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ABSTRACT 

The Modified Detached Coefficients Method is used to find power numbers ,say Q = 

(d1d2…dm)n to any positive nth power. The power number is first converted to a 

multinomial, Say 

                    Q= (d1d2d3)3 

                   Q = (d1pm-1 +d2pm-2 +dmp0)n…(1),where m is the number of digits and n is 
a positive power of the expansion. 

Then equation (1) is expanded using the multinomial expansion. 

The coefficients (d’s) of the p’s are extracted to become the result of the power 

number if and only if all the coefficients are single digits otherwise convert the 

coefficients which are more than 1 to p’s by replacing 10’s by p. For example, 

supposing 54 is a coefficient it is replaced by 5p+4,i.e. 5*10+4 =5*p+4. Where 

10=p. 

The Staircase Method is also used to find power numbers. The procedure is the same 

as the Modified Detached Coefficients Method but after the expansion of the 

converted form of the power number. The coefficients (d’s) of the p’s are arranged in 

the staircase form. 

The result of the power number is then gotten by adding the staircase numbers 

arrangement column wise as done in multiplication of two numbers. 

Results of  both methods were done manually.  
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CHAPTER  1 

INTRODUCTION 

This chapter gives a brief account of the background of the study, the problem 

statement, objectives of the study, methodology, justification and the thesis 

organization. 

 

1.1 BACKGROUND OF THE STUDY 

Contributions to the theory of numbers have interested many researchers, 

mathematicians of the highest class of old that have contributed original work to the 

number theory that cannot be forgotten. Notably among them are Blaise Pascal 

(1623-1662), Leonhard Euler (1707-1783), Gabriel Lame (1795-1870), Godfred 

Harold Hardy (1877-1947), Srinivara Ramanuyan (1887-1920), Paul Erdo’s (1913-

1996) and many others. 

  

However, since the middle of the century, when the number theory began through 

Pierre-de Fermat (1601-1665). Fermat influence was limited by the lack of interest in 

publishing the discoveries which are known mainly from letters to friends and 

marginal notes in the books he read. In 1629, Fermat invented analytic geometry, but 

most of the credit went to Descartes; who hurried into print with his own ideas came 

directly from Fermat. In a series of letters written in 1654, Fermat and Pascal 

developed the fundamental concepts of the theory of probability.   

 

China discovered a magic square as far back as 200BC, the magic square were 

subsequently introduced into India, Japan and later to Europe. 
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Also, in 1770 Euler published his Anleitung Zur Algebra in two volumes. A French 

translation, with numerous and valuable additions by Langrange, was brought out in 

1794, and a treatise on arithmetic by Euler was appended to it. The first volume 

treats of determinate algebra. This contains one of the earliest attempts to place the 

fundamental processes on a scientific basis: the same had attracted D’Alembert’s 

attention. This work also includes the proof of the binomial theorem for unrestricted 

real index which is still known by Euler’s name, the proof is founded on the 

principle of the permanence of equivalent forms, but Euler made no attempt to 

investigate the convergence of the series: that he should have omitted this essential 

step is the more curious as he had himself recognized the necessity of considering 

the convergence of infinite series: Vandermonde’s proof given in 1764 suffers from 

the same defect.   

The second volume of the algebra treats of indeterminate or Diophantine algebra. 

This contains the solutions of some of the problems proposed by Fermat, and which 

hitherto remained unsolved. 

 

Moreover, Pascal employed his arithmetical triangle in 1653, but no account of this 

method was printed till 1665. The constructed triangle with each horizontal line 

being formed from the one above it by making every number in it equal to the sum 

of those above it.  

The numbers in each line are now called figurate numbers. Those in the first line are 

called numbers of the first order, those in the second line , natural numbers or 

numbers of the second order ,those in the third line, numbers of the third, and so on. 
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Pascal’s arithmetical triangle, to any required order, is got by drawing a diagonal 

downwards from right to the left of the triangle. The numbers in any diagonal give 

the coefficients of the expansion of a binomial. 

 

1.2 PROBLEM STATEMENT 

Ward (2007) proposed the method of Detached Coefficients to find the power of 

positive integers using binomial expansion. Selected coefficients from the terms of 

the expansion were put together to become the result of the power number. 

Ward(2007) only considered power of numbers that produce binomial and 

multinomial coefficients. 

However, his method did not work when the coefficient of a term is more than 1 

digit. I, therefore want to improve the method of Ward (2007). 

 

1.3 OBJECTIVES OF THE STUDY 

The objectives are: 

(i) Compute squares and cubes of integers up to five digits using the 

modified Detached Coefficients method and the Staircase method. 

(ii) Determine which of the methods is faster in terms of computation. 

 

1.4 METHODOLOGY 

The problem of the method of Detached Coefficients by Ward (2007) is that when 

the coefficient(s) of the terms of a binomial /multinomial expansion is more than 1 

digit it does not give the result of a power number I in tend to research on. The 

problem would be modeled using the multinomial expansion. The Modified 
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Detached Coefficients Method and the Staircase Method would be used as methods 

of solution to resolve the problem of Ward (2007). 

The methods of solution would be done manually to solve problems related to power 

numbers while information would be gotten from the Internet, Encyclopedia and 

extracts from the mathematics book in the KNUST Library.      

 

1.5 JUSTIFICATION 

(i) It will benefit students and researchers who are interested in researching 

into the sum of positive integers and series. 

(ii) It is easier to implement when finding powers of large digit integers. 

 

1.6 THESIS ORGANISATION 

The project is made up of five chapters. The first chapter is the introduction; the 

second chapter is the literature review of the study. The third chapter is the 

derivation of the method whiles chapter four is the results from illustrative examples 

and finally chapter five is conclusion and recommendation. 
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CHAPTER 2 

LITERATURE REVIEW 

According to Beery and Jacqueline (2006), Aryabhata (499) wrote: ‘The sixth part of 

the product of three quantities consisting of the number of terms, the number of 

terms plus one, and twice the number of terms plus one is the sum of the squares. 

The square of the sum of (original) series is the sum of the cubes’. 

According to Beery and Jacqueline (2006), Gerson (1344), gave a similar proof that 

(1+2+3+….+n)2   =13+23+33+..n3, which he stated as follows:’ The square of the sum 

of the natural numbers form 1 up to a given number is equal to the sum of the cubes 

of the numbers from 1 up to the given number’.  

 

According to Beery and Jacqueline (2006), Briggs and Hutton (1624) noted  that 

difference of squares, cube, and fourth and higher powers are eventually constant , 

but Briggs did not extend his observation to formulas for sums of these powers. 

 

According to Beery and Jacqueline (2006) Fermat (1636) in his letter to mersenne 

and Roberval stated the following results about the generalized triangular numbers:’ 

The last side multiplied by the next greater makes twice the triangle. The last side 

multiplied by the triangle of the next greater side makes three times the pyramid. The 

last side multiplied by the pyramid of the next greater side makes four times the 

triangle. And so in by the same progression in infinitum.’ 

 

According to Beery and Jacqueline (2006), Pascal (1665),in his famous Traite du 

Triangle Arithmetique or Treatise on the Arithmetical Triangle, Pascal described in 

words a general formula for the sum of powers of the first n terms of an arithmetic 
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progression of which the sum of powers of the first n positive integers is a special 

case. If our positive integer power is m, then we are to find a formula for the sum 

1m+2m+3m+…+nm or Σk=1nkm. 

Form a binomial having as its first term a literal quantity A and for second term the 

difference of the given progression. Raise this binomial to a power of which the 

exponent is one more than the power proposed, noting the coefficients of the 

successive powers of the A in the resulting development. 

 

According to Beery and Jacqueline (2006), Bernoulli (1713), in his Bernoulli’s book 

on probability, Ars conjectandi, derived symbolic formulas for the sums of positive 

integers powers using the method conjecture for fermat, then noted a pattern that 

would make computation of these formulas much simpler. 

Bernoulli first showed how to find the sum of the first n positive integers, obtaining 

(∫𝑛𝑛 = 12𝑛𝑛𝑛𝑛 + 12𝑛𝑛 . (Note that he used an integral sign, to represent the ‘’sum’’ 

sign. He then derived the sums of the first n squares and cubes, obtaining    

∫𝑛𝑛𝑛𝑛=13n3+12nn+16n and ∫𝑛𝑛3 =14n4+12n3+14nn. 

According to Beery and Jacqueline (2006) Fermat (1636) derived a simple recursive 

procedure for finding the sum of powers of positive integers. 

Pascal (1654) found an improved method for finding the sum of powers of positive 

integers using a binomial expansion formula. 

 

According to Beery and Jacqueline (2006), Faulhaber(1631) in his book ‘Academiea 

Algebrae’  ,derived a general formula for finding the sum of powers of positive 

integers. 
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Langrange (1775), in Langrange’s four-square theorem, Langrange proved that every 

positive integer can be written as the sum of at most four squares, although four may 

be reduced to three except for numbers of the form  4n(8k+7). Diophantus first 

studied a problem equivalent to finding three squares whose sum is 3a+1, and stated 

that for this problem, a must not be of the form  8n+2, which is however an 

insufficient condition, where a is whole number and n is a positive integer. 

Bachet (1621), subsequently excluded 8n+2 and 32n+9. Finally, Fermat (1636) 

remarked that Bachet’s condition failed to exclude a = 37, 149, etc., and gave the 

correct sufficient condition that a must not be of the form ((24k+7)4n-1))/3, so 3a+1 

not of the form (24k+7)4n, or equivalently (8m+7)4n . 

Fermat (1636) stated no integer of the 8k+7 is the sum of three rational squares, and 

in 1638, Descartes proved this for integer squares. Fermat (1658) subsequently 

asserted (but did not prove) that 2p where p is any prime of the form 8n-1(i.e., any 

prime of the form 8n+7) is the sum of three squares. 

Langrange (1775) made some progress on Fermat’s assertion , but could not 

completely prove it.   

Legendre (1785) remarked that Fermat’s assertion is true for all odd numbers (not 

just primes), and then gave an incomplete proof  that either every number or its 

double is a sum of three squares. 

Beguelin (1774) had concluded that every integer congruent to 1,2,3,5 or 6 (mod8) is 

a sum of three squares, but without adequate proof(Dickson 2005, p.15).  

Legendre (1798) in his Théorie des nombres, Legendre proved that every positive 

not of the form 8n+7 or 4n is a sum of three squares having no common factor. 

The number of representations of n by k squares, allowing zeros and distinguishing 

signs and order, is denoted rk(n). The function r2(n) is often written simply as r(n), 
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and is intimately connected with the Leibniz series and with Gauss’s circle 

problem(Hilbert and cohn-vossen 1999). 

Jacobi (1829) gave analytic expressions for rk(n) for cases k = 2, 4, 6 and 8( Hardy 

and Wright 1979, Hardy 1999).The cases k = 2, 4, and 6 were found by equating 

coefficients of the Jacobi theta functions Ø3(x), Ø3
2(x) and Ø3

4(x). The solutions for 

k = 10 and 12 were found by Liouville (1864). 

Hardy and Wright (1979) and Glaisher (1907) gives a table of r2s(n) for up to 2s = 

18. However, the formulas for 2s = 14 and 2s = 16 contained functions defined only 

as the coefficients of modular functions, but not arithmetically (Hardy and 

wright1979,p.316). 

Ramanujan (2000) extended Glaisher’s table up to k =24. Bouyguine (1915) found a 

general for r2s(n) in which every function has arithmetic definition ( Hardy and 

Wright 1979, Dickson 2005 ). r3(n) was found as a finite sum involving quadratic 

reciprocity symbols by  

Dirichlet. r5(n) and r7(n) were found by Eisenstein , Smith ,and minkowski. Mordell, 

Hardy , and Ramanujan have developed a method applicable to representations by an 

odd numbers of squares (Hardy 1920; Mordell 1920,1923; Estermann 1937 ; Hardy 

1999). 

 

According to Beery and Jacqueline (2006) Faulhaber (1631), in his  Academia 

Algebrae, faulhaber presented formulas for sums of powers of the first n positive 

integers from the 13th to the 17th powers. 

Faulhaber (1617) had presented formulas for sums of powers up to the 12th power in 

his Continuatio seiner neuen wunderkunste. Furthermore, D.E. Knuth has argued 
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that, in Academia Algebrae, Faulhaber actually encoded sums of powers of positive 

integers up to the 23rd power. 

According to Beery and Jacqueline (2006) Harriot (1557), wrote formulas for sum of 

squares, cubes and fourth power on a manuscript sheet headed” Ad aggregate Z. C. 

ZZ.  Etc” (“for sum of squares, cubes, square-squares, etc.”) (Harriot, folio 240). In 

this heading, we have substituted z, c, and zz for symbols for squares, cube, and 

fourth powers (Square-squares) that Harriot probably borrowed from Robert 

Record’s famous algebra book, whetstone of witte (1557). 

 

According to Beery and Jacqueline (2006), Harriot (1575) cited page 25 of Francisco 

maurolico’s  Arithmeticorum Libri Duo, copying out the following theorem: 

‘The square of every triangular number is equal to the sum of cube from unity (one) 

through the cube of the side of the triangle’.  

Polignac (1849) conjectured that odd number larger than can be written as the sum of 

odd prime and a power of 2. He found a counterexample 959 soon. 

Ro-Manoff (1934) proved that the set  of positive odd integers which can be 

expressed in the 2n + p has positive lower asymptotic density, where n is a 

nonnegative integer and p a prime. Corput (1950) proved that counterexample to de 

Polignac’s conjecture form a set of positive lower density.   

Erdo’s (1950) proved that there is an infinite arithmetic progression of positive odd 

integers each of which has no representation of the form 2n + p.  {ai (mod mi)}k  is 

called a covering  system if integer is congruent to ai (mod mi)  for at least one value 

of i. 

Refining the argument of Erdo’s ,s R. Cocker proved that there are infinitely many 

positive odd integers not representable as the sum of a prime power and two positive 
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power  of  two positive powers of two. Before this Z.W.Sun and M.H. handled the 

integers of the form c(2a + 2b) + p for many values of constant c. 

Taeisinger (1915) proved that the harmonic number Hn := 1 + 1/2 + ・ ・ ・ + 1/n  

is never an integer except for H1.   . The more general result that the sum of 

reciprocals of consecutive terms, not necessary starting with 1, is never an integer 

was proved by Kurschak (1918). 

Erdos (1932) proved that the sum of reciprocals of any integer in arithmetical 

progression is never reciprocal and then an integer. 

According to Beery and Jacqueline (2006) Fibonacci (1202), in his book ‘’Liber 

Abaci’’ Sum of odd integers, starting 1, gives the square of integers.     

Interpretation: “the average number of the Nth row is N. 

Therefore, the sum of the row, which is the sum of odd integers, is NXN =N2. 

 

According to Beery and Jacqueline (2006) Fibonacci (1202) arranged the same odd 

numbers in a different pattern and came up with a very elegant proof regarding the 

sum of integers cubed.  

Interpretation: “the average number of the Nth row is N2.  So the N th row has N 

terms and their average is N2. 

Therefore the sum of the row is N2xN=N3. From the left hand side, the last term of 

the old integers on the N th row is a triangular number TN, because TN =1+2+…+N. 

And it is known that sum of the first p old integers is p2. 

Therefore Fibonacci concluded 13+23+33+…+N3= (1+2+3+…+N)2= (TN) 2 ={ (1/2) 

N (N+1)}2 

According to Beery and Jacqueline (2006), Al- Haytham (2006). For his volume 

computations, al-Haytham needed formulas for the sums of the first n integer cubes 



   
 

11 

and the first n fourth power. He may have used a diagram like that in figure 6 

(Baron, p.70) to describe the relationship. (4+1)Σi=14i=Σi=14i2=Σp=14Σi=1pi. 

 

According to Beery and Jacqueline (2006), Pythagoras (2006). The  Pythagoreans 

experimented with number properties by arranging pebbles on a flat surface. As a 

result, they saw that we would describe as a sum of successive positive integers as a 

triangle or triangular number. 

Their pebbles experiments led them to see that two copies of the of the triangular 

number could be fitted together to form an oblong number, hence for example twice 

the triangular number 15=1+2+3+4+5 could be view as the oblong number 5x6=30 

Twice a triangular number is an oblong number, or in modern notation, 

2(1+2+3+…+n) =n(n+1). In general, 1+2+3+…..+n=n(n+1)2 for any positive integer 

n. 

 

According to Beery and Jacqueline (2006) Archimedes (2006)  knew the 

Pythagorean “formula” for the sum of the first n positive integers. He almost 

certainly knew also a “formula” for the sum of the squares of the first n positive 

integers. His Lemma to proposition 2 in on Conoids and Spheroids and his 

proposition 10 in on Spirals  translated to our symbols, say that 

(n+1)n2+(1+2+3+….+n)=3(12+22+32+…+n2). 

Lagrange (1770) in his paper Réflexions sur la résolution algébrique des équations  

(Thoughts on Solving Algebraic Equations) devoted to solutions of algebraic 

equations, in which he introduced Lagrange resolvents. Lagrange's goal was to 

understand why equations of third and fourth degree admit formulae for solutions, 

and he identified as key objects permutations of the roots. An important novel step 

http://en.wikipedia.org/wiki/Lagrange_resolvents
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taken by Lagrange in this paper was the abstract view of the roots, i.e. as symbols 

and not as numbers. However, he did not consider composition of   permutations.   

             

Waring (1782) in his paper Meditationes Algebraicae (Meditations on Algebra) 

came up with the expanded version of Lagrange’s resolvents. He proved that the 

main theorem on symmetric functions, and specially considered the relation between 

the roots of a quartic equation and its resolvent cubic. 

Vandermonde (1771), developed the theory of symmetric functions from a slightly 

different angle, but like Lagrange, with the goal of understanding solvability of 

algebraic equations. 

Al-Tusi (1262) determined the coefficients of the expansion of a binomial to any 

power  

giving the binomial formula and the Pascal triangle relations between binomial 

coefficients.  

              

Edwards (2002) has postulated that the work of al-Karaji in expanding the Binomial 

Triangle might have borrowed Brahmegupta’s work, given that it was available and 

al- Karaji definitely had read other Hindu texts available in Baghdad which was the 

great cultural and scientific center of Muslims. The binomial coefficients have been 

studied in cultures around the world, both in the text of binomial expansions and in 

the question of how many ways to choose k items out of a collection of n things. 

 

Hsien and Yanghui (1261) and Shih-chieh(1303) came up with the idea of taking 

‘’six tastes one at time, two at a time, three at a time, etc’’ was written down 
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correctly in India 300 years before the birth of Christ in a book called the ‘’ 

Bhagabati Sutra’’. 

 

According to Beery (2006) Al- Khayyam (2002) wrote a letter claiming to have been 

able to expand binomials to Sixth power and higher, but the actual work does not 

survive. 

Tartaglia (1523) first published the generation of the figurate numbers. Some 30 

years he published the triangle in a table form in his paper known as General 

Treatise. He did publish a general formula for solving cubic equations. 

Cardano (1539) the Italian algebraist, correctly determines that the number of ways 

to take 2 or more things from a set of n things is 2n – n – 1.  

                 

 

Stifel (1544) published the  extended Figurate Triangle. He gives credit to Cardano’s 

work published five years earlier. 

 

Viéte (591), gives names to the first few columns of the Triangle in Latin; "numeri 

trianguli",  "pyramidales", "triangulo-trianguli", "triangulo-pyramidales"  

 

Oughtred (1631) published his Clavis Mathematicae, which influences his student 

John Wallis and is later owned in a 3rd edition printing by Isaac Newton; both 

Wallis and Newton are instrumental in the work that connects the binomial 

coefficients to the new field of calculus.  
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Vall´ee (2003) published a paper entitled ‘Dynamical analysis of a class of Euclidean 

algorithms’ and developed a general technique for analyzing the average-case 

behavior of the Euclidean-type algorithms. ‘This is a deep and important paper 

which merits careful study, and will likely have a significant impact on future 

directions in algorithm analysis.’ Jeffrey O. Shallit reviewed, ‘The method involves 

viewing these algorithms as a dynamical  system, where each step is a linear 

fractional transformation of the previous one. ... Then a generating function 

(Dirichlet series) is used to describe the cost of the algorithms, and Tauberian 

theorems are used to extract the coefficients.’  

 

Vall´ee (2006), further proposed a detailed and precise dynamical and probabilistic 

analysis of the more natural variants of Euclid’s algorithm. The paper ‘presented a 

clear, clever, and unified overview of the methodology (dynamical analysis) and of 

the tools.’   

 

One of the strengths of this approach comes from the fact that it combines 

sophisticated tools taken from, on the one hand, analytic combinatorics and 

functional analysis (moment generating functions, Dirichlet series, quasi-power 

theorems and Tauberian theorems), and on the other hand, from dynamical systems 

and ergodic theory (including Markovian dynamical systems, induction, transfer 

operators and related concepts). 

 

Buchberger (1965) gave an algorithm for finding a basis g1, ..., gk of the ideal I =< f1, 

..., fm > such that the leading term of any polynomial in I is divisible by the leading 

term of some polynomial in G = {g1, ..., gk}. Such a basis is called Grobner bases by 
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Buchberger. An analogous concept was developed independently by Hironaka 

(1964) and he then named it as standard bases.  

 

Grimm (1969) made an important conjecture that if m + 1, ...,m + n are consecutive 

composite numbers, then there exist n distinct prime numbers p1, ..., pn such that 

m+1 is divisible by pi for 1 _< i >_ n. This implies that for all sufficiently large 

integer n, there is a prime between n2 and (n+1)2. It is nice that for m ≤1, that there 

exists a prime in the interval (m2, (m + 1)2) is equivalent with that m2 + 1, ...,m2 + 

2m is a W sequence.  

  

Heilbronn (1968), studied the average length of a class of finite continued fractions. 

This is an important result on Euclids algorithm.  

 

Tonkov et al (1975), improved Heilbronn’s estimate respectively using an idea of 

Heilbronn, Andrew C. Yao and Donald E. Knuth studied the sum of the partial 

quotients qi in Euclids algorithm. They proved a well-known result which states that 

the sum S of all the partial quotients of all the regular continued fractions. 

Zheng (1994) improved the result of Andrew C. Yao and Donald E. Knuth. As an 

application, Conrey et al (1996) studied the mean values of Dedekind Sums. 

 

Magne (1545) discovered an algebraic formula for the solution to both the cubic and 

Quadratic equations. 

 

Hui (263AD) wrote a commentary on a book known as mathematical at a hand book 

of practical problems that was compiled in the first two centuries BC. He did some 
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analysis of a mathematical statement called Gou-Gou theorem. The theorem in the 

West is known as the Pythagorean theorem that describes a special relationship that 

exists between the sides of a Right triangle. 

 

Mercator (1668) used a geometric series to develop a power series for representation 

for  ln(1+x). 

Taylor (1715) published Methodus Incramentorum Directa et Inversa which 

contained the result known as Taylor’s theorem. 

 

Maclaurin (1742) text ‘’Treatise on fluxions’’ used the approach “order of contact” 

to Develop power series. Maclaurin concentrated on series centered at c=0 and 

therefore the series is known as maclaurin series. 

Burton (2007) the order of contact method matches derivatives of the function to 

Derivatives of power series in order to find the power series coefficients. 

 

Rabin and Shallit (1986) showed how to represent any positive integer n as a sum of 

four Squares in random polynomial by formulating algorithms for representing these 

integers as Sums of squares. 

 

Bumby (1990) gave a deterministic, polynomial-time algorithm in case n is prime. 

Determining the number of such representations for composite n is random 

polynomial-time equivalent to factoring n.  

Gauss (1801) considered the representations by three squares in ‘Disquisitiones 

Arithmeticae. V’ and found the number of representations in terms of two other 

functions of n. 
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Uspensky (1929) considered representations by more general ternary quadratic 

forms. 

 

Landau (1908) proved that the number of integers up to N which are sums of two 

squares of two squares is roughly K*N/sqrt(log(𝑁𝑁). The best estimate of K is 

0.76422365…Shiu(1986). 

 

Osbaldestin and Shiu (1989) showed that the number of integers up  N which are 

sums of three squares is roughly 5N/6 . 

  

Kronecker (1870) gave a definition of an abelian group in the context of ideal groups 

of a number field, generalizing Gauss’s work; but did not tie his definition with 

previous work on groups, particularly permutations groups.  

 

Euler (1770) published his Anleitung Zur Algebra in two volumes. A French 

translation, with numerous and valuable additions by Langrange, was brought out in 

1794, and a treatise on arithmetic by Euler was appended to it. The first volume 

treats of determinate algebra. This contains one of the earliest attempts to place the 

fundamental processes on a scientific basis: the same had attracted D’Alembert’s 

attention. This work also includes the proof of the binomial theorem for unrestricted 

real index which is still known by Euler’s name, the proof is founded on the 

principle of the permanence of equivalent forms, but Euler made no attempt to 

investigate the convergence of the series: that he should have omitted this essential 

step is the more curious as he had himself recognized the necessity of considering 
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the convergence of infinite series: Vandermonde’s (1764) proof given  suffers from 

the same defect.   

 

The second volume of the algebra treats of indeterminate or Diophantine algebra. 

This contains the solutions of some of the problems proposed by Fermat, and which 

hitherto remained unsolved. 

  

Fermats (1640) achievements in arithmetic include:Fermats little theorem , stating 

that, if a is not divisible by a prime p, then If a and b are coprime, then a2 + b2 is not 

divisible by any prime congruent to −1 modulo 4; and Every prime congruent to 1 

modulo 4 can be written in the form a2 + b2 . 

 

Fermat (1659) stated to Huygens that he had proven the latter statement by the 

method of descent. Fermat and Frenicle also did some work (some of it erroneous or 

non- rigorous) on other quadratic forms. Fermat posed the problem of solving as a 

challenge to English mathematicians (1657). The problem was solved in a few 

months by Wallis and Brouncker.  

Fermat considered their solution valid, but pointed out they had provided an 

algorithm without a proof (as had Jayadeva and Bhaskara, though Fermat would 

never know this.) He states that a proof can be found by descent. Fermat developed 

methods for (doing what in our terms amounts to) finding points on curves of genus 

0 and 1.   

 



   
 

19 

Hardy and Wright (1938) proposed that the least numbers of those which have the 

same ratio with them measure those which have the same ratio the same number of 

times, the greater the greater and the lesser the lesser. 

 

Hardy and Wright (1938) proposed that if two numbers  by multiplying one another 

make some number, and any prime number measures the product, it will also 

measure one of the original numbers. 
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CHAPTER 3 

METHODOLOGY 

3.0 INTRODUCTION  

This chapter gives definitions, derivations and methods of examination in 

accordance with the objective of the study. 

 

3.1.1  Series  

 A series is a sum of the terms in a sequence. If there are n terms in the sequence , 

the sum is    often write as Sn for the result, so that Sn = u1 + u2 + u3 + . . . + un . 

 

3.1.2 Power series 

A power series is a series of the form 

 

The Taylor series at a point c of a function is a power series that, in many cases, 

converges to the function in a neighborhood of c. For example, the series 

 

is the Taylor series of at the origin and converges to it for every x. 

Unless it converges only at x=c, such a series converges on a certain open disc of 

convergence centered at the point c in the complex plane, and may also converge at 

some of the points of the boundary of the disc.  

                                                              

 

  

http://en.wikipedia.org/wiki/Taylor_series
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3.1.3 Taylor series. 

Definition: 

The Taylor series of a real or complex-valued function ƒ(x) that is infinitely 

differentiable at a real or complex number a is the power series 

 

which can be written in the more compact sigma notation as 

 

where n! denotes the factorial of n and ƒ (n)(a) denotes the nth derivative of ƒ 

evaluated at the point a. The derivative of order zero ƒ is defined to be ƒ itself and (x 

− a)0 and 0! are both defined to be 1. In the case that a = 0, the series is also called a 

Maclaurin series. 

 

3.1.4 Maclaurin series. 

Definition: 

It is a particular case of Taylor series, in the region near  a = 0 such a polynomial is 

called  

Maclaurin series. 

          The infinite series expansion for f(a) about a = 0 becomes 

f(a) = f(0) + f’(0) + 𝒇𝒇′′ (𝟎𝟎)𝒙𝒙𝟐𝟐

𝟐𝟐!
 + f’’’(𝟎𝟎)𝒙𝒙𝟑𝟑

𝟑𝟑!
 +… 

f’(0) is the first derivative evaluated at a = 0, 𝒇𝒇′′ (𝟎𝟎) is the second derivative 

evaluated at a = 0 and so on.   

                                      

http://en.wikipedia.org/wiki/Real-valued_function
http://en.wikipedia.org/wiki/Complex-valued_function
http://en.wikipedia.org/wiki/Infinitely_differentiable_function
http://en.wikipedia.org/wiki/Infinitely_differentiable_function
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Power_series
http://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Derivative
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3.1.5 Convergence of the power series 

Consider a power series, say 

             f(x) = 1 + x2 + x3 + x4 + … 

The power series converges depending on the value of x. If x is too large , then the 

series will  

diverge: 

 f(10) = 1 + 10 + 100 + 1000 +…= ∞ 

However, if x is small enough , then the series will converge: 

f(0.1) = 1+ 0.1 + 0.01 + 0.001 + … = 1.111111 

Therefore, the series converges  whenever |x|<1, and diverges whenever |x|>1. 

In general, a power series converges whenever x is close to 0, and may diverge if  x 

is far away from 0. The maximum allowed distance from 0 is called the radius of 

convergence. 

 

3.1.6 Arithmetic series. 

An arithmetic progression, or AP, is a sequence where each new term after the first 

is obtained by adding a constant d, called the common difference, to the preceding 

term. If the first term of the sequence is a then the arithmetic progression is a, a + d, 

a + 2d, a + 3d, . . . 

where the n-th term is a + (n − 1)d. 

The sum of the terms of an arithmetic progression gives an arithmetic series. If the 

starting value is a and the common difference is d then the sum of the first n terms is                                        

Sn = 1
2
n(2a + (n − 1)d) . 
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If the value of the last term ℓ  is known instead of the common difference d then the 

sum is written as Sn = 1
2
n(a + ℓ) . 

 

3.1.7 Geometric series. 

A geometric progression, or GP, is a sequence where each new term after the first is 

obtained by multiplying the preceding term by a constant r, called the common ratio. 

If the first term of the sequence is a then the geometric progression is 

 a, ar, ar2, ar3, . . . 

where the n-th term is a𝑟𝑟𝑛𝑛−1. 

The sum of the terms of a geometric progression gives a geometric series. If the 

starting value is a and the common ratio is r then the sum of the first n terms is Sn 

=𝑎𝑎(1−𝑟𝑟𝑛𝑛 )
1−𝑟𝑟

 provided that r ≠ 1. 

 

3.1.8 Convergence of goemetric series 

Consider the sum,  Sn  = 𝑎𝑎(1−𝑟𝑟𝑛𝑛 )
1−𝑟𝑟

,  

The formula contains the term , rn  ,  assuming where r = 1
2
  and as -1< r < 1, then this 

term gets closer and closer to zero as n gets larger and larger So, if -1< r < 1, then the 

‘’sum to infinity” of a geometric series is; 

                            Sn = 𝑎𝑎
1−𝑟𝑟

                           

                           n→ ∞    

This is the limit of the sum , Sn    as n  ‘tends to infinity’.                                           
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3.2 THE BINOMIAL THEOREM 

A binomial is any expression of the form x + y. In other words, an expression 

involving two terms is a binomial expression. For example a2 – b2, 2a +3b, z3 – 2xy 

and (-2/x) + (3/2)y2 are binomial expressions. 

    The expansion of (x + y)n is given by  

(x +y)n = xn + � 𝑛𝑛
𝑛𝑛−1�x

n-1y + � 𝑛𝑛
𝑛𝑛−2�x

n-2y2 + �𝑛𝑛𝑘𝑘�x
kyn-k + … +�𝑛𝑛1�xyn-1 +  yn, where ( for 

the purposes of this research) x, y and n are nonnegative integer. 

 

3.2.1 Example of the Binomial Theorem 

Consider the expansion of (x + y)4 . This can be written using the binomial theorem 

as  

(x + y)n =  �4
4�x

4 + �4
3�x

3y +�4
2�  x

2y2 + �4
1� xy3 + �4

0�y
4 

              = x4 + 4x3y +6 x2y2 +4 xy3 + y4 

Where   �4
4� ,  �

4
3�  , �

4
2� ,  �

4
1�  , and   �4

0�   are the coefficients of the terms  x4 ,x3y , 

x2y2 ,  

xy3  and y4      respectively. 

 

3.3 The Multinomial Theorem 

The   expansion o f (x1+x2+…+xk)n is found by adding all the of form 

� 𝑛𝑛
𝑛𝑛1,𝑛𝑛2,…,𝑛𝑛𝑘𝑘

� x1
n1 x2

n2 … xk
nk   

Where n1 + n2 +…+ nk =  n. 

 

3.3.1 Example of The Multinomial Theorem 

Consider the expansion of (x1+2x2+x3)3.This can be written using the multinomial 

theorem as 



   
 

25 

(x1+2x2+x3)3 =   � 3
𝑛𝑛1,𝑛𝑛2,…,𝑛𝑛𝑘𝑘

� x1
n1 x2

n2 … xk
nk  

                        =  � 3
0,0,0� x1

3 +� 3
2,1,0� x1

2 +� 3
2,0,1�3x1

2x3 +� 3
1,2,0� x1(2x2)2x3 +  

                             � 3
1,0,2�x1x3

2 +� 3
1,1,1� x1(2x2)x3 + � 3

0,3,0�(2x2)3 + � 3
0,2,1� (2x2)2x3 +  

                            � 3
0,1,2� (2x2)x3

2 + � 3
0,0,3� x3

3  

                      = x1
3 +6 x1

2 +3x1
2x3 + 12x1x2x3 + 3x1x3

2  + 12x1x2x3 +8x2
3 + 12x2

2x3 +  

                         6x2x3
2 + x3

3  

 

3.3.2  Expanding numbers of different digits as Multinomials 

Example1: 

(d1d2d3)n = (d1p2 + d2p1 + d3p0)n 

                    = (x1+ x2 +x3)n 

Where x1 =  d1p2, x2 = d2p1, x3 = d3p0 . Also d1, d2 , d3 are positive integers  and p=10 

 

3.3.3 Multinomial Expansion of the form (d1d2d3)n ,where values of variables 

are given 

Example2: 

Expanding (123)2 using the multinomial expansion is given by; 

(123)2 = (d1p2 + d2p1 + d3p0)2 

             =(1p2 + 2p1 +3p0)2   

 

3.3.4 Expanding (d1d2d3)n using the Modified Detached Coefficients Method      

Example3: 

Expanding (123)2 using the Modified Detached Coefficient Method is given by ; 

(123)2 = (d1p2 + d2p1 + d3p0)2 
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             =(1p2 + 2p1 +3p0)2   

 

⇒(1p2 + 2p1 +3p0)2  =  p4(1)+p3(4)+p2(10)+p1(12)+p0(9) when 10=p. 

                                        = p4(1)+p3(4)+p2(10)+p1(10+2)+p0(9)  

                                        = p4(1)+p3(4)+p2(p)+p1(p+2)+p0(9) 

                                       = 1p4+4p3+1p3+1p2+2p1+9p0 

                                        =1p4+5p3+1p2+2p1+9p0                                                  

Therefore (123)2 = 15129  

 

3.3.5 Expanding (d1d2d3)n using the Staircase Method. 

Example4: 

Expanding (123)2 using the Staircase Method is given by; 

(123)2 = (d1p2 + d2p1 + d3p0)2 

             =(1p2 + 2p1 +3p0)2   

 

⇒(1p2 + 2p1 +3p0)2  =  p4(1)+p3(4)+p2(10)+p1(12)+p0(9)  

 

(123)2                             =                         09 

                                                               +12    

                                                            +10 

                                                         +04 

                                                     +01 

(123)2                          =                  15129        
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3.4.1 Methodology of the modified detached coefficients method: 

Given a power number Q = (123)2 convert to equivalent multinomial expansion by 

inserting powers of p = 10 as coefficients of the digits in the number as shown 

below: 

Q = (123)2 = (1*102+2*101+3*100)2  

                  =(1*p2+2*p1+3*p0)2  where p=10 

In general if x1 , x2 ,x3 ,xm are order digits of the number Q  then Q =(x1x2x3…xm)n is 

the required number, where n is a positive integer. 

                ⇒ Q= (x1pm-1+x2pm-2+…+xmp0)n  

                          =(y1+y2+…+ym)n               ,where  y1 = x1pm-1, y2 = x2pm-2, y3 = xmp0 

Step 0 : Convert ( x1x2x3…xm)n to Multinomial form, i.e.,  

                                                   Q = (x1pm-1+x2pm-2+…+xmp0)n                            

                                                                                       =(y1+y2+…+ym)n               , where yt = xtpm-t 

From the Multinomial Summation; 

Q = (y1+y2+…+ym)n    is expressed as 

(y1+y2+…+ym)n      = � � 𝑛𝑛
k1,k2,k3

�y1
k1 y2

k2 … ym
km

k1+k2+⋯+km  =n  
 

Step1: Expand the multinomial using the staircase multinomial expansion, i.e. 

  (pm-tx1+p1x2+…+p0xm)n = � � 𝑛𝑛
𝑘𝑘1,𝑘𝑘2,𝑘𝑘𝑚𝑚

�∏  xt
m
t=1

kt p(m−t)k t

𝑘𝑘1+𝑘𝑘2+⋯+𝑘𝑘𝑚𝑚
 

                                              Where 1≤t≤m, 

                                           P=terms determinant 

                                         x1,x2,….,xm are positive integers.  

                                       �
𝒏𝒏

𝒌𝒌𝟏𝟏,𝒌𝒌𝟐𝟐, … ,𝒌𝒌𝒎𝒎� =  𝒏𝒏!
𝒌𝒌𝟏𝟏!𝒌𝒌𝟐𝟐!…𝒌𝒌𝒎𝒎!

 

 

 Step 2: Input the values of x1,x2,…,xm into the expanded form. 
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Step 3: Substitute 10=p in the expanded form ∑ 𝑎𝑎𝑖𝑖𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=0  , if all 𝑎𝑎𝑖𝑖′𝑠𝑠 are single digits 

then extract coefficients as results otherwise go to step 5 if not go to step 7. Where 

a1,a2,…,an are coefficients of the p’s and p = 10. 

Step 4: Write coefficients with digits more than 1 as placeholder in the expansion of 

p. 

 Step 5: Terms of the same powers are added together. 

Step 6: Rearrange terms in descending powers of p. All coefficients in the current 

expansion will be of single digit. 

Step7: Extract the coefficients of the p’s as the result of the power number.  

 

3.4.2   Methodology of the staircase method                      

Given a power number Q = (123)2 convert to equivalent multinomial expansion by 

inserting powers of p = 10 as coefficients of the digits in the number as shown 

below: 

Q = (123)2 = (1*102+2*101+3*100)2  

                  = (1*p2+2*p1+3*p0)2  where p=10 

In general if x1 , x2 ,x3 ,xm are order digits of the number Q  then Q =(x1x2x3…xm)n is 

the required number, where n is a positive integer. 

                ⇒ Q= (x1pm-1+x2pm-2+…+xmp0)n  

                          = (y1+y2+…+ym)n               ,where  y1 = x1pm-1, y2 = x2pm-2, y3 = xmp0 

Step 0: Convert ( x1x2x3…xm)n to Multinomial form, i.e.,  

                                                   Q = (x1pm-1+x2pm-2+…+xmp0)n                            

                                                                                       = (y1+y2+…+ym)n               , where yt = xtpm-t 

From the Multinomial Summation; 

Q = (y1+y2+…+ym)n    is expressed as 
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(y1+y2+…+ym)n      = � � 𝑛𝑛
k1,k2,k3

�y1
k1 y2

k2 … ym
km

k1+k2+⋯+km  =n  
 

Step1 :Expand the multinomial using the staircase multinomial expansion, i.e. 

  (pm-tx1+p1x2+…+p0xm)n = � � 𝑛𝑛
𝑘𝑘1,𝑘𝑘2,𝑘𝑘𝑚𝑚

�∏  xt
m
t=1

kt p(m−t)k t

𝑘𝑘1+𝑘𝑘2+⋯+𝑘𝑘𝑚𝑚
 

                                              Where 1≤t≤m, 

                                           P=terms determinant                                      

                                            x1,x2,….,xm are positive integers.  

                                       �
𝒏𝒏

𝒌𝒌𝟏𝟏,𝒌𝒌𝟐𝟐, … ,𝒌𝒌𝒎𝒎� =  𝒏𝒏!
𝒌𝒌𝟏𝟏!𝒌𝒌𝟐𝟐!…𝒌𝒌𝒎𝒎!

 

 

Step 2: Input the values  of x1,x2,…,xm into the expanded form . 

Step 3: The results of the terms are now  arranged in the staircase form starting with 

the term that contains p0 followed by p1,p2,…,pm. 

Step 4: Add staircase digit wise, one digit to the left and placing them successively 

beneath the previous coefficient. 

       

3.5.1 Computing the cubes of integers, using the coefficients method (3digits) 

Methodology: 

Problem: Evaluate Q=(x1x2x3)3 using the Modified Detached Coefficients 

method. 

Step0: Convert Q to a multinomial, Q=(p2x1+p1x2+p0x3)3 

Step1: Use the staircase multinomial expansion to expand (p2x1+p1x2+p0x3)3 

  Q = (p2x1+p1x2+p0x3)3 = p6(x1
3) + p5(3x1

2x2) + p4(3x1x2
2+3x1

2x3) + p3(x2
3+6x1x2x3) 

+ p2(3x2
2x3+3x1x3

2) + p1(3x2x3
2) + p0 (x3

3)--------(1) 

Step 2: Input the values of x1,x2,x3 into equation (1) in step (1) 
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Step 3: Write coefficients with digits more than 1 as placeholder in the expansion of 

p 

 Step 4: Terms of the same powers are added together. 

Step5: Rearrange terms in descending powers of p. All coefficients in the current 

expansion will be of single digit. 

Step 6: Extract the coefficients of the p’s as the result of the power number.  

 

Example 5:                                      

 Computing Q = (123)3, Using the coefficients method. 

Solution: 

Step0: Q = (123)3 = (p2x1+px2+p0x3)3    

Step1: Use the staircase multinomial expansion to expand (p2x1+p1x2+p0x3)3 

  (p2x1+p1x2+p0x3)3 = 

 p6(x1
3) + p5(3x1

2x2)+p4(3x1x2
2+3x1

2x3)+p2(3x2
2x3+3x1x3

2)+p1(3x2x3
2)+p0(x3

3)-------

(1)  

Step 2: Input the values of x1=1,x2 = 2,x3 = 3 in (1) 

 (123)3  =(1p2+2p+3p0)3=p6(1)+p5(6)+p4(21)+p3(44)+p2(63)+p1(54)+p0(27) when            

10 = p 

=    p6(1)+p5(6)+p4[2(10)+1]+p3[4(10)+4]+p2[6(10)+3]+p1[5(10)+4]+p0[2(10)+7]  

= p6(1)+p5(6)+p4[2(p)+1]+p3[4(p)+4]+p2[6(p)+3]+p1[5(p)+4]+p0[2(p)+7]  

                            = p6(1)+p5(6)+2p5+p4+4p4+4p3+6p3+3p2+5p2+4p1+2p1+7p0 

                                         = 1p6+8p5+5p4+10p3+8p2+6p1+7p0 

                                        =1p6+8p5+5p4+(p)p3+8p2+6p1+7p0 

                           =1p6+8p5+5p4+1p4+8p2+6p1+7p0 

                                        =1p6+8p5+6p4+0p3+8p2+6p1+7p0 
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Therefore (123)3 = 1860867 

        

3.5.2 Computing the cubes of integers, using the staircase method (3digits). 

Methodology: 

Problem: Evaluate Q = (x1x2x3)3 by Staircase Method. 

Step 0: Convert Q to a multinomial form Q= (p2x1+p1x2+p0x3)3  ,when p=10 

 Step 1: Expand (p2x1+p1x2+p0x3)3   using the multinomial expansion. 

Q= (p2x1+p1x2+p0x3)3  = p6(x1
3) + p5(3x1

2x2) + p4(3x1x2
2+3x1

2x3) + p3(x2
3+6x1x2x3) + 

p2(3x2
2x3+3x1x3

2) + p1(3x2x3
2) + p0(x3

3)  

 Q=(x1x2x3)3 = P6(x1
3) + p5(3x1

2x2) + p4(3x1x2
2+3x1

2x3) + p3(3x2
2x3+3x1x3

2) + 

p2(3x2x3
2) + p0(x3

3)-----(1) when p=10. 

Step 2: Input the values of x1,x2,x3 into equation(1) in step (1). 

Step 3: Arrange the coefficients of pth powers in the staircase form by starting 

coefficient of p0 on the first line placing the coefficient of p1,p2,…,pm with the last 

digit of pi listed below the last but one digit of pi-1  . 

Step4: Add staircase numbers arrangement column-wise as done in multiplication of 

two numbers. 

 

Example 6:  

Computing Q=(123)3 , using the staircase method  

Step 0: Q = (123)3 =(p2x1+px2+p0x3)3    

Step 1: Use the staircase multinomial expansion to expand (p2x1+p1x2+p0x3)3 

  (p2x1+p1x2+p0x3)3 = p6(x1
3) + p5(3x1

2x2) + p4(3x1x2
2+3x1

2x3) + p2(3x2
2x3+3x1x3

2) + 

p1(3x2x3
2) + p0(x3

3)-------(1)  

 Step 2: Input the values of x1=1,x2 = 2,x3 = 3 into equation(1) in step(1) 
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 (123)3  =(1p2+2p+3p0)3=p6(1)+p5(6)+p4(21)+p3(44)+p2(63)+p1(54)+p0(27)        when 

10 = p 

 

(123)3                        =                       27 

                                                        +54 

                                                     +63 

                                                  +44 

                                               +21 

                                            +06 

                                         +01 

(123)3                     =            1860867                           

 

 

 

 

 

 

  



   
 

33 

CHAPTER 4 

ANALYSIS AND RESULTS 

4.0 INTRODUCTION  

Ward (2007) Method of Detached Coefficients involves selecting the coefficients of 

polynomial terms and putting them together as the result of a power number.  

Ward (2007) used the calculator to show power numbers that produces Binomial and 

Multinomial coefficients. Ward (2007) gave the examples below: 

(i) (1 + x )2 = 1 + 2x + x2    …………………….(1) 

112 = 121 

(ii) ( 1+x )3 = 1 + 3x + 3x2 + x3  ……………………..(2) 

113  = 1331 

(iii) ( x1 + x2 )5 =  x1
5 + 5x1

4 x2+ 10x1
3x2

2 + 10x1
2x3

3 +5x1x2
4 + x2

5 

…………..(3) 

115 ≠ 15101051 

115 = 161051   and not 15101051  

     The equations above can be written as follows: 

    Equation (1) can be written as : 

   (11𝑥𝑥1
0 + 1𝑥𝑥2

1)2 = 1(𝑥𝑥1
0)2 + 2(𝑥𝑥1

0)(𝑥𝑥2
1) + 1(𝑥𝑥2

1)2 

        112 = 121 

   Equation (2) can be written as: 

(1𝑥𝑥1
0 + 1𝑥𝑥2

1)3 = 1(𝑥𝑥1
0)3 + 3(𝑥𝑥1

0)2(𝑥𝑥2
1) +3(𝑥𝑥1

0)1(𝑥𝑥2
1)2 + 1(𝑥𝑥2

1)3 

   113 = 1331  

 Where 𝑥𝑥1
0 = 1 and 𝑥𝑥 =  𝑥𝑥2

1 

Also, equation (3) can be written as: 
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( p1x1 +p0x2 )5 = p5 (x1
5 )+p4(5x1

4 x2  )+p3(10x1
3x2

2 )+ p2(10x1
2x3

3 )+ p1(5x1x2
4 )+p0( 

x2
5 ) 

Using the method of Ward (2007) to find the result of a power number becomes a 

problem when the coefficients of a term is more than 1 digit. For example, the 

coefficients of  x1
3x2

2  and   x1
2x3

3 are 10 each which are two digits. Hence it is a 

problem to use the method of Ward (2007) to find 115. 

Below are the methods of solution used to resolve the problem of Ward (2007). 

  

4.1.1 Computing the fifth power of integers, using the modified detached 

coefficients method (2digits). 

Problem: Evaluate Q=(x1x2)5 using the Modified Detached Coefficients method. 

Algorithm 

Step 0: Convert Q to a binomial, Q=( p1x1 +p0x2 )5  

Step 1: Use the multinomial expansion to expand ( p1x1 +p0x2 )5  

 ( p1x1 +p0x2 )5 = p5 (x1
5 ) + p4(5x1

4 x2  ) + p3(10x1
3x2

2 ) + p2(10x1
2x3

3 ) + p1(5x1x2
4 ) 

+                   p0( x2
5 )….(1) 

Step 2: Input the values of x1, x2 into equation (1) in step (1) 

Step 3: Write coefficients with digits more than 1 as placeholder in the expansion of 

p. 

 Step 4: Terms of the same powers are added together. 

Step 5: Rearrange terms in descending powers of p. All coefficients in the current 

expansion will be of single digit. 

Step 6: Extract the coefficients of the p’s as the result of the power number.  
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Illustration Ia:                                      

 Compute Q = (11)5,Using the Modified Detached Coefficients Method. 

Solution steps: 

Step0: Q = (11)5=(p1x1+p0x2)5    

Step1: Use the multinomial expansion to expand (p1x1+p0x2)5 

( p1x1 +p0x2)5 = p5 (x1
5 ) + p4(5x1

4 x2  ) + p3(10x1
3x2

2 ) + p2(10x1
2x3

3 ) + p1(5x1x2
4 ) 

+                   p0( x2
5 )….(1) 

Step2: Input the values of x1=1,x2 =1 in step (1) 

 (11)5  =(1p1+1p0)5= p5(1)+p4(5)+p3(10)+p2(10)+p1(5)+p0(1)        when 10 = p 

                                  = p5(1)+p4(5)+p3(p)+p2(p)+p1(5)+p0(1) 

                                  = p5(1)+p4(5)+p4+p3+p1(5)+p0(1)  

                                  = 1p5+ 6p4+p3+5p1+1p0 

                                  = 1p5+ 6p4+1p3+0p2+5p1+1p0 

The coefficients are appended in their order of placement. 

Therefore (11)5 = 161501 

NB: The coefficient of an absent pm  is zero, where m is the positive exponent of p. 

 

4.1.2 Computing the squares of integers, using the modified detached 

coefficients method (4digits). 

Problem: Evaluate Q = (x1x2x3x4)2 using the modified detached coefficient 

method. 

Algorithm. 

Step 0 : Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3    

 Step 1: Use the  multinomial expansion to expand (p3x1+p2x2+p1x3+p0x4)2 

 (p3x1+p2x2+p1x3+p0x4)2 
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 = 

p6(x1
2)+p5(2x1x2)+p4(x2

2+2x1x3)+p3(2x1x4+2x2x3)+p2(2x2x4+x3
2)+p1(2x3x4)+p0(x4

2)--

-(1) Step 2: Input the values of x1,x2,x3,x4 in (1) 

Step 3: The coefficients of the pth powers starting from the highest power to the 

lowest power becomes the result of (x1x2x3x4)2 when 10=p. 

 

Illustration Ib: 

 Computing Q=(1023)2,Using the Modified Detached Coefficients Method. 

Solution steps: 

  (p3x1+p2x2+p1x3+p0x4)2 = 

 = 

p6(x1
2)+p5(2x1x2)+p4(x2

2+2x1x3)+p3(2x1x4+2x2x3)+p2(2x2x4+x3
2)+p1(2x3x4)+p0(x4

2)--

-(1)  

Step 2: Input the values of x1=1 ,x2 =0,x3=2,x4 =3 in (1), we have; 

(1023)2      =(1p3+0p2+2p1 +3p0)2 = p6(1)+p5(0)+p4(4)+p3(6)+p2(4)+p1(12)+p0(9) 

                  =1p6+0p5+4p4+6p3+4p2+12p1+9p0 

                 =1p6+0p5+4p4+6p3+4p2+(10+2)p1+9p0 

                       =1p6+0p5+4p4+6p3+4p2+(p+2)p1+9p0 

                =1p6+0p5+4p4+6p3+4p2+p2+2p1+9p0 

                =1p6+0p5+4p4+6p3+5p2+2p1+9p0 

The coefficients are appended in order of their placement 

Therefore (1023)2=1046529 
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4.1.3 Computing the squares of integers, using the modified detached 

coefficients method (5digits). 

Problem: Evaluate Q = (x1x2x3x4x5)2 using the modified detached coefficient 

method. 

Algorithm. 

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)2 

Step1: Use the multinomial expansion to expand (p4x1+p3x2+p2x3+P1x4+p0x5)2 

 (p4x1+p3x2+p2x3+p1x4+p0x5)2 = 

 

p8(x1
2)+p7(2x1x2)+p6(x2

2+2x1x3)+p5(2x1x4+2x2x3)+p4(2x1x5+2x2x4+x3
2)+p3(2x2x5+2x

3x4)+ 

 p2(2x3x5+x4
2)+p1(2x4x5)+p0(x5

2) ---(1)  

Step 2: Input the values of x1,x2,x3,x4,x5 in (1) 

Step 3: The coefficients of the pth powers starting from the highest power to the 

lowest power becomes the result of (x1x2x3x4x5)2 when 10=p 

 

Illustration Ic: 

Compute Q=(10011)2 ,Using the Modified Detached Coefficients Method. 

Solution steps: 

Step 0: Convert Q to a multinomial form Q= (p4x1+p3x2+p2x3+p1x4+p0x5)2 

Step1: Use the staircase multinomial expansion to expand 

(p4x1+p3x2+p2x3+P1x4+p0x5)2 

  (p4x1+p3x2+p2x3+p1x4+p0x5)2 = 

p8(x1
2)+p7(2x1x2)+p6(x2

2+2x1x3)+p5(2x1x4+2x2x3)+p4(2x1x5+2x2x4+x3
2)+p3(2x2x5+2x

3x4)+ 
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p2(2x3x5+x4
2)+p1(2x4x5)+p0(x5

2) ---(1)  

Step2: Input the values of x1=1,x2=0,x3=0,x4=1,x5=1 in (1) 

(10011)2=(p3x1+p2x2+p1x3+p0x4)2 = 

p8(1)+p7(0)+p6(0)+p5(2)+p4(2)+p3(0)+p2(1)+p1(2)+p0(1) 

               =1p8+0p7+0p6+2p5+2p4+0p3+1p2+2p1+1p0 

The coefficients appended are in their order of placement. 

  Therefore (10011)2 =100220121 

 

4.1.4 Computing the cubes of integers, using the modified detached coefficients 

method (4digits). 

Problem: Evaluate Q = (x1x2x3x4)3 using the modified detached coefficient 

method. 

Algorithm. 

Step 0 : Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3   

  Step 1: Use the multinomial expansion to expand (p3x1+p2x2+p1x3+p0x4)3 

(p3x1+p2x2+p1x3+p0x4)3 = 

 

p9(x1
3)+p8(3x2

1x2)+p7(3x1x2
2+3x1

2x3)+p6(x2
3+6x1x2x3+3x1

2x4)+p5(3x2
2x3+3x1x3

2+6x1

x2x4)+ 

p4(3x2x3
2+3x2

2x4 +6x1x3x4)+p3(x3
3+6x2x3x4+3x1x4

2)+p2(3x3
2x4+3x2x4

2)+p1(3x3x4
2)+ 

p0(x4
3)----(1) 

Step2: Input the values of x1,x2,x3,x4 in (1) 

Step3: The coefficients of the pth powers starting from the highest power to the 

lowest power becomes the result of (x1x2x3x4)3 when 10=p. 
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Illustration Id: 

 Compute Q= (1023)3, Using the Modified Detached Coefficients Method.  

Solution steps: 

 Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3                                                 

Step 1: (p3x1+p2x2+p1x3+p0x4)3 = p9(x1
3) + p8(3x2

1x2) + p7(3x1x2
2+3x1

2x3) + 

p6(x2
3+6x1x2x3+3x1

2x4) + p5(3x2
2x3+3x1x3

2+6x1x2x4) + p4(3x2x3
2+3x2

2x4 + 6x1x3x4) + 

p3(x3
3+6x1x3x4+3x1x4

2) + p2(3x3
2x4+3x1x4

2) + p1(3x3x4
2) + p0(x4

3)----(1) 

Step2: Input the values of x1=1,x2=0,x3=2,x4=3 in (1), we have; 

(1023)3 = p9(1)+p8(0)+p7(6)+p6(9)+p5(12)+p4(36)+p3(35)+p2(36)+p1(54)+ p0(27) 

            = p9(1)+p8(0)+p7(6)+p6(9)+p5(10+2)+p4[3(10)+6]+p3[3(10)+5]+p2[3(10)+6]+ 

                p1[5(10)+4]+p0[2(10)+7]  

           =  

p9(1)+p8(0)+p7(6)+p6(9)+p5(p+2)+p4[3(p)+6]+p3[3(p)+5]+p2[3(p)+6]+p1[5(p)+4]+  

                p0[2(p)+7] 

          =  1p9+0p8+6p7+9p6+p6+2p5+3p5+6p4+3p4+5p3+3p3+6p2+5p2+4p1+ 2p1+7p0

  

             =1p9+0p8+6p7+10p6+5p5+9p4+8p3+11p2+6p1+7p0 

             =1p9+0p8+6p7+10p6+5p5+9p4+8p3+(10+1)p2+6p1+7p0 

             =1p9+0p8+6p7+pp6+5p5+9p4+8p3+(p+1)p2+6p1+7p0 

            =1p9+0p8+6p7+p7+5p5+9p4+8p3+p3+1p2+6p1+7p0 

            =1p9+0p8+7p7+5p5+9p4+9p3+1p2+6p1+7p0 

        =1p9+0p8+7p7+0p6+5p5+9p4+9p3+1p2+6p1+7p0 

The coefficients are appended in their order of placement. 

Therefore (1023)3 = 1070599167 
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4.1.5 Computing the cubes of integers, using the modified detached coefficients 

method (5digits). 

Problem: Evaluate Q = (x1x2x3x4x5)3using the modified detached coefficient 

method. 

Algorithm.   

Step 0: Convert Q to a multinomial form Q= (p4x1+p3x2+p2x3+p1x4+p0x5)3 

  Step 1: Use the multinomial expansion to expand (p4x1+p3x2+p2x3+p1x4+p0x5)3 

(p4x1+p3x2+p2x3+p1x4+p0x5)3 = 

P12(x1
3)+p11(3x2

1x2)+p10(3x1x2
2+3x1

2x3)+p9(x2
3+6x1x2x3+3x1

2x4)+p8(3x2
2x3+3x1

2x5+6

x1x2x4)+  

p7(3x2x3
2+3x2

2x4 

+6x1x3x4+6x1x2x5)+p6(x3
3+6x2x3x4+3x1x4

2+6x1x3x5+3x2
2x5)+p5(3x3

2x4+3x2x4
2 

+6x2x3x5+6x1x4x5)+p4(3x3x4
2+3x3

2x5+6x2x4x5+3x1x5
2)+p3(x4

3+6x3x4x5+3x2x5
2)+             

p2(3x4
2x5+3x3x5

2) +p1(3x4x5
2)+p0(x5

3)------(1) 

Step 2: Input the values of x1,x2,x3,x4,x5 in (1) 

 Step 3: The coefficients of the pth powers starting from the highest power to the 

lowest power becomes the result of (x1x2x3x4x5)3 when 10=p 

 

Illustration Ie: 

Compute (10011)3, Using the Modified Detached Coefficients Method. 

 Solution steps:                                                 

Step1: (p4x1+p3x2+p2x3+p1x4+p0x5)3 = p12(x1
3) + p11(3x2

1x2) + p10(3x1x2
2+3x1

2x3) + 

p9(x2
3+6x1x2x3+3x1

2x4) + p8(3x2
2x3+3x1

2x5+6x1x2x4) + 

p7(3x2x3
2+3x2

2x4+6x1x3x4+6x1x2x5) + p6(x3
3+6x2x3x4+3x1x4

2+6x1x3x5+3x2
2x5) + 
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p5(3x3
2x4+3x2x4

2+6x2x3x5+6x1x4x5) + p4(3x3x4
2+3x3

2x5+6x2x4x5+3x1x5
2) + 

p3(x4
3+6x3x4x5+3x2x5

2)+  p2(3x4
2x5+3x3x5

2) + p1(3x4x5
2) + p0(x5

3)------(1)  

Step2: Input the values of x1=1,x2=0,x3=0,x4=1,x5=1 into equation (1),we have 

(10011)3=(1p4+0p3+0p2+1p1+1p0)3 

               =P12(1)+p11(0)+p10(0)+p9(3)+p8(3)+p7(0)+p6(3)+p5(6)+p4(3)+p3(1)+p2(3) 

+p1(3)+p0(1) 

               = 1P12+0p11+0p10+3p9+3p8+0p7+3p6+6p5+3p4+1p3+3p2+3p1+1p0 

The coefficients appended are in their order of placement. 

Therefore (10011)3  = 1003303631331 

 

 4.2 COMPUTING THE FIFTH POWER OF INTEGERS, USING THE 

STAIRCASE METHOD (2digits). 

Problem: Evaluate Q=(x1x2)5 using the Modified Detached Coefficients method. 

Algorithm 

Step0: Convert Q to a binomial, Q=( p1x1+p0x2 )5  

Step1: Use the  multinomial expansion to expand ( p1x1 +p0x2 )5  

 ( p1x1 +p0x2 )5 = p5 (x1
5 )+p4(5x1

4 x2  )+p3(10x1
3x2

2 )+ p2(10x1
2x3

3 )+ p1(5x1x2
4 

)+p0( x2
5 )….(1) 

Step 2: Input the values of x1,x2 into equation (1) of step (1). 

Step 3: Arrange the coefficients of the pth powers in the staircase form. 

Step 4: Add staircase digit wise, one digit to the left and placing them successively 

beneath the previous coefficient. 
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Illustration IIa:                                      

Computing Q = (11)5,Using the Staircase Method. 

Solution steps: 

Step 0: Q = (11) = (p1x1+p0x2)5    

Step 1: Use the multinomial expansion to expand (p1x1+p0x2)5 

(p1x1 +p0x2)5 = p5 (x1
5 )+p4(5x1

4 x2 )+p3(10x1
3x2

2 )+ p2(10x1
2x3

3 )+ p1(5x1x2
4 )+p0( 

x2
5 )….(1) 

Step2: Input the values of x1=1,x2 =1 in step (1) 

 (11)5  =(1p1+1p0)5= p5(1)+p4(5)+p3(10)+p2(10)+p1(5)+p0(1) 

                                =                                                             01 

     +05 

                                                                                         +10 

                                                                                       +05 

                                                                                     +01 

 (11)5                        =                                                       165051 

 

4.2.1 Computing the squares of integers, using the staircase method (4digits). 

Problem: Evaluate Q = (x1x2x3x4)2 by Staircase Method. 

Algorithm. 

Step 0 : Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3  ,when p=10 

Step 1: Use the staircase multinomial expansion to expand (p3x1+p2x2+p1x3+P0x4)2 

  (p3x1+p2x2+p1x3+p0x4)2 = 

 = 

p6(x1
2)+p5(2x1x2)+p4(x2

2+2x1x3)+p3(2x1x4+2x2x3)+p2(2x2x4+x3
2)+p1(2x3x4)+p0(x4

2)--

-(1) 
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Step 2: Input the values of x1,x2,x3,x4 in step(1) 

Step 3: Arrange the coefficients of the pth powers in the staircase form  

Step 4: Add staircase digit wise, one digit to the left and placing them successively 

beneath the previous coefficient. 

 

Illustration IIb 

Compute Q=(1023)2 , Using the staircase method. 

Solution steps: 

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3  ,when p=10 

Step 1: (p3x1+p2x2+p1x3+p0x4)2 = 

     = 

p6(x1
2)+p5(2x1x2)+p4(x2

2+2x1x3)+p3(2x1x4+2x2x3)+p2(2x2x4+x3
2)+p1(2x3x4)+p0(x4

2)--

-(1) 

Step 2: Input the values of x1=1 ,x2 =0,x3=2,x4 =3 in (1), we have; 

(1023)2     = p6(1)+p5(0)+p4(4)+p3(6)+p2(4)+p1(12)+p0(9) 

                 =                                                                        09 

                                                                                       +12 

                                                                                     +04 

                                                                                   +06 

                                                                                +04 

                                                                             +00 

                                                                          +01 

 (1023)2                =                                                     1046529 
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4.2.2 Computing the squares of integers, using the staircase method (5digits). 

Problem: Evaluate Q = (x1x2x3x4x5)2 using the modified detached coefficient 

method. 

Algorithm. 

Step 0 : Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)2  

Step 1: Use the staircase multinomial expansion to expand 

(p4x1+p3x2+p2x3+P1x4+p0x5)2 

  (p4x1+p3x2+p2x3+p1x4+p0x5)2 = 

p8(x1
2)+p7(2x1x2)+p6(x2

2+2x1x3)+p5(2x1x4+2x2x3)+p4(2x1x5+2x2x4+x3
2)+p3(2x2x5+2x

3x4)+ 

p2(2x3x5+x4
2)+p1(2x4x5)+p0(x5

2) ---(1)  

Step 2: Input the values of x1,x2,x3,x4,x5 in (1) 

Step 3: Arrange the coefficients of the pth powers in the staircase form. 

Step 4: Add staircase digit wise, one digit to the left and placing them successively 

beneath the previous coefficient. 

 

Illustration IIc: 

Compute Q= (10011)2 , Using the staircase method (5 digits). 

Solution steps: 

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3   

Step 1: Use the staircase multinomial expansion to expand 

(p4x1+p3x2+p2x3+P1x4+p0x5)2 

  (p4x1+p3x2+p2x3+p1x4+p0x5)2 = 
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 = 

p8(x1
2)+p7(2x1x2)+p6(x2

2+2x1x3)+p5(2x1x4+2x2x3)+p4(2x1x5+2x2x4+x3
2)+p3(2x2x5+2x

3x4)+ 

p2(2x3x5+x4
2)+p1(2x4x5)+p0(x5

2) ---(1)  

Step 2: Input the values of x1=1, x2=0,x3=0,x4=1,x5=1 in (1) 

(10011)2 = (1p3+0p2+0p1x3+1p0)2   

                =  p8(1)+p7(0)+p6(0)+p5(2)+p4(2)+p3(0)+p2(1)+p1(2)+p0(1)   

                                                                                                           01 

                                                                                                       +02 

                                                                                                    +01 

                                                                                                 +00 

                                                                                              +02 

                                                                                           +02 

                                                                                         +00 

                                                                                       +00 

                                                                                     +01 

(10011)2 =                                                                        100220121 

 

4.2.3 Computing the cubes of integers, using the staircase method (4digits). 

Problem: Evaluate Q = (x1x2x3x4)3  using the  Staircase Method. 

Algorithm. 

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3  ,when p=10 

Step 1: Use the  multinomial expansion to expand (p3x1+p2x2+p1x3+p0x4)3 

(p3x1+p2x2+p1x3+p0x4)3 = 
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p9(x1
3)+p8(3x2

1x2)+p7(3x1x2
2+3x1

2x3)+p6(x2
3+6x1x2x3+3x1

2x4)+p5(3x2
2x3+3x1x3

2+6x1

x2x4)+ 

p4(3x2x3
2+3x2

2x4 +6x1x3x4)+p3(x3
3+6x1x3x4+3x1x4

2)+p2(3x3
2x4+3x1x4

2)+p1(3x3x4
2)+ 

p0(x4
3)----(1) 

Step 2: Input the values of x1,x2,x3,x4 in step(1), result is polynomial in p 

Step 3: Arrange the coefficients of the pth powers in the staircase form  

Step 4: Add staircase digit wise, one digit to the left and placing them successively 

beneath the previous coefficient. 

 

Illustration IId: 

Compute Q=(1023)3 ,Using the staircase method  

Solution steps:                                                          

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3 

Step 1: (p3x1+p2x2+p1x3+p0x4)3 = p9(x1
3) + p8(3x2

1x2) + p7(3x1x2
2+3x1

2x3) + 

p6(x2
3+6x1x2x3+3x1

2x4) + p5(3x2
2x3+3x1x3

2+6x1x2x4) + p4(3x2x3
2+3x2

2x4 + 6x1x3x4) + 

p3(x3
3+6x1x3x4+3x1x4

2) + p2(3x3
2x4+3x1x4

2) + p1(3x3x4
2) + p0(x4

3)----(1) 

Step 2: Input the values of x1=1,x2=0,x3=2,x4=3 into equation in step (1), we have; 

(1023)3= (1p3+0p2+2p1+3p0)3 = p9(1)+p8(0) + p7(6)+p6(9) + p5(12) + p4(36) + p3(35) 

+ p2(36) + p1(54) + p0(27) 

          

 

 

 

 



   
 

47 

    =                                                                                                      27 

                                                                                                               +54 

                                                                                                           +36 

                                                                                                        +35       

                                                                                                     +36 

                                                                                                  +12 

                                                                                               +09 

                                                                                            +06 

                                                                                         +00 

                                                                                       +01 

(1023)3                             =                                                           1070599167 

           

4.2.4 Computing the cubes of integers, using the staircase method (5digits). 

Problem: Evaluate Q = (x1x2x3x4x5)3 using the Staircase method. 

Algorithm. 

Step 0 : Convert Q to a multinomial form Q= (p4x1+p3x2+p2x3+p1x4+p0x5)3  

Step 1: Use the staircase multinomial expansion to expand 

(p4x1+p3x2+p2x3+p1x4+p0x5)3 

(p4x1+p3x2+p2x3+p1x4+p0x5)3 = p12(x1
3) + p11(3x2

1x2) + p10(3x1x2
2+3x1

2x3) + 

p9(x2
3+6x1x2x3+3x1

2x4) + p8(3x2
2x3+3x1x3

2+6x1x2x4) + p7(3x2x3
2+3x2

2x4 + 

6x1x3x4+6x1x2x5) + p6(x3
3+6x2x3x4+3x1x4

2+6x1x3x5+3x2
2x5) + p5(3x3

2x4+3x2x4
2+ 

6x2x3x5+6x1x4x5) + p4(3x3x4
2+3x3

2x5+6x2x4x5+3x1x5
2) + p3(x4

3+6x3x4x5+3x2x5
2) +  

p2(3x4
2x5+3x3x5

2) + p1(3x4x5
2) + p0(x5

3)------(1) 

Step 2: Input the values of x1,x2,x3,x4,x5 in step (1)  

 Step 3: Arrange the coefficients of the pth powers in the staircase form  
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Step 4: Add staircase digit wise, one digit to the left and placing them successively 

beneath the previous coefficient. 

 
Illustration IIe:  

Compute Q = (10011)3,Using the staircase method. 

 Solution steps: 

Step 0: Convert Q to a multinomial form Q= (p4x1+p3x2+p2x3+p1x4+p0x5)3 

 Step 1: (p4x1+p3x2+p2x3+p1x4+p0x5)3 = p12(x1
3) + p11(3x2

1x2) + p10(3x1x2
2+3x1

2x3) + 

p9(x2
3+6x1x2x3+3x1

2x4) + p8(3x2
2x3+3x1x3

2+6x1x2x4) + p7(3x2x3
2+3x2

2x4 + 

6x1x3x4+6x1x2x5) + p6(x3
3+6x2x3x4+3x1x4

2+6x1x3x5+3x2
2x5) + p5(3x3

2x4+3x2x4
2 + 

6x2x3x5+6x1x4x5) + p4(3x3x4
2+3x3

2x5+6x2x4x5+3x1x5
2) + p3(x4

3+6x3x4x5+3x2x5
2) +  

p2(3x4
2x5+3x3x5

2) + p1(3x4x5
2) + p0(x5

3)------(1)  

Step 2: Input the values of x1=1,x2=0,x3=0,x4=1,x5=1 in (1),we have 

(10011)3=P12(1)+p11(0)+p10(0)+p9(3)+p8(3)+p7(0)+p6(3)+p5(6)+p4(3)+p3(1)+p2(3) 

+p1(3)+p0(1) 

               = 1P12+0p11+0p10+3p9+3p8+0p7+3p6+6p5+3p4+1p3+3p2+3p1+1p0 

               =                                                                                                      01 
                                                                                                                   +03  
                                                                                                                +03 
                                                                                                             +01 
                                                                                                          +03 
                                                                                                       +06 
                                                                                                    +03 
                                                                                                +00 
                                                                                             +03 
                                                                                          +03 
                                                                                       +00 
                                                                                    +00 
                                                                                  +01 
(10011)3                        =                                                     1003303631331 
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4.3 COMPARING THE MODIFIED DETACHED COEFFICIENTS 

METHOD WITH THE STAIRCASE METHOD. 

The comparison involves comparing the steps in computing positive integers raised 

to any Positive nth power by using both the modified detached coefficients method 

and the staircase method. Some examples are used to illustrate the steps involve in 

solving powers of positive integers using the methods mentioned above. 

 

4.3.1 Computing the cubes of integers, using the modified detached coefficients 

method. 

Problem: Evaluate Q = (x1x2x3x4)3 using the modified detached coefficient 

method. 

Algorithm. 

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3   

Step1: Use the staircase multinomial expansion to expand (p3x1+p2x2+p1x3+p0x4)3 

(p3x1+p2x2+p1x3+p0x4)3 = p9(x1
3) + p8(3x2

1x2) + p7(3x1x2
2+3x1

2x3) + 

p6(x2
3+6x1x2x3+3x1

2x4) + p5(3x2
2x3+3x1x3

2+6x1x2x4) + p4(3x2x3
2+3x2

2x4 + 6x1x3x4) + 

p3(x3
3+6x1x3x4+3x1x4

2) + p2(3x3
2x4+3x1x4

2) + p1(3x3x4
2) + p0(x4

3)----(1) 

Step 2: Input the values of x1,x2,x3,x4 in equation (1) of step (1). 

Step 3: The coefficients of the pth powers starting from the highest power to the 

lowest power becomes the result of (x1x2x3x4)3 when 10=p. 
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Illustration IIIa: 

Compute Q= (1023)3, Using the Modified Detached Coefficients Method  

Solution steps:     

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3                                                 

Step: (p3x1+p2x2+p1x3+p0x4)3 = p9(x1
3) + p8(3x2

1x2) + p7(3x1x2
2+3x1

2x3) + 

p6(x2
3+6x1x2x3+3x1

2x4) + p5(3x2
2x3+3x1x3

2+6x1x2x4) + p4(3x2x3
2+3x2

2x4 + 6x1x3x4) + 

p3(x3
3+6x1x3x4+3x1x4

2) + p2(3x3
2x4+3x1x4

2) + p1(3x3x4
2) + p0(x4

3)-----(1) 

Step 2: Input the values of x1=1,x2=0,x3=2,x4=3 in (1), we have; 

(1023)3       = p9(1)+p8(0)+p7(6)+p6(9)+p5(12)+p4(36)+p3(35)+p2(36)+p1(54)+ p0(27) 

                  = 

p9(1)+p8(0)+p7(6)+p6(9)+p5(10+2)+p4[3(10)+6]+p3[3(10)+5]+p2[3(10)+6]+ 

                   p1[5(10)+4]+  p0[2(10)+7] =    p9(1) + p8(0) + p7(6) + p6(9) + p5(p+2) + 

p4[3(p) +          

                   6]+p3[3(p) + 5]+p2[3(p)+6] + p1[5(p)+4] + p0[2(p)+7] 

                =  1p9+0p8+6p7+9p6+p6+2p5+3p5+6p4+3p4+5p3+3p3+6p2+5p2+4p1+ 

2p1+7p0  

                       =1p9+0p8+6p7+10p6+5p5+9p4+8p3+11p2+6p1+7p0 

                    =1p9+0p8+6p7+10p6+5p5+9p4+8p3+(10+1)p2+6p1+7p0 

                      =1p9+0p8+6p7+pp6+5p5+9p4+8p3+(p+1)p2+6p1+7p0 

                      =1p9+0p8+6p7+p7+5p5+9p4+8p3+p3+1p2+6p1+7p0 

                       =1p9+0p8+7p7+5p5+9p4+9p3+1p2+6p1+7p0 

                =1p9+0p8+7p7+0p6+5p5+9p4+9p3+1p2+6p1+7p0 

The coefficients appended are in their order of placement.  

Therefore (1023)3 = 1070599167 
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 4.3.2 Computing the cubes of integers, using the staircase method (4digits). 

Problem: Evaluate Q = (x1x2x3x4)3 by Staircase Method 

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3  ,when p=10 

Step 1: Use the staircase multinomial expansion to expand (p3x1+p2x2+p1x3+p0x4)3 

(p3x1+p2x2+p1x3+p0x4)3 = p9(x1
3) + p8(3x2

1x2) + p7(3x1x2
2+3x1

2x3) + 

p6(x2
3+6x1x2x3+3x1

2x4) + p5(3x2
2x3+3x1x3

2+6x1x2x4) + p4(3x2x3
2+3x2

2x4 + 6x1x3x4) + 

p3(x3
3+6x1x3x4+3x1x4

2) + p2(3x3
2x4+3x1x4

2) + p1(3x3x4
2) + p0(x4

3)----(1) 

Step 2: Input the values of x1,x2,x3,x4 in equation (1) of step(1). 

Step 3: Arrange the coefficients of the pth powers in the staircase form  

Step 4: Add staircase digit wise, one digit to the left and placing them successively 

beneath the previous coefficient. 

 

Illustration IIIb:  

Computing  Q=(1023)3  ,Using the staircase method  

Solution steps:                                                          

Step 0: Convert Q to a multinomial form Q= (p3x1+p2x2+p1x3+p0x4)3 

Step1: (p3x1+p2x2+p1x3+p0x4)3 = p9(x1
3) + p8(3x2

1x2) + p7(3x1x2
2+3x1

2x3) + 

p6(x2
3+6x1x2x3+3x1

2x4) + p5(3x2
2x3+3x1x3

2+6x1x2x4) + p4(3x2x3
2+3x2

2x4 + 6x1x3x4) + 

p3(x3
3+6x1x3x4+3x1x4

2) + p2(3x3
2x4+3x1x4

2) + p1(3x3x4
2) + p0(x4

3)----(1) 

Step 2: Input the values of x1=1,x2=0,x3=2,x4=3 into equation in step (1), we have; 

(1023)3= (1p3+0p2+2p1+3p0)3 = p9(1) + p8(0) + p7(6) + p6(9) + p5(12) + p4(36)+ 

p3(35) + p2(36) + p1(54) + p0(27) 
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             =                                                                                                      27 

                                                                                                               +54 

                                                                                                           +36 

                                                                                                        +35       

                                                                                                     +36 

                                                                                                  +12 

                                                                                               +09 

                                                                                            +06 

                                                                                         +00 

                                                                                       +01 

(1023)3                             =                                                           1070599167 

           

4.4 DISCUSSION: 

It can be seen from the illustrations shown in section 4.3.1 and section 4.3.2, the 

steps used in finding Q3 in section 4.3.2 is lesser than the steps used in section 4.3.1. 

 Comparatively, the Staircase method has lesser steps than the Modified Detached 

Coefficients method and therefore the Staircase method will be faster than Modified 

Detached Coefficients method in terms of computation.  

However, the method of Ward (2007), basically looked at powers of numbers that 

produces binomial and multinomial coefficients but the modified detached 

coefficients method generally produces results of positive integers raised to any 

positive power.   

The Modified Detached Coefficients Method and the Staircase Method would 

always produce the same results of any positive integer or integers raised to any 

positive power as shown in  Table 4.1 below. 
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Table 4.1:   Summary of results. 

METHOD NUMBER,(d1d2…dm) POWER,(n) RESULT 

Staircase (123) 2 15129 

Modified Detached 

Coefficient 

(123) 2 15129 

Staircase (1023) 3 1070599167 

Modified Detached 

Coefficient 

(1023) 3 1070599167 

Staircase (10011) 2 100220121 

Modified Detached 

Coefficient 

(10011) 2 100220121 

 

From  table 4.1 above , it is clear that both the Modified Detached Coefficients 

Method and   

Staircase Method produce the same results. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION:  

This research is based on improving the method of Detached Coefficients proposed 

by Ward (2007).  The Staircase Method and the Modified Detached Coefficients 

Method are used to resolve the problem of Ward (2007).   

Also, comparison of the Modified Detached Coefficients Method with the Staircase 

method were made in terms of computing powers of positive integers. 

Examples shown in section 4.3.2 and section 4.3.1 clearly indicates that the Staircase 

Method has lesser steps than the Modified Detached Coefficients Method in terms of 

computation. 

Therefore, the Staircase Method will be faster in terms of computation than the 

Modified Detached Coefficient Method. And  also they produce same results. 

Also, the modified detached coefficients method does not only produce the results of 

power numbers which are binomial coefficients or multinomial coefficients as 

illustrated in sections  

4.0 (i) and 4.0(ii) but it can be used to find the  result of any positive integer(s) raised 

to any positive power. 

 

5.2 RECOMMENDATION 

Since the Modified Detached Coefficients Method can be used to find any positive 

integer to the nth power and based on it’s simple procedure I therefore recommend 

that researchers should research into this method to include negative numbers and 

fractions. 
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