seismic inversions, which include inherent ambiguity due to limitations 
linked with discrete data sampling locations, noise contamination, and modeling imperfections. Additionally, 
even though seismic attributes have been used in some form of predictive capacity in reservoir characterization 
and are common in most commercial software, a fact often ignored is whether there is a physical relationship 
between the seismic elastic properties and rock properties.

Over the past decades, advances in data-based predictive statistics for pattern recognition have created new 
approaches to constraining reservoir property estimation problems3. For instance, previous researchers have 
established that extracted seismic attribute information4 can be used as input features to predict and character-
ize hydrocarbon reservoirs via predictive neural network transforms5–7. In a typical workflow, a data-driven 
statistical transform correlates seismic data with well-logging data, recognizing the need for seismic attributes 
corresponding to relevant geologic features of interest8. Seismic attributes have also been utilized qualitatively 
to characterize depositional environments9. New developments in attribute technology such as complex trace 
attributes10, response attributes11, and coherence attributes12 have become an integral part of seismic interpreta-
tion workflow. They have been successfully applied in both prediction6,13 and facies classification14,15. However, 
the outstanding challenge is what to do in situations where only post-stack seismic volumes are available, but 
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the relationships between compressional velocity and target reservoir properties exhibit a high degree of scat-
tering at the borehole scale.

Recent advances in multi-modal input technology for predictions in the fields of computer vision, e-com-
merce, health informatics, and other advanced artificial intelligence applications may be beneficial in this 
regard16–21. The availability of large amounts of data and computing resources have resulted in the resurgence 
of data-driven machine learning techniques for the problems where conventional physics-based modeling is 
deficient20,21. For example, Moreb et al.19 used real-world data from a hospital in Palestine to apply a new frame-
work that combined software engineering and machine learning for predicting health informatics. Another 
notable example is the assessment of seismic hazards, where the challenging problem of pinpointing small 
earthquakes (ML < 3.0) was addressed with a convolutional network that distinguished between certain events 
in a target zone22. Extensive experiments have further demonstrated that multimodal learning using visual 
images and remote sensing data can perform more accurate classification of large-scale bathymetric maps23. 
Basically, the additional modalities act as constraints on the prediction mechanism. In reservoir characterization, 
multi-attribute transforms were employed in both linear and nonlinear modes with stratigraphic constraints to 
improve the predictability of reservoir properties in the Bacon Field24. It has also been shown that acoustic and 
density well logs can be applied as constraints in predicting porosity from 3D seismic data25. Machine learning 
transforms such as linear weighted fusion, support vector machines (SVMs), Bayesian inference, artificial neural 
networks26, and Kalman filters can be used to drive the fusion of input features27.

In this paper, we proposed to apply a new algorithm called multi-modal machine learning fusion (MMMLF) 
to reservoir characterization in the Bohai Bay Basin in Northeast China. The basin is a petroleum province con-
taining fluvio–deltaic continental deposits with complex reservoirs28,29. The Bohai Bay Basin is one of the largest 
and continuously explored regions in China30.

Results
Geological characterization and data.  The Bohai Bay Basin is a prolific petroleum province in North-
east China, consisting of various rift-controlled sub-basins. Figure 1 shows the geological map of the Bohai Bay 
Basin in Northeast China and a schematic cross-sectional view of the study area. The map in Fig. 1a shows the 
locations and boundaries of basins and deposits of different geological periods. Petroleum source rocks are the 
Paleogene lacustrine black shale and mudstone unit of Shahejie Formation30. Conversely, the main reservoir 
rocks of the system consist of the Paleogene and Neogene sandstones of nonmarine origin, clearly interbedded 
with lacustrine black shale and mudstone source rocks30,31. Sandstone reservoirs are deposited in the form of del-
taic and fluvial sequences adjacent to the lakes in the center of sub-basins, and in the form of turbidite sequences 
in the central parts of the lakes. In this paper, we focused on the lithostratigraphic traps present in the study area, 
which consist of facies change, unconformity, and stratigraphic onlap varieties. They are complex and difficult to 
delineate. These traps were formed by the end of the Eocene, but optimal trapping conditions were probably not 
established until the lateral and top seals were deeply buried during the Oligocene.

Figure 1b shows various formations, lithology, and the substrata containing oil or gas. The target reservoir is 
a sandstone layer included in the Upper Guantao strata. The primary sandstones are characteristically braided 
fluvial sandstones. The lithologies of the formations included conglomerates, sandstones, and mudstones. Their 
porosity values ranged from 30 to 32%. The data available for analysis were borehole logs and post-stack 3D 
seismic volumes. We use gamma ray logs to represent lithology. The most easily accessible structural faults and 
anticlinal traps previously explored are in production and are approaching maturity. Discovering new oil and 
gas reservoirs requires delineating subtle stratigraphic traps.

However, before applying the seismic data to the delineation of subsurface features, it is essential that the data 
be sufficiently noise-free. This was done to ensure that the signal-to-noise ratio of the seismic data is adequate and 
that the seismic response predominantly reflects the sediments in the target area. For this purpose, we applied an 
advanced post-stack processing algorithm. Figure 2 shows the effect of the filtering algorithm. The filtered and 
unfiltered seismic volumes are compared in Fig. 2a,b. An improvement in the continuity and clarity of the filtered 
seismic volumes was observed. Therefore, the signal-to-noise ratio (SNR) of the seismic data was improved.

Seismic attributes and structural characterization.  Seismic attributes, mathematical transforms of 
seismic data9, were used to characterize the stratigraphic features of the Upper Guantao sub-formation. For 
example, complex trace attributes10 have been used to highlight lithological changes. Figure 3a shows the com-
plex trace attributes of instantaneous amplitude and frequency. The instantaneous amplitude attribute measures 
the reflection strength and indicates the depositional environment. In the figure, the high-amplitude zones are 
interpreted as braided fluvial sandstones interbedded as lenses. Therefore, changes in amplitude are correlated 
with lithological changes. The image at the bottom of Fig. 3a shows the instantaneous frequency attribute that 
can be used as an indicator of bed thickness. Here, high frequencies are interpreted as thinly-laminated shales, 
while low frequencies indicate massive bedding geometries, such as sand prone lithologies. The consistency of 
high-amplitude and low-frequency zones enhanced the interpretation of braided fluvial sandstone.

To better understand the extent and distribution of the fluvial sandstones, we took advantage of the spectral 
decomposition attributes. It is an efficient tool for identifying paleo-geomorphological features and revealing 
stratigraphic information along an interpreted horizon33. This method transforms the seismic data into the 
time–frequency domain using the Fourier transform technique to show the sand thickness by accentuating the 
channel features. Three iso-frequency bands of 30, 40, and 50 Hz were extracted and combined with Red Green 
Blue (RGB) blending. Figure 3b shows the iso-frequency band maps and RGB blended layer map along the Upper 
Guantao layer. Tuning cube frequencies of 30, 40, and 50 Hz captured the subtle physical changes and revealed 
depositional features. High-amplitude regions appeared as bright zones with channel-like shapes on the spectral 
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decomposition maps. The sand channels can be clearly identified in the 30, 40, and 50 Hz iso-frequency maps. 
In the RGB blended image (bottom right of Fig. 3b), a complex system of channels at the top of the map shows a 
trend from southwest to northeast. The location of the channel complex was consistent with the interpretation of 
braided fluvial sandstones as sand lenses. Finally, the similarity attribute was also applied to the Upper Guantao 
layer to further understand the spatial distribution of fluvial sands and discontinuity boundaries in the study 
area. Similarity is a post-stack seismic attribute that returns the trace-to-trace similarity properties. Also known 
as coherence, it shows to what extent two or more traces are completely identical in waveform and amplitude12. 
Stratigraphic boundaries are associated with low similarity values. Figure 3c shows the Upper Guantao layer 
similarity attributes. The discontinuity boundaries of the channel complex were clearer and enhanced on the 
similarity attribute image. Moreover, the previously observed sandstone lenses were clearly identified by complex 
trace and spectral decomposition attributes.

Figure 1.   (a) Geological map of the Bohai Bay Basin in Northeast China and (b) schematic cross section of the 
stratigraphy of the study area. (Modified from Boateng et al.32).
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Rock physics trends.  The seismic reflection response depends on the acoustic impedance contrasts 
between subsurface layers. To determine lithology and reservoir parameters from post-stack seismic data, a 
complete understanding of the relationship between lithological logs and acoustic properties is required. In the 
study area, there were two boreholes (X1 and X2) with acoustic logs, acoustic impedance, and gamma ray logs 
that represented lithology. The two boreholes were the sampling locations where the data was sampled vertically. 
Cross-plots of acoustic velocity against gamma ray and acoustic impedance against gamma ray for the Upper 
Guantao layer are shown in Fig. 4a,b, respectively. In Fig. 4a, there is an inverse relationship between p-velocity 
and gamma ray (i.e., negative correlation coefficient). High gamma ray shales clustered at low velocities. Dry 
fluvial sandstones with moderate gamma ray values clustered around intermediate velocities, while wet fluvial 
sandstones had higher p-velocities. Therefore, acoustic velocity can identify sandstone reservoirs, although there 
is uncertainty due to large data scattering. Figure 4b shows a plot between acoustic impedance and gamma ray in 
the Upper Guantao layer, using data from Wells X1 and X2. The plot indicates an inverse relationship (i.e., nega-
tive correlation coefficient) between gamma ray and acoustic properties. Large scattering between the acoustic 
properties of the formation and the gamma ray logs can lead to estimation ambiguity in the predictive algorithm. 
However, based on the observations from cross-plots, seismic attributes calculated from post-stack seismic vol-
umes can predict the lithological properties.

Lithological prediction by multi‑modal machine learning fusion (MMMLF).  In this section, the 
spatial distribution of lithology is determined by running a gamma ray prediction using MMMLF. Details are 
provided in the Materials and Methodology section. Input features are different modes of seismic data that are 
extracted as seismic attributes. Of the total number of input attributes generated, those relevant to prediction 
were seismic inversion, instantaneous amplitude, and 30 Hz iso-frequency attribute. Table 1 shows three main 
seismic attributes with the best correlations to gamma ray logs. The three attributes were obtained through 
stepwise regression. The input seismic attributes were fused in the neural network fusion engine to predict the 
spatial distribution of gamma rays.

The fusion mechanism was performed by using a supervised neural network to establish a nonlinear rela-
tionship between the seismic response and reservoir property of interest (gamma ray). The neural network is 
a fully connected multilayer perceptron with one hidden layer. Backpropagation with momentum and weight 
decay was utilized as a learning algorithm in the execution of the fusion engine. The workflow is explained in 
the Materials and Methodology section. For each well, a single composite trace was extracted from the relevant 
seismic attribute volume by averaging the nine nearest traces around the borehole. The gamma ray logs were 
converted from depth to time and sampled at the same sampling rate as the seismic data.

Finally, the learned MMMLF was applied to gamma ray inversion using the seismic attributes as input. 
Figure 5a shows an inverted lithological volume intersecting Well X1. This is the cross-validated result from a 
random profile from the inverted volume. Potential stratigraphic traps containing a combination of saturated 
sands (in blue color) and shale seal (in red color) are observed in the image. It was also observed that the gamma 
ray logs from Well X1 were in good agreement with the lithological volume. Figure 5b compares the predicted 
gamma ray log for Well X1 with the actual gamma ray log. The correlation coefficient between the actual gamma 
ray log and the predicted gamma ray log was 0.7, and the RMSE value was 5.93. The predicted gamma ray from 
the MMMLF algorithm shows significant correlation with the actual gamma ray given the lack of a clear relation-
ship at borehole scale and only two boreholes as training data. Therefore, the MMMLF algorithm successfully 
predicted the lithological distribution in the Upper Guantao layer. It also indicated that the MMMLF algorithm 

Figure 2.   Effects of seismic filtering algorithm in (a) raw seismic profile and (b) filtered seismic profile.
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Figure 3.   Seismic attributes extracted along the Upper Guantao layer: (a) instantaneous amplitude and 
instantaneous frequency, (b) spectral decomposition attributes (upper left: 30 Hz iso-frequency map; upper 
right: 40 Hz iso-frequency map; bottom left: 50 Hz iso-frequency map; bottom right: RGB blended horizon 
map), and (c) similarity attribute.
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was able to estimate gamma ray properties beyond the boreholes. The prediction results significantly helped to 
characterize the sandstone reservoirs in Northeast China. To test the robustness of the MMMLF methodology, 
the popular SVM algorithm was applied to the same reservoir property problem and the results are shown in 
Table 2. Table 2 compares the prediction results for MMMLF and SVM using the correlation coefficient and 
Root-Mean-Square Error (RMSE). Even though the RMSEs of the two algorithms were similar, the correlation 
coefficient of the MMMLF prediction was higher than the SVM prediction.

One of the advantages of utilizing multi-modal inputs over the single inputs in machine learning predictive 
algorithms is the superadditive effect. To observe this effect, we attempted to use individual seismic attributes in 
the prediction algorithm. This essentially simulates uni-modal prediction. The individual seismic attributes con-
sist of instantaneous amplitude attribute and seismic inversion attribute. Uni-modal predictions were performed 
using individual seismic attributes and the results are shown in Fig. 6. Figure 6a shows the predicted gamma 
ray from the instantaneous amplitude input versus actual gamma ray. Figure 6b shows the predicted gamma 
ray from the seismic inversion input versus actual gamma ray for Well X1. The correlation coefficients from the 
predicted gamma ray logs were 0.23 and 0.15 for the instantaneous amplitude input and the seismic inversion 
input, respectively. It was understood that none of the single modes could successfully predict the lithological 

Figure 4.   (a) P-velocity versus gamma ray for Wells X1 and X2 and (b) P-impedance versus gamma ray for 
Wells X1 and X2.

Table 1.   Three main seismic attributes with the best correlations to gamma ray logs.

Seismic attribute RMSE

Seismic inversion 4.20

Instantaneous amplitude 6.09

30 Hz iso-frequency 7.40
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distribution independently, leading to poor predictions. Therefore, comparing the multi-modal and uni-modal 
prediction algorithms in this case study, it can be said that MMMLF enhances the ability of the fusion engine to 
predict due to the superadditive effect.

Discussion and conclusion
We proposed a multi-modal machine learning fusion to predict the spatial distribution of reservoir properties 
and applied the method to delineate a fluvio–deltaic sandstone reservoir and stratigraphic traps in an oilfield in 
the Bohai Bay Basin, Northeast China. Our findings suggested that the multi-modal machine learning fusion 
technique enhanced the prediction of lithological distribution in the Upper Guantao layer. Furthermore, our 
results showed that multi-modal inputs were more effective in prediction algorithms than uni-modal input pro-
cesses. The process captures multi-modal sensory information from the subsurface in a bio-integrated framework 
for intermediate-level decisions that can provide complementary information. Furthermore, the accuracy of the 
final prediction is improved. Petrophysical properties are difficult to predict, and sufficient input features are 
required to limit the number of degrees of freedom, especially in complex fluvio-deltaic environments. Our find-
ings correspond to previous results6 regarding the effectiveness of multi-modal approach in predicting reservoir 
properties for characterizing a reservoir. In certain case studies, uni-modal inputs were adequate for predicting 
reservoir properties. In a case study34, acoustic impedance was used to predict the porosity of Eagle Ford shale. 
We consider these results reasonable given the study area (144.11 km2) covered by the data and the algorithm 
was trained on data from two wells. To further improve the results in future studies, additional sampling loca-
tions in the form of boreholes are required for training the machine learning algorithm. Nevertheless, this study 
shows that the MMMLF algorithm is a promising method for processing large amounts of data in oilfields and 

Figure 5.   Comparing actual gamma ray and predicted gamma ray using cross-validation results: (a) inverted 
gamma ray section for random profile section intersecting Well X1 and (b) predicted gamma ray versus actual 
gamma ray for Well X1.

Table 2.   A comparison of prediction results for MMMLF and SVM algorithm results in terms of the 
correlation coefficients and RMSEs.

ML algorithm R RMSE

MMMLF 0.7 5.93

SVM 0.5 5.33
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identifying potential oil pools for production, which is a challenging task in petroleum exploration. The limita-
tion of this method is selecting a representative depth interval for training the dataset. This should be done with 
caution as the machine learning algorithm fails to make accurate predictions if the relevant depth section is not 
selected. Therefore, in the preprocessing step, the target interval must be carefully selected. Furthermore, if the 
number of independent well measurements is small35, the probability of observing false sample correlations 
between seismic attributes and well data can be high. To implement our algorithm, cross-validation was applied 
to ensure there were no false correlations, as shown in Fig. 5. We also demonstrated the superadditive effect, 
which suggests that multi-modal input predictions perform better than uni-modal input predictions.

In this application, there are three layers in the neural network fusion engine used in the multi-modal machine 
learning fusion algorithm. The relationship between seismic responses and reservoir properties is nonlinear 
and complex, but neural networks as fusion engines can deal with that. The MMMLF methodology proposed in 
this case study successfully addressed the challenge of using data-based machine learning predictive tools when 
there is large scattering between acoustic and target reservoir properties. Machine learning has become very 
influential in seismic reservoir characterization because it enhances seismic interpretation and the identification 
of productive zones in petroleum provinces, especially in estimating and predicting reservoir properties. In ideal 
situations, the relationship between rock properties is clear and there is a direct basis for inversion. However, 
in the case of a high degree of scattering, it is very difficult to run accurate petrophysical inversions. In complex 
fluvio–deltaic environments, this challenge is often severe and requires careful consideration. Therefore, machine 
learning data-based tools for predicting reservoir properties are effective.

It has been demonstrated that after appropriate advanced post-stack filtering of the seismic data, relevant 
seismic attributes and borehole data can be fused in a multi-modal machine learning fusion to predict lithology 
distribution based on gamma ray logs at the Bohai Bay Basin, Northeast China. The conclusions from this study 
can be summarized as follows. First, reservoirs in the study area consisted of facies change, unconformity, and 
stratigraphic traps. Second, a dip-steered median filter accessed dip and azimuth information from seismic data 
and improved the continuity and clarity by increasing the SNR ratio. Third, the acoustic properties were inversely 

Figure 6.   (a) Predicted gamma ray from instantaneous amplitude input versus actual gamma ray for Well X1 
and (b) predicted gamma ray from seismic inversion input versus actual gamma ray for Well X1.
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proportional to the lithological properties of the Upper Guantao layer in the study area. Finally, multi-modal 
machine learning fusion successfully predicted stratigraphic reservoirs in the Upper Guantao layer of the Bohai 
Bay Basin study area. These findings may have significant implications for future exploration and production 
of the remaining resources in the Bohai Bay Basin of China and similar petroleum provinces around the world. 
The framework also serves as a platform for using advanced data-based predictive machine learning tools with 
other geophysical methods.

Materials and methodology
The Bohai Bay Basin has been explored and produced oil for decades. In this basin, oil and gas reservoirs are 
located at different depths. This study focused on the depth intervals to cover the entire Upper Guantao layer. 
Reservoir property prediction is a unique problem in oil and gas exploration that has been well studied4,6,13. The 
ability to accurately predict the spatial distribution of reservoir properties is essential for exploiting petroleum 
resources. Borehole gamma ray log measurements were used to represent lithological variations and predict the 
distribution of the fluvio–deltaic sandstones.

Dataset and filtering.  The data used in this study was from seismic responses to subsurface impedance 
variations and borehole logs. In this study, we assumed that the relevant depth sections were already identified 
and seismic data and borehole logs were extracted. The seismic data consisted of 560 inlines and 410 crosslines, 
with a total of approximately 250,000 traces sampled every 2 ms. The total survey area was about 144.11 km2. We 
also assumed that the relevant seismic section has been matched to the borehole depth through a well-to-seismic 
tie. Well logs are direct high-resolution vertical measurements acquired at specific boreholes in the study area. 
Conversely, seismic data is recorded spatially, has a lower resolution and is in the time domain. Well-to-seismic 
tie is a significant process in reservoir characterization workflows and has been studied severally36,37. The seis-
mic data was used as input data for prediction, while the gamma ray logs showed the properties of the target 
reservoir. In each well, the gamma ray logs were converted to the time domain and seismic attribute traces were 
extracted near the borehole to train the machine learning algorithm.

Oil and gas reservoir rocks have emerged as a result of fluvial and deltaic depositional processes30. Fluvio–del-
taic deposits often exhibit small-scale lateral variations which generate noisy artifacts in the processed seismic 
sections38. Additionally, due to the limited resolution of seismic methods, the geological complexity of strati-
graphic reservoirs is poorly imaged. To significantly improve the resolution, unrealistic high frequencies must 
be recorded39. Since this is a difficult process, filtering the processed seismic data was selected as an alternative. 
Before interpreting seismic data, the data must be sufficiently free of noise. This is to ensure that the seismic 
response mainly reflects the sedimentary strata in the area of interest40. Although a good signal-to-noise ratio 
(SNR) depends heavily on careful acquisition and processing of seismic data, remnants of noise can mask the 
subsurface characteristics of the processed sections. These residual noisy artifacts can be removed by performing 
advanced post-stack processing on the seismic data. This algorithm enhances the data with azimuth and dip-
oriented filtering to increase resolution and remove incoherent noise. This process is also known as dip-steered 
based filtering41. Dip calculations are then performed42. In this method, the 3D seismic signal can be written as:

Next, a Fourier transform is performed on the whole signal and the signal is multiplied by the window func-
tion (i.e., the signal is transformed into f-k domain by the discrete Fourier transform). The dip is then calculated 
using the Radon spectrum as a weighting function for the dips in the x and y directions:

where px and py are the average dips in the x and y directions, respectively. For each position, the dip and azimuth 
corresponding to the local maxima of a third-order 3D polynomial that fits the subcube around the highest 
energy sample in the Fourier domain is used as output43. The information of the dip and azimuth is then stored 
in the steering cube. The dip-steered median filter then processes the data by accessing the dip and azimuth 
information stored in the steering cube.

Multi‑modal machine learning fusion (MMMLF) methodology.  In biological systems, sensory 
perception for effective interpretation and understanding is multi-modal44. However, remote sensing instru-
ments such as seismic acquisition equipment that help us understand subsurface features are uni-modal sensory 
instruments. Biological system studies have shown that multi-modal perceptions have clear advantages over uni-
modal perceptions. One such advantage is the superadditive effect of multisensory integration45. Superadditivity 
is a situation where the total multisensory is greater than the sum of its unisensory parts. Mathematically, the 
multi-modal effects can be described linearly as follows:
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where i = 1,…I and j = 1,…J. Equation (4) is interpreted as yij being the linear combination of N signals xj1,…,xjN 
impinging on sensor i at sample index j, with weights ai1,…,aiN. However, in most cases, the relationships between 
natural system properties such as subsurface data are not linear. To effectively use the multi-modal effects in 
reservoir characterization, it is necessary to develop a nonlinear formulation as a fusion engine. An example 
of an efficient data-driven algorithm that can fuse different modalities is a neural network. The mathematical 
expression of biological neurons can be written as an activation function (A). The sigmoid function [Eq. (5)] is 
widely used as an activation function:

For reservoir characterization, different modes of data are available for interpretation such as, petrophysi-
cal logs and seismic data. In the present investigation, the borehole logs and seismic data of the study area 
contained the relevant subsurface information. However, the measured physical properties depend on different 
types of instruments, measurement techniques, experimental setups, and processing procedures. Integrating 
different types of data favors geological interpretations. For analysis purposes, seismic data is decomposed into 
its components10 to take advantage of multi-modal machine learning fusion. These components were in the form 
of various seismic attributes. Several attributes can be derived from the seismic volume. Seismic attributes were 
adopted as input features and borehole logs related to lithological properties deployed as expected output features.

The performance of machine learning algorithms depends heavily on finding a suitable feature representation 
space. The relevant multi-modal features were defined as inputs corresponding to different geological features of 
interest in the target interval. These relevant features were obtained by extracting seismic attributes from the post-
stack seismic data, defined as “any measure of seismic data that helps us visually enhance or quantify the features 
being interpreted”41,46. In this study, seismic attributes extracted from the filtered 3D volume were instantane-
ous amplitude, instantaneous frequency, different iso-frequency bands, spectral decomposition, similarity, and 
acoustic impedance. We used a simple feature selection approach to find a suitable feature representation space. 
Feature selection aimed to select relevant feature subsets from the original set of seismic attributes that were able 
to efficiently describe the intrinsic characteristics of the input data. And it is executed by reducing the impact of 
noise and eliminating irrelevant features47. Moreover, feature selection allowed us to avoid computing in high 
dimensions by reducing the input space and only searching for relevant attributes with significant relationships 
to the reservoir characteristics of interest. This was achieved by using stepwise regression6.

For multimodal input features, Eq. (4) can be rewritten in the following form:

where f is a nonlinear function, P is the target petrophysical property of interest, and M1 to Mm are different 
modes of the input data. The nonlinear function represents the fusion engine, and in this paper, an artificial 
neural network was used for this purpose.

MMMLF is updated using a traditional backpropagation algorithm to detect nonlinear relationships between 
data specific to a reservoir. The popular backpropagation technique48 features a least-squares algorithm and is 
the simplest version of all steepest descent optimization methods. The cost function for this problem was defined 
as the following mean squared error performance function:

where dk(t) is the desired output and ok(t) is the actual output from the algorithm. Applying the backpropagation 
learning algorithm to reduce the cost function leads to the updated MMMLF equation.

Fusing multi-modal features through capturing intermediate-level decisions provides additional information 
and improves the accuracy of the final prediction process. This methodology was an alternative approach for 
cases where (1) it was difficult to identify direct relationships between the seismic attributes and rock properties 
from the physical principles, and (2) there was a relationship between the acoustic velocity and the lithological 
properties of the target reservoir at the borehole scale but the relationship included extensive scattering due 
to heterogeneity. In the former example, a single mode extracted from post-stack seismic data can provide a 
data-based relationship for predicting reservoir properties. However, in the latter, a constraint is required for 
predictions and hence the introduction of complementary modes to constrain the scatter in the data through an 
intermediate decision. To convert seismic attributes to lithological properties, rock physics crossplots were used to 
validate the relationships between lithology and acoustic wave properties. The workflow of multi-modal machine 
learning fusion is schematically shown in Fig. 7. The algorithm used in this study was written in MATLAB.

Systematic cross-validation tests of the data were developed49 to analyze the accuracy of the MMMLF tech-
nique. This was done by removing one well from the training dataset. MMMLF was trained on the remaining 
well and applied to seismic traces of the hidden well location. Next, the MMMLF output was compared to the 
actual gamma ray log. Finally, the test was repeated for each well in the training dataset. Cross-validation offered 
an excellent technique to validate the accuracy of the method.

(4)yij =

N
∑

r=1

airxjr

(5)A(W) =
2

1+ exp(−W)
− 1

(6)P
(

x, y, z
)
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(

x, y, z
)
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(
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)
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