
 

 

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI   

COLLEGE OF SCIENCE  

  

  

DEPARTMENT OF MATHEMATICS  

    

  

     AN ANALYSIS OF RUNGE-KUTTA METHOD IN NON-NEWTONIAN CALCULUS  

  

BY  

  

ZAKARIA ADNAN  

  

  

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS, KWAME  

NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, IN PARTIAL  

FULFILMENT OF THE REQUIREMENT FOR THE AWARDS OF MASTER OF SCIENCE 

DEGREE IN INDUSTRIAL MATHEMATICS  

  

  

  

  

JUNE, 2015  

  

  



 

 

  



 

i   

DECLARATION  

I hereby declare that this submission is my own work towards Master of Science degree and that  

to the best of my knowledge, it contains no material previously published by another person nor  

materials which have been accepted for the award of any other degree of any university, except  

for references cited from extracts, scripts, text books, journals, papers and other sources which  

have been duly acknowledged.  

  

ZAKARIA ADNAN              ……………………………                   ……………………….  

    (PG8146712)                                    Signature                                                Date  

  

I declare that I have supervised the candidate’s research work and I confirmed that the student  

has my permission to present it for assessment.  

  

PROF. I.K DONTWI             ……………………..                        ………………………….  

      (Supervisor)                                  Signature                                                 Date   

Certified by:  

PROF. S. AMPONSAH        ………………………..                        …………………………..  

  (Head of Department)                        Signature                                                Date  

 

 

 

 

 

 

 



 

i
i   

DEDICATION  

This project is dedicated to Almighty Allah, my parents and family members.  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

i
i
i   

ACKNOWLEGEMENT  

One cannot complete a research of this nature without certain amount of guidance, directions and  

support from others.  

Sincere thanks first of all goes to the Almight Allah for making this thesis a success.  

My sincere gratitude also goes to my supervisor, Prof. I.K Dontwi for his patience, support 

and  assistance on this project. I feel especially blessed to have had such a wonderful 

supervisor to  help see this thesis to fruition. Thank you!  

Special thanks and gratitude are also extended to all the lectures of the Mathematics department,  

KNUST for impacting in me further and advance knowledge of Mathematics and its  

applications.  

Many thanks to my parents and all other family members especially Alhaji Zakaria Yakubu,  

Alhaji Karimu Yakubu, Hajia Sirina Yakubu , Menuna Bello for their immense support in my 

educational career. Allah blesses you all.  

Finally, I am most grateful to Mr. Zakaria Amjad, my brother whose immense contribution 

and  support helped to the final outcome of this project work.  

  

  

  

  

  

  

  

  

  

  



 

i
v   

ABSTRACT  

Non-Newtonian Calculus or Multiplicative calculus can be used as a tool wherever a problem  is 

of exponential (relational) in nature. In this thesis the derivation of the Runge-Kutta Method in  

the framework of non-Newtonian (Multiplicative) Calculus is presented. The non-Newtonian 

(Multiplicative) Runge-Kutta Methods of orders 2, 3, and 4 are developed and discussed. The  

non-Newtonian (Multiplicative) Runge-Kutta Method is tested on some selected examples where  

the solutions of the ordinary differential equations are known using developed Matlab codes. The  

results show that for certain family of initial value problem the non-Newtonian (Multiplicative)   

Runge-Kutta method gives better results to the Ordinary Runge-Kutta method.  
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CHAPTER ONE  

  

   INTRODUCTION  

  

1.1 Background of the study  

Isaac Newton and Gottfried Wilhelm Leibnitz in the second half of the 17th century 

independently laid the foundations of differential and integral calculus, the most applicable 

mathematical theory. Differentiation and integration - these two operations are the basic in 

calculus and analysis. Sometimes this calculus is also referred as Newtonian calculus. The basic 

operations of Newtonian calculus (differentiation and integration) are the infinitesimal versions 

of the arithmetic operation of subtraction and addition.   

Michael Grossman and Robert Katz  in the period from 1967 to 1970 indicated in their work [1]  

that infinitely many calculi can be generated independently. Bigeometric calculus [2] which was 

later on introduced by Grossman which gave definitions of a new kind of derivative and integral, 

changing from the roles of subtraction and addition to division and multiplication, and thus 

established a new calculus, called non-Newtonian calculus( Multiplicative calculus). Bashirov et 

al in [3] gave the theoretical background of non-Newtonian (Multiplicative) Calculus. 

NonNewtonian (Multiplicative) Calculus is based on division and multiplication. It is, sometimes 

called exponential or alternative calculus as well.  

Definition of the derivative of non-Newtonian (Multiplicative) Calculus of function f (x) with  

respect to x is as follows:   = lim→   and 

with this definition, a  non- 
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Newtonian (Multiplicative ) Runge Kutta  Method on the complete theory of [3] will be 

presented, taking into consideration the Multiplicative Runge-Kutta Method formulated by 

Aniszewska in [4].  

1.2 Problem Statement  

In numerical analysis, the Runge-Kutta methods are important family of implicit and explicit  

iterative methods for the approximation of solutions of ordinary differential equations. In the  

areas of biology, finance, actuarial science, demography, economics etc. there exist numerous  

mathematical models base on differential equations which are quite hard to solve using standard  

solution methods for ordinary differential equations. Generally in Science and Engineering the  

4th order Runge-Kutta method is preferred because it gives the most accurate approximation to  

initial value problems with a reasonable computational effort. Since the solutions of many of  

these problems are exponential or multiplicative in nature and not additive, the solutions of these  

problems can be accomplished by using Non-Newtonian (Multiplicative) differential equations. 

Therefore the Non-Newtonian (Multiplicative) calculus builds the proper framework for the  

solutions of these problems and it is self-evident to use it also for numerical approximations.  

1.3 Research Objectives  

The main objectives of this research is to:  

1. Develop a Non-Newtonian (Multiplicative) Runge-Kutta Methods for the orders 2, 3 and   

4.  

  

2. Compare the Non-Newtonian(Multiplicative) Runge-Kutta Methods for the orders 2, 3,   

  

       and 4 and the corresponding order of ordinary Runge-Kutta Methods.  
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1.4 Justification   

This research is intended to serve the following purpose:  

1. It will serve as a partial fulfillment of the requirement for the Master of Science Degree in      

Industrial Mathematics at the University of Science and Technology (KNUST), Kumasi.  

2. It will help further research in this new kind of calculus, since Non-Newtonian calculus is   

      still in its infancy.  

1.5 Structure of the thesis  

The rest of the thesis includes four chapters. In chapter two, definitions, basic concepts and 

theorems of non-Newtonian (Multiplicative) Calculus necessary for the understanding of the 

consequent chapters are explained. In chapter three, the derivations of the Ordinary Runge-Kutta 

methods of 2nd, 3rd  and 4th orders are explicitly discussed using the basic ideas formulated by 

Carl David Tolme Runge and Martin Wilhelm Kutta( Runge and Kutta). With the basic 

knowledge in chapter two and the derivations of the Ordinary Runge-Kutta methods, 

nonNewtonian (Multiplicative) Runge-Kutta methods of 2nd, 3rd  and 4th orders are derived. In 

the next chapter (chapter four) examples will be solved using Ordinary Runge-Kutta methods 

and non-Newtonian (Multiplicative) Runge-Kutta methods and the results in both cases analyzed 

and compared. Matlab codes for Ordinary and non-Newtonian (Multiplicative) Runge-Kutta 

methods would also be formulated. The concluding chapter (chapter five) takes into 

consideration the results obtained in chapter four and summaries the important findings in that 

chapter and also provides general conclusions regarding non-Newtonian (Multiplicative) Runge-

Kutta method.  
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CHAPTER TWO  

  

REVIEW OF SOME BASIC DEFINITIONS AND CONCEPTS  

  

2.1. Non-Newtonian (Multiplicative) calculus derivatives The 

Non-Newtonian (Multiplicative) derivative is defined by  

1 

                                                     ∗ = limh→  
f (

f
x
(
+

x)
h)

 h , where   ≠0               

(2.1) 0  

Comparing the non-Newtonian (Multiplicative) derivative (2.1) with the definition of the  

ordinary derivative   

                                   = lim 
f (x + h) − f (x)

                                                          

(2.2)  

 h→ 0 h 

it can be observe that the ordinary difference f (x + h)− f (x) , in the ordinary derivative, is replaced   

f (x+h) 

by the ratio   ( exponential difference) in the non-Newtonian (Multiplicative) derivative  

and  f (x) 

the division by h is replaced by the exponential ratio (i.e. the reciprocal power   ). Thus the  # 

non-Newtonian (Multiplicative) derivative tells us how many times   increases at the instant  or  how 

many times   changes at . It differs from the derivative   , which tells us the rate of  change of 

f at x.  

1 
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The limit, i.e.  limh→  
f (

f
x
(
+

x)
h)

 h in (2.1) is called the non-Newtonian (Multiplicative) 

derivative         0  

or, *derivative of  f  at  x and it can be denoted by either  ∗  or $ ∗ . If  ∗  exists 

for all x  $% 

from some open set &⊆ℝ, (where ℝ denotes real line) then the function  ∗:&→ℝ is well-defined 

[3]. The function  ∗ is called the *derivative of   :&→ℝ. The *derivative of  ∗  is   

called the second *derivative of  f(x) and it is denoted by  ∗∗  or $ ∗∗ . In the same vein, the   
$% 

nth  *derivative of  f(x) can also be defined, which is denoted by  ∗ *  or $ ∗ + for 

,=0,1,2… $% 

where  ∗ = .  

If f (x) is a positive function on A and its derivative at x exists, then we can calculate  

1 

                           ∗= limh→0  
f (

f
x
(
+

x)
h)

 h  

1 

                                    = limh→  
f (

f
x
(
+

x)
h) − f

f (
(x

x
)
) +1  h  

0  

 f (x) f (x+h)− f (x) 1 

 

                                      = limh→0 1+ f (x +fh()x−) f (x)  f (x+h)− f (x)× h × f (x)  

 f (x+h)− f (x) 1 

   × 

                                      = hlim→ 1+ f (x)     
0 

) ( 
) ( ) ( 

) ( 
) ( ) ( 

x f h 
x f h x f 

x f 

x f h x f − +  − + 
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01 

                                        = 0 = 2* 1   

                               ∗  = 2* 1 , where ln  =ln .  

Similarly, if the second derivative of f (x) exists, then  ∗∗  = 2* ∗ 1 =   2* 11 .Which   

is easily obtained by substitution [3], [19].  

If   ≠0 and    exists, then ln ′′ exists and repeating the procedure n times,  for    being 

positive function and its nth derivatives at x exists, then  ∗ *  also exists and  

          ∗ * = 2* + , for ,=0,1,2…                                                                      (2.3)  

Note that in (2.3), for  ,=0 is included as well because  

                          = 56, that is  ∗ = 2* 7 = .  

  

Thus it can be concluded that, the function  :&→ℝ is *differentiable at x or on A if it is positive  and 

differentiable at x or on A respectively [3].  

  

Deriving a formula similar to Newton’s binomial formula,  * can be express in terms of  ∗ * . Using 

the nth non-Newtonian (Multiplicative) derivative of f, we have  

          ln ∗ *  = ln *  = ln 8 * 8  = ln ∗ 8 * 8 .  

By using  

                                         =  ln ∗ ,  

The second derivative in terms of non-Newtonian (Multiplicative) derivative for  ′′ can be  

calculated as,  

                           =  ln ∗ +  ln ∗∗ ,  
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and the third derivative in terms of non-Newtonian (Multiplicative) derivative for  ′′′ using the  

second derivative can also be calculated as,  

                       ′′′ =  ln ∗  +2  ln ∗∗ +  ln ∗∗∗ .  

Repeating this procedure n times, a formula for the nth derivative can be formulated (or derived)  

as follows;   

                          f (k ) (x)(ln f *(n−k ) )(x) . k= 0 

k!(n − k −1)! 

For the constant function  =:>0 on the interval (a, b), where a < b, we have                         

f *(x) = e (ln c) ' = e0 = 1,       ∈ =,>.  

Conversely, if  ∗ =1 for every ∈ =,> then   

                 ∗  = , implies that   =:≠0.  

It can be observed easily that   =:?,@A.>0 for ∈ =,>. Thus, a function is a positive   

constant on an open interval if and only if its *derivative on this interval is identically equal 1. It can  

also be noted that, a neutral element 0 appears for additive derivative and  for multiplicative derivative, a 

neutral element 1 appears [3].  

The following are some properties (or rules) of the *differentiation which can be easily derived / proved:  

                       # ∗ = ∗ # . #1    Power Rule                                                               (2.7)  

                       ?ℎ∗ = ∗ℎ#1             Chain Rule                                                               (2.8)  

                        +B∗      Sum Rule                                             (2.9) 

where :>0 is a constant,   and B are *differentiable, h is differentiable. Derivation of equations (2.4) to  

(2.9) are as follows:  

     Constant Multiple Rule:  

 : ∗ = 56 H 1 = IK0J ×MH 1NO  
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                                                              .  

      Product Rule:  

                                        B∗ = M2* P N1 = 561 56P 1   

                                                   = 561 × 56P 1 = ∗ B∗ .  

       Quotient Rule:  

                                      B⁄ ∗ = 56 G0 1 = IG 0 Q
01 G 

G 
G

R
1 0 

SO
  

0 G S                                                           = Q 

/B∗ .                                                           
P 

                                                

=0 = 2* × 2*   

     Sum Rule:  

 J 1

 P1 

                         +B∗

 = 56 P

 1 = 0 FG

   

 01 G1 0 2* ∗ G 2*P∗ 

                                              ×   

                       : ∗  = ∗                       Constant Multiple Rule                                               (2.4)                               

                        B∗  = ∗B∗              Product Rule                                                               (2.5)  

                        B⁄ ∗  = ∗/B∗           Quotient Rule                                                            (2.6)  

          Power Rule:        

                                     # ∗ = 56 T 

1 
= 0 

J T MUT V+0 
N    

 

J 

                                                     = 0 T 

T Q#1 
2* # 

01 

0 S   

 

 #1 2* # 
01   

T
1 

∗ T 

                                                =  

    Chain Rule:  

#1 × ∗ # = ∗ # . #1 .  

 
1 

J 

 
 

1M# N#1 
 

0
1

T 
×#1 

                          ?ℎ∗ = 56  W# = 0MT N = 0 T   

                                             = #1 2* ∗# = 2* ∗#T1 = ∗ℎ#1 .  
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 0 G 

                                               = 2* ∗ 0 FG × 2*P∗ 0 FG   

0 

                                                ×B.  

The first order non-Newtonian (Multiplicative) differential equation which contains the   

*derivative of y is in the form  

                                                 ∗ = ,                                                                (2.10) and 

its equivalent to the ordinary differential equation is  

                                                     = ln , .                                                (2.11) 

Theorem 1 [3](Multiplicative Mean Value Theorem). If the function    is continuous on the  

close interval [=,>] and has a *derivative at every point of the open interval =,> , then there  exists 

=<:<> such that  

1 

                                  ∗ : =  ff ((ba)) b−a  or   ff ((ba)) = ∗:[ \  

 

  

  

  

  

Theorem 2 [3](Multiplicative Taylor’s Theorem for One Variable). Let & be an open interval  

and let  :&→ℝ be ,+1 times *differentiable on &. Then for any , +ℎ∈&, there exists a  number ]∈ 

0,1 such that              

h m hn+1 n   

                                          +ℎ = ∏( f *(m) (x)) m! . ( f *(n+1) (x +θh))(n+1)!.  

m=0 

Consider the function  , of two variables defined on some open subset of ℝ×ℝ =ℝ .   
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The partial *derivative of   can be defined, considering   fixed, and it is denoted by  ∗ or  ^

∗ .  In a similar way, the partial *derivative of   in  can be defined, which is denoted by  _∗ ^ 

or  . Higher order partial *derivatives of   can also be defined. That is  ∗ or  ^ ∗ R ,  _∗ or  

^∗ 

 ^_ ^ ^ 

^∗ R 

 ^ ^_ ,  __∗ or  ^ ^_^_∗ R .  

Theorem 3 [3](Multiplicative Chain Rule). Let   be a function of two variables  and ` with  

continuous partial *derivatives. If  and ` are differentiable functions on =,> such that  

   ,`  is defined for every ∈ =,>, then  

 d * f (y(x), z(x)) y
* y'( x) 

z
* z'( x) .  

                                                    = f (y(x), z(x)) f (y(x), 

z(x)) dx 

Theorem 4 [3](Multiplicative Taylor’s Theorem for Two Variable). Let & be an open subset of  

ℝ . Assume that the function  :&→ℝ has all partial *derivatives of order ,+1 on &. Then for  every 

, , +ℎ, +a ∈& such that the line segment connecting these two points belongs  to &, there exists a 

number ]∈ 0,1 , such that  

 n m

 h i k m − i n+1 h i k n +1− i 

=f i!(n+1−i)! .                     f (x + h, y + k) 
x y 

 m= =0 i 0 i=0 

  

  

  

CHAPTER THREE  

  

METHODOLOGY  
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3.1 Ordinary Runge-Kutta Methods  

These techniques were designed around 1900 by the German mathematicians Carl David Tolme  

Runge and Martin Wilhelm Kutta. The methods named after Carl Runge and Wilhelm Kutta are  

formulated to imitate the Taylor series method without requiring analytic differentiation of the 

original differential equation. In numerical analysis, the Runge-Kutta methods are family of  

explicit and implicit iterative methods for the approximation of solutions of ordinary differential 

equations. These methods are used to find the solutions of the ordinary differential equations of  

the form  

                           = , ,        = ,                                                              (3.1)  

where  
= $_. Sometimes, for convenience, the  in   is omitted. 

$ 

Equation (3.1) can be more briefly written as ′= ,. Since  ,  is just the  slope   of the 

desired exact solution   of (3.1), one has approximately  

_ # _ 

≈ , ,   for ℎ≠0                                                      (3.2)                                   
# 

or  

                                 +ℎ ≈ +ℎ ,                                                               (3.3)  

By using the initial condition  = , the solution of the equation (3.1) thus takes the form  

                    c = c + c, c ℎ,     for   d=0,1,2…..                                                        (3.4)  

where ℎ= c − c.  

The Taylor series methods are known to have the desirable property of high-order local  truncation 

error (the ability to keep the errors small), but also has the disadvantage of  requiring repeated 

differentiation of the function  , [12]. The computation and evaluation of  the high derivatives of  , 

may become very long and are, therefore, error-prone and tedious,  this can be a serious obstacle 
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to using this method. In the Taylor series method, each of these  high order derivatives is 

evaluated at the point c in order to evaluate  c . Runge-Kutta  methods have the high-order 

local truncation error of the Taylor methods but eliminate the  need to compute and evaluate the 

derivatives of  , . Basically, the aim of Runge-Kutta  methods is to eliminate the need for repeated 

differentiation of the differential equations [15].  

3.1.1 Runge-Kutta  Second-Order Method  

To arrive at the second-order Runge-Kutta method for the solution of the differential equation  

(3.1), we start with the Taylor series expansion of the form for +ℎ which is  

          +ℎ = +ℎ + # R + # f +⋯+ # i j +]ℎ .        (3.5)  
 ! g! j! 

The first step in deriving the 2nd order Runge-Kutta method is to consider the second order  Taylor 

series formula. In applying the Taylor series we shall use the following subscripts to   

denote partial derivatives, i.e.,   
= ^^  ,    _ 

= 
^_

^ ,    
= 

^
^ R 

R ,   _ 
= 

^ ^_
^R  and  __ 

= 
^_

^R 
R.  

The first derivative in (3.5), i.e.,   can be replaced by the right-hand side of the differential   equation 

(3.1). Thus differentiating   we have  

                                                             = , + _ ,                                  

       = , + _ , ,                            (3.6)  

since  = , and taking the partial derivatives of  , with respect to  and .  

By substituting equation (3.6) into equation (3.5), we get the second-order Taylor expansion as  

            +ℎ = +ℎ , + # R , +  _ , , +k ℎg                     

                            = +ℎ , + # R , + # R  _ , , +k ℎg                 (3.7)  

The Runge-Kutta method can be written as a linear combination of the function  ,   
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evaluated at certain points in the step. The results of the second-order method is then evaluated  in 

a sequence of operations of the form  

                                             

where   

+ℎ = += ℎa += ℎa                                            (3.8)  

                                          a = ,                                                                                    (3.9)  

                                          a = +lℎ, +mℎa                                                             (3.10)  

The constants = , = , l, m are determined by comparing equation (3.7) with equation (3.8). To  do 

this we need to find the Taylor series expansion for  +lℎ, +mℎa which is  

             a = +lℎ, +mℎa = , + , lℎ+ _ , mℎa +k ℎ         (3.11)  

Now we substitute equation (3.11) into equation (3.8) to get  

y(x + h)= y(x) + a1hf (x, y) + a2h( f (x, y) + fx(x, y)ph+ fy(x, y)qhf (x, y)) +O(h2)  

= y(x) + (a1 + a2)hf (x, y) + a2h2 pfx(x, y) + a2h2qfy(x, y) f (x, y) +O(h3)              (3.12)  

since  a = , .  

Comparing equations (3.7) and (3.12), we find that they are identical if  

                                 = += =1       = l=        = m=                                                     (3.13)  

Thus in (3.13) we have three equations in four unknown parameters, here we have more than one  

choice in finding the unknown parameters. Some of the popular choices and the names  associated 

with the resulting formulas are:  

                       = =          = =           l=1              m=1                  Heun’s method  

                     = =0         = =1            l=              m=                    Modified Euler’s method  

                      = =            = =           l= g              m= g                    Ralston’s method g g n n 

Choosing the modified Euler’s method, and substitute the corresponding parameters into  equation 

(3.8) yields the second-order Runge-Kutta method  
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                                                 +ℎ = +ℎ + #  , + #  ,                     

(3.14)  

or, equivalently,    

                                                  

where   

+ℎ = +a                                                           (3.15)  

                                                 a =ℎ ,                                                                         (3.16)  

                                                 a 

which is the same as  

=ℎ + #  , + a                                                      (3.17)  

                                                   +ℎ = +a ℎ                                                        (3.18)  

where  

                                                   a = ,                                                                          (3.19)                                                     

a = + ℎ , + a ℎ                                                  (3.20)  

For the Heun’s method, the second-order Runge-Kutta method is  

                                                 +ℎ = + a + a ℎ                                       (3.21) where  

                                                    a = ,                                                                        (3.22)                                                     

a = +ℎ, +a ℎ                                                      (3.23)  

And the second-order Runge-Kutta method for the Ralston’s method is                                                     

+ℎ = + a + a ℎ                                     (3.24)  

 g g 

where  

                                                   a = ,                                                                          (3.25)                                                    

a = + g  ℎ, + g  a ℎ                                                   (3.26)  

 n n 
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3.1.2 Runge-Kutta Third-Order Method  

The third-order Runge-Kutta method can be obtained from the Taylor series along the same lines  

as the second-order method. To derive the third-order Runge-Kutta method, we use the Taylor   

series expansion for the order 3 which is of the form  

               +ℎ = +ℎ , + ℎ + ℎg +k ℎn                       (3.27)  
 ! g! 

From the expansion we need to evaluate   and thus differentiating we get  

                 

y'''(x)= fxx(x, y) + 2 fxy(x, y) f (x, y) + fyy(x, y) f (x, y)2 

 + fy (x, y)( fx(x, y) + fy (x, y) f (x, y)) (3.28) 

                                                 

and by substituting equations (3.6) and (3.28) into equation (3.27) we have  

y(x + h) = y(x) + hf (x, y) + h2( fx(x, y) + fy(x, y) f (x, y)) 

+ h3( fxx(x, y) + 2 fxy(x, y) f (x, y) 

 + fyy(x, y) f (x, y)2 + fy(x, y)( fx(x, y) + fy (x, y) f (x, y))) (3.29) 

  

The third-order Runge-Kutta method can then be formulated as  

                                 +ℎ = += a += a +=gag                                               (3.30) where   

                                a =ℎ ,                                                                                           (3.31)  

                               a =ℎ +l ℎ, +m ℎa                                                                  (3.32)                                                        

ag =ℎ +l ℎ, +m ℎa +mgℎa                                                   (3.33)  

From here the Taylor series expansions for a and ag are evaluated as  

k2 = hf (x + p1h, y + q1k1) 

= h[ f (x, y) + p1hfx(x, y) + q1hfy (x, y) f (x, y) + {(p1h)2 fxx(x, y)+ 2p1q1h2 fxy(x, y) 
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+ (q1hf (x, y))2 fyy (x, y)}] 
2 

 h 2 

= h[ f (x, y) + h(p1 fx(x, y) + q1 fy (x, y) f (x, y))+  (p1 fxx(x, y)+ 2p1q1 fxy(x, y) f (x, y) 2 

 + q1
2 fyy(x, y) f (x, y)2)] (3.34) 

k3 = hf (x + p2h, y + q2k1 + q3k2 )) 

= h[ f (x, y) + p2hf x (x, y) + (q2hf (x, y) + q3k2 ) f y (x, y) + {( p2h)2 fxx (x, y) 

+ 2 p2h(q2hf (x, y) + q3k2 ) fxy (x, y) + ((q2hf (x, y)) 2 + 2q2q3hk 2 f (x, y) 

 + (q3k2 )2 ) f yy (x, y)}]   

2 
 h 2 

= h[ f (x, y) + p2hfx(x, y) + q2hfy (x, y) f (x, y) + q3k2 fy(x, y) +  (p2 fxx(x, y) 2 

+ 2p2q2 fxy(x, y) f (x, y)+ q2
2 fyy (x, y) f (x, y)) +  (2p2hq3k2 fxy(x, y) 

 + 2q2q3hk2 fyy(x, y) f (x, y) + q32k22 fyy(x, y))]   

2 
 h 2 

= h[ f (x, y) + p2 hfx (x, y) + q2 hf y (x, y) f (x, y) + ( p2 fxx (x, y) 2 

+ 2p2 q2 fxy (x, y) f (x, y) + q2 
2 fyy (x, y) f (x, y) 2 )+ q3 fy (x, y)k 2 + (2p2 hq3 fxy (x, y) 

 1 2 2 

+ 2q2 q3 hf yy (x, y) f (x, y))k 2 +  q3 fyy (x, y)k 2 ] 

2 

  

2 
 h 2 

= h[ f (x, y) + h( p2 fx (x, y) + q2 f y (x, y) f (x, y)) + ( p2 fxx (x, y) 2 

+ 2 p2q2 fxy (x, y) f (x, y) + q2
2 f yy (x, y) f (x, y)2 ) + q3 f y (x, y)× h{ f (x, y) + h( p1 fx (x, y) 

+ q1 f y (x, y) f (x, y)) + O(h2 )} +  (2 p2hq3 fxy (x, y) + 2q2q3hf yy (x, y) f (x, y)) × h{ f (x, y) 

+ O(h)} + q3
2 f yy (x, y) ×[h{ f (x, y) + O(h)}]2 ] 

  
2 

 h 2 
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= h[ f (x, y) + h(p2 fx(x, y) + q2 fy (x, y) f (x, y) + q3 fy(x, y) f (x, y))+ (p2 fxx(x, y) 2 

+ 2p2q2 fxy (x, y) f (x, y) + q2
2 fyy(x, y) f (x, y)) + 

h2q3 fy (x, y)(p1 fx(x, y) 

 h2 2   

+ q1 fy (x, y) f (x, y)) + (2p2q3 fxy (x, y) f (x, y) + 2q2q3 fyy(x, y) f (x, y) ) 2 

 h2 2 2 

+ q3 fyy (x, y) f (x, y) ] 

2 

= h[ f (x, y) + h(p2 fx(x, y) + q2 fy (x, y) f (x, y) + q3 fy (x, y) f (x, y)) 

 h2 
2 2 

+ (p2 fxx(x, y) + 2p2q2 fxy(x, y) f (x, y)) + h q3 fy (x, y)(p1 fx(x, y) + q1 fy (x, y) f (x, y)) 2 

 h2 h2 2 2 2 

+ (2p2q3 fxy (x, y) f (x, y)) + (q3 + 2q2q3 + q2 ) fyy(x, y) f (x, y) ] 

 2 2 

k3 = h[ f (x, y) + h(p2 fx (x, y) + (q2 + q3) fy (x, y) f (x, y)) +  h2(p2
2 fxx(x, y) 

+ 2p2(q2 + q3) fxy (x, y) f (x, y))+ h2(p2q3 fxy (x, y) + q2q3 fy (x, y)2 f (x, y)) 

 + h2(q2 + q3)2 f (x, y)2 fyy (x, y)] (3.35) 

  

 equations (3.31), (3.34) and (3.35) are substituted into equation (3.30) to get  

y(x + h) = y(x) + a1 ×hf (x, y) + a2 ×[hf (x, y) + h 2 ( p1 fx(x, y) + q1 fy(x, y) f (x, y))   

 h 3 2 2 2 

+ ( p1 fxx(x, y) + 2 p1q1 fxy(x, y) f (x, y) + q1 fyy(x, y) f (x, y) )] 

2 
3 

+ a3 ×[hf (x, y) + h 2{p2 fx(x, y) + (q2 + q3 ) fy(x, y) f (x, y)}
+ h 

{p2 
2 fxx(x, y) 

2 

+ 2 p3 (q2 + q3 ) fxy(x, y) f (x, y)}+ h 3 ( p1q3 fxy(x, y) + q1q3 fy 
2 (x, y) f (x, y)) 

 h 3 2 2 

+ (q2 + q3 ) fyy(x, y) f (x, y) ] 

2 
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= y(x) + hf (x, y)×(a1 + a2 + a3 ) + h 2 fx(x, y)× (a2 p1 + a3 p2 ) 

2 3 1 2 2 

+ h fy (x, y) f (x, y)×{a2 q1 + a3 (q2 + q3 )}+ h fxx(x, y)×  (a2 p1 + a3 p2 ) 2 
3 ×{a2 p1q1 + a3 p2 (q2 + q3 )}+ h 3 fyy(x, y) f (x, y) 2 × 1{a2 q1

2 + a3 (q2 + q3 ) 2 } + h 

fxy(x, y) f (x, y) 

2 

 + h 3 fxy(x, y)×(a3 p1q3 ) + h 3 fy (x, y) 2 f (x, y)× (a3 q1q3 ) (3.36) 

  

the result of (3.36) is then compared with equation (3.29) to help us find the values of the  constants 

= , = , =g, l , m , l , m and mg. The comparison give us the following equations  

                                                 = += +=g =1                                                                   (3.37)  

                                                   = l +=gl =                                                                    (3.38)  

                                       = m +=gm +mg=                                                                    (3.39)  

                                             = l +=gl 
= 

o                                                                    (3.40)  

                                = l m +=gl m +mg
= 

g                                                                    (3.41)  

                               = m +=gm +m= 
o                                                                   (3.42)  

                                                            =gl mg 
= 

o                                                                    (3.43)  

                                                            =gm mg 
= 

o                                                                    (3.44)  

If we choose l =1 and  l =m =  , then we obtain  = ==g = o , =g = no  ,m =−1   

and mg =2. Thus the third-order Runge-Kutta method formulas are as follows:  

                               +ℎ = + o  a +4a +ag                                                   (3.45) where  
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                               a =ℎ ,                                                                                          (3.46)                                

a =ℎ + #  , + a                                                                       (3.47)                               ag =ℎ +ℎ

 , −a +2a                                                                (3.48) which is the same as  

                              +ℎ = +a +4a +a 

 o g ℎ                                                  (3.49)  

where  

                               a = ,                                                                                             (3.50)                                

a = + #  , + #  a                                                                          (3.51)                               ag = +ℎ , 

−ℎa +2ℎa                                                             (3.52)  

3.1.3 Runge-Kutta Fourth-Order Method   

 In deriving the fourth-order Runge-Kutta method we shall use a different procedure.   The 

construction of the fourth-order Runge-Kutta method starts with the fourth order Taylor 

series expansion of the form  

          +ℎ = +ℎ , + ℎ 
! 

+ ℎg g! + ℎn n! n +k ℎq      (3.53)  

where   n  is evaluated to get  
    

          n = , +3 _ , , +3 __ , , + ___ , , g  

                           +3 _ , +3 __ , , + _ , , .    (3.54)  

By substituting equations (3.6), (3.28) and (3.54) into equation (3.53) we have  

             +ℎ = +ℎ , + ℎ , + _ , ,  

                                + o  ℎg , +2 _ , , + __ , , + _ ,   

                                + n  ℎnM , +3 _ , , +3 __ , ,                                                

                                 + ___ , , g +3 _ , +3 __ , ,   
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                                   + _ , , N                                                                      (3.55)  

In general a Runge-Kutta method of order @ can be written as  

                          +ℎ = +ℎ∑t
cu =cac +k ℎt                                                   (3.56) where  

                          ac = M +lcℎ , +ℎ∑t
vu mcvavN                                                               (3.57) which are 

the increments obtained evaluating the derivatives of  at the d-th order [21].  

 The derivation for the ordinary 4th order Runge-Kutta method is developed using equation   

(3.56) with @=4, at the starting point, the midpoint and the end point of any interval , +ℎ , thus we 

choose lc: l =0, l =  , lg =  , ln =0 and mcv: m =  , mg =  , mng =1.  

Where mcv =0 otherwise.  

Starting, we define the following quantities  

                   +ℎ = +ℎ ,                                                                              (3.58)  

                 +ℎ = +ℎ + # , + # ,                                                     (3.59)  

                   +ℎ = +ℎ + # , + # [ + # , + # , ]                         (3.60)  

then we define  

         a = ,                                                                                                                    (3.61)  

        a = + # , + # a = , + #  $ ,                                                     (3.62) $ 

       ag = Q + # , + # + # , + # a S= , + #  
$

$ w  , + # Q$
$ , Sx  

            = , + # Q$$ , S+ #nR $$R
R ,                                                             (3.63)  

       an = Q +ℎ , +ℎ + # , + # a S             = +ℎ , +ℎ [ + #  , + #   + #  , + #  ,  ]

 = , +ℎ $  ,   
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$                  + #  $ [  , + # $ , ]   

 $ $ 

              = , +ℎQ$ $ , S+ #R I$$R
R , O+ #n

f I$
$f

f , O                          (3.64) where   

            $$ , = ^ ^ , + ^_ ^ , = , + _ ,   

If we express the general formula for the fourth order Runge-Kutta method as  

                         +ℎ = += ℎa += ℎa +=gℎag +=nℎan                                (3.65)  

Then by substituting the equations (3.61) to (3.64) into equation (3.65) we have  

      +ℎ = += ℎ , += ℎ , + #  $ ,  
$ 

 # $ #R $R 

                          + =gℎy , + Q$ , S+ n I$ R , Oz  

                          +=nℎy , +ℎQ$ $ , S+ #R I$$RR , O+ #nf I$$ff , Oz  

                       = += ℎ , += ℎ , + \f#R Q $$ , S+=nℎ ,  

                             + \{# I$$ 
R , O+ \{

n
# I

$
$ 

f , O  

                       = + = += +=g +=n , ℎ+ \R + \f +=n

 Q$
$  

 \ \ $R \ $f 

Q $ , S  

$ 

, Sℎ  

                            + \f# Q $ , S+ \f# I $ 
R , O+=nℎ , 

 $ n $ 

 f R { f 

+=nℎ 
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R f R 

                        = nf + { I$ R , Oℎg + 
n

{ I
$ f , Oℎn                                       (3.66)       

By comparing equation (3.55) and equation (3.66) we get the following equations  

                                                = += +=g +=n =1                                                            (3.67)                                                     

n =g + =n 
= 

o                                                             = + =g +=n =                                                             (3.68)                                                              

(3.69)                                                                        n =n 
= 

n                                                            (3.70)  

which when solved gives = = o , = = g , =g 
= 

g and =n 
= 

o .  

We therefore get the 4th order Runge-Kutta method as  

                                              +ℎ = + o a +2a +2ag +an ℎ                        (3.71) where  

                                              a = ,                                                                               (3.72)                                               

a = +ℎ , +ℎa                                                       (3.73)                                               ag = + ℎ , + ℎa                                                       

(3.74)                                               an = +ℎ , +ℎag                                                            (3.75)  

In the Runge-Kutta methods, the introduction the notation a ,a ,ag,an into the methods is to 

eliminate the need for successive nesting in the second variable of  , .That is, instead of writing 

the equation (3.71) as   

                      +ℎ = + #  , + #  + ℎ, + ℎ ,   
 o g 

                                    + #  Q + ℎ, + ℎ + ℎ, + ℎ , S g 

                                    
+ #  I +ℎ, +ℎ Q + ℎ, + ℎ + ℎ, + ℎ , SO o 
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a is introduced to take care of   , , a takes care of   + ℎ, + ℎ , , whiles ag takes care of   Q + ℎ, + ℎ +

ℎ, + ℎ , S and also an taking care of   

  I +ℎ, +ℎ Q + ℎ, + ℎ + ℎ, + ℎ , SO . Therefore, for easy numerical   

Computation, the 4th order Runge-Kutta method is expressed in the form of equation (3.71).  

3.2 Non-Newtonian (Multiplicative) Runge-Kutta Methods  

In this section, we will derive the non-Newtonian (multiplicative) Runge-Kutta methods that will 

be used to find suitable approximations to the solution of non-Newtonian(multiplicative)  initial 

value problems of the form  

                                                ∗ = , ,                                                                (3.76) or  

                                                 ∗ = ,                                                                      (3.77)                          

with  initial condition  

                                                      = .                                                                         (3.78)  

  

3.2.1 Non-Newtonian (multiplicative) Runge-Kutta Second-Order Method  

In analogy to the ordinary second-order Runge-Kutta method, we will derive the second-order  

non-Newtonian (multiplicative) Runge-Kutta method for solution of the differential equation  

(3.76).We start with the second order multiplicative Taylor expansion for +ℎ which is  given as   

TR 

                                     +ℎ = ∙ ∗ # ∙ ∗∗ 
R! ∙…                                     (3.79) from Theorem 2 

[3](Multiplicative Taylor’s Theorem for One Variable). By substitute the right  hand side of 

equation (3.77) into equation (3.79) the expansion becomes  

TR 

                      +ℎ = ∙ , # ∙ ∗∗ 
R! ∙…                                                  (3.80)  

We can express ∗∗  as  
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                            ∗∗ = ∗ ∗ = , ∗ = , ∗                                        (3.81)      

  

 Recall that  is a function of .Thus applying Theorem 3 [3](multiplicative chain rule)   

 to ∗∗  we have  

                              ∗∗ = 
$ $∗ , = ∗, ∙ _∗,_1                                          (3.82)                           

or     

                            ,                                                      (3.83)  

since    and ∗ = , .  

Substituting equation (3.83) into equation (3.80), then the multiplicative Taylor expansion 

becomes   

TR 

                        +ℎ = ∙ , # ∙ ∗, ∙ _∗,_ ∙2* ,_ 
R ∙…                

                                        = ∙ , 
TR # ∙ ∗, R ∙ _∗,_ 

∙2* 
,_ T

RR ∙…              (3.84)  

where  ∗, denotes the non-Newtonian(multiplicative) partial derivative with respect to    

and  _∗, with respect to  respectively. We then formulate the second order non-Newtonian   

(multiplicative) Runge-Kutta method as  

                                                                       +ℎ = ∙a\# ∙a[#                             (3.85)  

where  

                                                                         a = ,                                                    (3.86)                                                                           

a }#                                (3.87) To compare equation (3.85) with equation 

(3.84), we need to find the multiplicative Taylor series  for a and by the application of the chain 

rule of multiplicative derivative  

                                      a = , ∙ ∗,~# , J  

                                           = , ∙ ∗,~# ∙ _∗,                             (3.88)  
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Then by substituting equations (3.88) and (3.86) into equation (3.85) we get the non-Newtonian 

(multiplicative) second order Runge-Kutta method as  

               

    +ℎ = ∙ , \# ∙ , ∙ ∗,~# ∙ _∗,  [#  

                                  = ∙ , \ [ # ∙ ∗, ,_ ∙2* ,_ [}#R          (3.89)  

Now comparing equation (3.89) with equation (3.84) yields  

                                                                                =+>=1                                                (3.90)  

                                                                                     >l=                                                  (3.91)  

                                                                                     >m=                                                  (3.92)  

Of course, we have infinitely many solutions of the equations (3.90), (3.91) and (3.92), as the  

number of unknowns is greater than the number of equations. One possible choice of the  

parameters [9] =,>,l, and m is == , >=  , l=1 and  m=1. This gives as the formulae for   the 

second order non-Newtonian (multiplicative) Runge-Kutta method as  

                                                                                                        (3.93)  

where  

                                                                        a = ,                                                     (3.94)                                                                         

a = +ℎ, ∙a#                                       (3.95) Depending on the problem the parameters =,>,l, and m 

can also be chosen differently in order to  satisfy the equations (3.90), (3.91) and (3.92).  

3.2.2 Non-Newtonian (multiplicative) Runge-Kutta Third-Order Method  

To derive the third order non-Newtonian (multiplicative) Runge-Kutta method, we shall use the  

multiplicative Taylor expansion for +ℎ up to order 3 which is of the form  

 TR Tf 

                           +ℎ = ∙ ∗ # ∙ ∗∗ 
R! ∙ ∗∗∗ 

f! ∙…,                        (3.96)  
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Remembering that ∗∗ = ∗ ∗ = , ∗ we can write ∗∗∗  as  

                           ∗∗∗ = ∗ ∗∗ = , ∗∗                                                         (3.97)  

Noting that ∗ = M , N can also be expressed as ∗ = , .  

From equation (3.96) we can evaluate  ∗∗∗  by the application of multiplicative chain rule to   

get  

                ∗∗∗ = $ ∗∗ ,       
$ 

                             = $∗$∗ ,    
 $ $ 

 $∗ ∗ ,_1 N                               
$ 

                             = ∗ , ∙ _∗ ,_1 ∙ _∗ ,_1 ∙ __
∗ ,_1 R ∙ _∗,_11   

                             = ∗ , ∙ _∗ ,_1 ∙ __
∗ ,_1 R ∙ _∗,_11                   (3.98) Since ∗∗ = 

$ $∗ , = ∗, ∙ _∗,_1 and partial 

multiplicative derivatives are   

commutative [16].  

We substitute equations (3.98), (3.82) and (3.77) into equation (3.96) to get the multiplicative  

Taylor expansion up to order 3 for +ℎ as  

        +ℎ = ,_1 TR!R   

Tf 

                             ,_1 ∙ __
∗ ,_1 R ∙ _∗,_11 ] f! ∙…                 

 TR 1 TR Tf R 1 Tf 

                         = ∙ , # ∙ ∗, R ∙ _∗, R ∙ ∗ , • ∙ _∗ , •    

 1 RTf 11 Tf 

                               ∙ __
∗ , • ∙ _∗, • ∙…                                                     (3.99)  

The third-order non-Newtonian (multiplicative) Runge-Kutta method can be depicted as  
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                                       +ℎ = ∙a\# ∙a[# ∙ag
H#                                                  (3.100)  

where  

                                       a = ,                                                                                    (3.101)                                        

a }#                                                                 (3.102)                                       

ag = +l R#                                                     (3.103)  

  

To make the comparison between equation (3.99) and equation (3.100), we need to find the   

multiplicative Taylor expansion for a and ag which are    

  

  a = , ∙ ∗,~# ∙ _∗,_8
J€T 1~#                                       

        = , ∙ ∗,~# ∙ _∗,~8
J€T_1#                                                                      (3.104)  

 €JT8€RT 1 • 

    ag = , ∙ ∗,~J# ∙ _∗,_8J R ~J# ∙ ∗ , JRT R ∙ _∗ ,~J# R_8J€JT8R€RT 1  

         ∙ __
∗ ,• JT R‚

J€RJT‚€
RRT 1 R ∙ _∗,• JT R‚

J€RJT‚
R€RT 11                                                  

    = , ∙ ∗,~J# ∙ _∗,~J8J€JT8R€RT_1# ∙ ∗ ,•JRRTR ∙ _∗ ,~JR8J€JT8R€RT#R_1  

 •RJ‚R€J JT‚R€R RTTR 1 R •R € 

       ∙ __∗ , R ∙ _∗, J‚JJT‚R€RRTTR 11                                                  

(3.105) that is by the application of the chain rule multiplicative derivative.  

Now we substitute equations (3.101), (3.104) and (3.105) into equation (3.100) to get the third  

order  non-Newtonian (multiplicative) Runge-Kutta method as  

   +ℎ = ,~# ,~8J
€T_1#][#  
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                      ,~J# ∙ _∗,~J8J€JT8R€RT_1# ∙ ∗ ,•RJRTR  

 ∗ ,~JR8J€JT8R€RT#R_1 ∙ __∗ ,•JR‚R€J JT‚RR€R RTTR  1 R  

                          ∙ _ 

 •RJQ‚€JJT‚€RRTSTR 11 

                            ∙ _∗, R  ]H#  

                   = ∙ , \# ∙ , [# ∙ ∗,~[#R ,[~8J€T#R_1 ∙ , H#   

                     ∙ ∗,H~J#R ∙ _∗,H~J8J€JT8R€RT#R_1 ∙ ∗ ,K•JRRTf ∙ _∗ ,H~JR8J€JT8R€RT#f_1  

 K•R R€ 

 ∗ J‚J JT‚R€R RTTf 1 R K•R € 

                      ∙ __, R ∙ _∗, J‚JJT‚R€RRTTf 11  

                  = ∙ , \ [ H # ∙ ∗, ~[ H~J#R ∙ _∗, [~8J
€TH~J8J

€JT8R
€RT#R_1  

                         ∙ ∗ ,K•RJTf ∙ ∗ ,H~JR8J€JT8R€RT#f_1 ∙ __∗ ,K• JR‚JR€JT‚RR€R RTTf 1 R  
 R _ 

 K•R € 

                          ∙ _∗, J‚JJT‚
R

R€RTTf 11                                                                               (3.106)  

Comparison of the powers of  , and its partial derivatives in equation (3.99) with equation (3.106) 

up to order 3 in ℎ gives  

                                                               =+>+:=1                                                       (3.107)                                                                 

l>+:l =                                                         (3.108)  

                                           >la}# +:l a}J#a}R# =                                                         (3.109)                                                                        

:l =                                                         (3.110)  
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o 

                                                           :l a}J#a}R# =                                                        (3.111)  
o 

                                                     :l a}J#a}R# =                                                        (3.112) o 

                                                         :l a}J#a}R# =                                                        (3.113) o 

As before, the number of solutions are infinitely many. By choosing [8], l =1, m=m =0 and l= 

,we get == , >=  , := , Therefore the 3rd order non-Newtonian g o g 

(multiplicative) Rung-Kutta method takes the form  

 

•# ∙aR# 
∙a

g
f#                           (3.114)  

                                                              +ℎ = ∙a 

Where  

                                                               a = ,                                                           (3.115)                                                                

a = + ℎ ,                                                (3.116) g                                                                ag = +ℎ

 ,                                                   (3.117)  

  

3.2.3 Non-Newtonian (multiplicative) Runge-Kutta Fourth-Order Method   

In analogy to the above described 3rd order non-Newtonian (multiplicative) Runge-Kutta meth- 

od [16] , we will now derive the 4rd order non-Newtonian (multiplicative) Runge-Kutta method. 

Therefore we start by using the multiplicative Taylor expansion for +ℎ up to order 4 which      is 

of the form   

 TR Tf 

                  +ℎ = ∙ ∗ # ∙ ∗∗ 
R! ∙ ∗∗∗ 

f! ∙ ∗ n          (3.118)  

Recall that ∗ = M , N= , and using the knowledge in equations (3.81) and   

(3.97) we can therefore express ∗ n  as  

                                 ∗ n = ∗ ∗∗∗ = , ∗∗∗ = , ∗∗∗                        (3.119)  
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By the application of multiplicative chain rule, equation (3.119) results to  

             ∗ n = $ ∗∗∗ ,       
$ 

                            = $ ∗∗ $∗ ,  
 $ $ 

M  

                            = $$∗∗ ∗, ∙ _∗,_1 N  

                            = $∗ Q$∗ M ∗, ∙ _∗,_1 NS  

 $ $ 

                             $$∗ ∗ , ∙ ,_1 ∙ __∗ ,_1 R ∙ _∗,_11 N  

                            = ∗ , ∙ _∗ ,g_1 ∙ __
∗ ,g_1 R ∙ ___

∗ ,_1 f  

                                 ∙ _∗ ,g_11 ∙ __
∗ ,g_1 _11 ∙ _∗,_111                          (3.120)  

We now substitute equations (3.77), (3.82), (3.98) and (3.120) into equation (3.118) to get the   

multiplicative Taylor expansion for +ℎ up to order 4 as   

  +ℎ = ∙ , # ∙ ∗, ∙ _∗,_1 TR!R  

1 ∗ ,_1 R ∙ _∗,_11 ]Tf!f                               ,_ ∙ __ 

                       ,g_1 ∙ __∗ ,g_1 R ∙ ___∗ ,_1 f   

                            ∙ _∗ ,g_11 ∙ __
∗ ,g_1 _11 ∙ _∗,_      

 TR 1 TR Tf R 1 Tf 

                    =  ∙ , # ∙ ∗, R ∙ _∗, R ∙ ∗ , • ∙ _∗ , •   

 1 RTf 11 Tf T{ f 1 T{ 

                         ∙ __
∗ , • ∙ _∗, • ∙ ∗ ,R{ ∙ _∗ , R{   

 f 1 RT{ 1 fT{ f 11 T{ f 1 11 T{ 
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                           ∙ __
∗ , R{ ∙ ___

∗ , R{ ∙ _∗ , R{ ∙ __
∗ , R{   

 111 T{ 

                            ∙ _∗, R{  ∙…                                                                                   (3.121)  

The fourth order non-Newtonian (multiplicative) Runge-Kutta method has the form  

                                            +ℎ = ∙a\# ∙a[# ∙ag
H# ∙an

$#                                    (3.122) where  

                                             a = ,                                                                              (3.123)                                              

a }#                                                          (3.124)                                              ag 

= +l R#                                             (3.125)                                              an = +l

ƒ#                                   (3.126) In order to compare equation (3.122) with 

equation (3.121) we need to expand also an using the  multiplicative Taylor theorem since that of a 

and ag are the equations (3.104) and (3.105). By the application of the chain rule multiplicative 

derivative the Taylor expansion for an is  

€fT 

  an = , ∙ ∗,~R# ∙ _∗,_8J 8R€{T8f€ƒT 1~R# ∙ ∗ , •RRT R  

            ∙ _∗ ,~R# R_8J€fT8R€{T8f€ƒT 1 ∙ __∗ ,• RT R‚J€fTR‚R€{T‚f€ƒT 1 R  

 •RT R‚J€fT‚€R{T‚€fƒT 11 •RT f •RT f‚€JfT‚€R{T‚f€ƒT 1 

            ∙ _∗, R ∙ ∗ , • ∙ _∗ , R   

 •RT f‚J€fT‚€R{T‚f€ƒT 1 R •RT f‚J€fT‚€R{T‚f€ƒT 1 f 

             ∙ __
∗ , R ∙ ___

∗ , •   

 •RT f‚J€fT‚R€{T‚f€ƒT 11 •RT f ‚€JfT‚R€{T‚€fƒT 1‚J€fT‚€R{T‚f€ƒT 11 

              ∙ _∗ , R ∙ __
∗ , R   

•RT f‚J€fT‚€R{T‚€fƒT 111 

               ∙ _∗, •                    
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∗,~R# ∙ _∗, ~R8J€fT8R€{T8f€ƒT_1# ∙ ∗ ,•RRRTR  

            = , ∙  

 R8J€fT8R€{T8f€ƒT _1#R ∙ 

__∗ ,•RR‚R€J fT‚RR€{TR‚fR€ƒT 1 RTR   

            ∙ _∗ , ~R 

  •RR‚€JfT‚€R{T‚f€ƒT 11 TR •fRTf •Rf‚€JfT‚€R{T‚f€ƒT 1Tf

  

            ∙ _∗, R ∙ ∗ , • ∙ _∗ , R   

  •fRTf‚R€J fT‚RR€{T‚R€f ƒT 1 R •fR‚Jf€ fT‚Rf€{T‚f€f ƒT 1 f Tf 

             ∙ __
∗ , R ∙ ___

∗ , •   

  •fR‚€JfT‚€R{T‚f€ƒT 11Tf   •fR‚€JfT‚€R{T‚f€ƒT

 1‚J€fT‚R€{T‚€fƒT 11Tf  

              ∙ _∗ , R ∙ __
∗ , R   

   •fR‚€JfT‚€R{T‚f€ƒT 111Tf  

               ∙ _∗, •                                                                                    (3.127) 

Then by substituting equations (3.123), (3.104), (3.105), and (3.127) in equation (3.122), we get 

the non-Newtonian (multiplicative) Runge-Kutta expansion for the comparison with the 

multiplicative Taylor expansion of equation (3.121) as  

       +ℎ = ,~# ∙ _∗,~8J
€T_1# [#  

•RJTR 

                      ,~J# ∙ _∗,~J8J€JT8R€RT_1# ∙ ∗ , R  

                          ∙ _∗ ,~JR8J€JT8R€RT#R_1 ∙ __∗ ,• RJ‚JR€JT‚RR€R RTTR1 R  

                            ∙ _∗,•RJ ‚€JJT‚R€RRTTR 11  H# ,~R#        
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                         , ~R8J€fT8R€{T8f€ƒT_1# ∙ ∗ ,•RRRTR    

R8J€fT8R€{T8f€ƒT _1#R ∙ __∗ ,•

R‚R€J fT‚RR€{TR‚R€f ƒT 1 RTR

  R 

                        ∙ _∗ , ~R 

  •RR‚€JfT‚€R{T‚f€ƒT 11 TR •RfTf •Rf‚€JfT‚€R{T‚f€ƒT

 1Tf  

                       ∙ _∗, R ∙ ∗ , • ∙ _∗ , R   

  •fRTf‚R€J fT‚RR€{T‚R€f ƒT 1 R •fR‚Jf€ fT‚Rf€{T‚f€f ƒT 1 f Tf 

                         ∙ __
∗ , R ∙ ___

∗ , •   

  •fR‚€JfT‚€R{T‚f€ƒT 11Tf   •fR‚€JfT‚R€{T‚f€ƒT

 1‚J€fT‚R€{T‚€fƒT 11Tf  

                        ∙ _∗ , R ∙ __
∗ , R   

   •fR‚€JfT‚€R{T‚f€ƒT 111Tf  

                        ∙ _∗, • $#                 

                  = ∙ , \# ∙ , [# ∙ ∗,~[#R ∙ _∗,[~8J€T#R_1 ∙ , H#   

                     ∙ ∗,H~
J#R ∙ _∗,H~J8J€JT8R€RT#R_1 ∙ ∗ ,K•JRRTf ∙ _∗ ,H~JR8J€JT8R€RT#f_1  

                      ∙ __∗ , J‚J JT‚R€RR RTTf 1 R ∙ _∗,K•RJ‚J€JT‚R€RRTTf 11 ∙ , $# ∙ ∗,$~R#R K•R R€ 

∗ 

                      ∙  „•RRTf ∗ ,$~RR8J€fT8R€{T8f€ƒT#f _1  

_ ,$~R8J€fT8R€{T8f€ƒT_1#R ∙ ∗ , R ∙ _ 

 „•RR‚R€J fT‚RR€{T‚R€f ƒT 1 RTf  „•RR‚€JfT‚€R{T‚f€ƒT 11

 Tf 

                       ∙ __
∗ , R , R   

 „•fRT{ „•fR‚€JfT‚€R{T‚f€ƒT 1T{ „•Rf‚R€J fT‚R€R {T‚R€f ƒT 1 R T{ 

                       ∙ ∗ , • ∙ _∗ , R ∙ __
∗ , R   

 „•fR‚f€J fT‚f€R {T‚ff€ƒT 1 f T{ „•fR‚€JfT‚R€{T‚€fƒT 11T{  

                        ∙ ___
∗ , • ∙ _∗ , R   
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  „•fR‚€JfT‚R€{T‚€fƒT1‚J€fT‚R€{T‚f€ƒT 11T{  

 „•fR‚€JfT‚€R{T‚f€ƒT 111T{  

                          ∙ __
∗ , R ∙ _∗, •   

                    = ∙ , \ [ H $ # ∙ ∗, ~[ H~J$~R#R  

                          ∙ _∗, [~8J€TH~J8J€JT8R€RT$~R8J€fT8R€{T8f€ƒT#R_1 ∙ ∗ ,K•JRF„•R RRTf                          ∙ _∗ 

,H~JR8J€JT8R€RT$~RR8J€fT8R€{T8f€ƒT#f_1  

 K•RJ‚R€J JT‚R€R RTF„•RR‚R€J fT‚R€R {T‚R€f ƒTTf 1 R 

                          ∙ __
∗ , R   

 K•RJ‚€JJT‚€RRTF „•RR‚€JfT‚€R{T‚f€ƒTTf 11 „•fRT{ 

                           ∙ _∗, R ∙ ∗ , •   

  „•fR‚€JfT‚R€{T‚€fƒT 1T{ „•Rf‚R€J fT‚RR€{T‚R€f ƒT 1 R T{ 

                            , R ∙ __
∗ , R   

 „•fR‚f€J fT‚f€R {T‚ff€ƒT 1 f T{ „•fR‚€JfT‚R€{T‚€fƒT 11T{  

                           ∙ ___
∗ , • ∙ _∗ , R   

  „•fR‚R€J fT‚R€R {T‚fR€ƒT 1 11T{  

 „•fR‚€JfT‚R€{T‚€fƒT 111T{  

                            ∙ __
∗ , R ∙ _∗, •            (3.128)  

Therefore we get by comparison of equation (3.128) with equation (3.121), the following set of 

equations  

                                                         =+>+:+…=1                                                       (3.129)                                                        

l>+:l +…l =                                                        (3.130)  

           >la}# +:l a}J#a}R# +…l a}f#a}{#ag
}ƒ# =                                                        (3.131)                                                           

 :l +…l =                                                        (3.132) o 

                           :l a}J#a}R# +…l a}f#a}{#ag
}ƒ# = o                                                       (3.133)  
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             M:l a}J#a}R# +…l a}f#a}{#a
g

}ƒ#N= 
o                                                       (3.134)                      

M:l a}J#a}R# +…l a}f#a}{#ag
}ƒ#N= o                                                       (3.135)  

                                                                        …lg =                                                       (3.136)  
 o n 

                                              M…lga}f#a}{#ag
}ƒ#N= n g                                                      (3.137)                                          

M…lga}f#a}{#ag
}ƒ#N= n g                                                      (3.138)  

                                         o  M…lgag}f#ag}{#ag
g}ƒ#N= n                                                       (3.139)                                               

M…lga}f#a}{#ag
}ƒ#N= n g                                                      (3.140)                                          

M…lga}f#a}{#ag
}ƒ#N= n g                                                      (3.141)  

                                              o  M…lga}f#a}{#ag
}ƒ#N= n                                                       (3.142)  

As =, >, : and … are determined by the choices of  l, l , l , m, m , m , mg, mn and mq. By   

selecting, l =1, l=  , l =  , m=m =m =mg =mn = mq =0   and solving the set of  equations 

gives …= , :=  , >=   and ==  . We therefore get the 4th order non-Newtonian n g o

 n 

(multiplicative) Runge-Kutta method as  

{# ∙a•# 
∙a

g
f# 

∙a
n

{#                                      (3.143)  

                                           +ℎ = ∙a where  

                                             a = ,                                                                              (3.144)                                              

a = + ℎ ,                                                                    (3.145)                                              ag = + ℎ
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 ,                                                                    (3.146)                                              an = +ℎ

 ,                                                                      (3.147)  

Depending on the problem the parameters can also be chosen differently in order to satisfy the  

equations (3.129) to (3.142).  

  

  

   CHAPTER FOUR      

    

ANALYSIS AND INTERPRETATIONS OF NUMERICAL SIMULATIONS OF   

ORDINARYAND NON-NEWTONIAN (MULTIPLICATIVE) RUNGE-KUTTA  

METHODS   

  

In this chapter, we will compare the ordinary and non-Newtonian (multiplicative) Runge-kutta  

Methods using examples of ordinary and non-Newtonian (multiplicative) differential equations  

with their analytical solutions [17].  

4.1 COMPUTATIONAL COMPARISON  

We begin by considering the solution for non-Newtonian (multiplicative) initial value problem  

                                                ∗ = ,     1 =1                                                      (4.1)  

The ordinary differential equation corresponding to equation (4.1) is  

                                                 =2 ,     1 =1                                                      (4.2) The exact 

solution for both equations (4.1) and (4.2) is   

                                                  = R                                                                          (4.3)  
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We first solve the equation (4.1) by using the second-order non-Newtonian (multiplicative)  

Runge-Kutta method and equation (4.2) by also using the second-order ordinary Runge-Kutta  

method. In the following table we compare the results of the non-Newtonian (multiplicative)   

Runge-Kutta method and the ordinary Runge-Kutta method, using a step size of ℎ=0.1 and  ,=6 

points. The results in tabular form and the graphs are as follows  

  

  

  

   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

? 

 ‘’,

B 

−a’AA=  

1  1  1  1  0  0  

1.1  1.23367805996  1.23367805996  1.23100000000  0  0.2171  

1.2  1.55270721851  1.55270721851  1.54527430000  0  0.4787  

1.3  1.99371553324  1.99371553324  1.97795110400  0  0.7907  

1.4  2.61169647342  2.61169647342  2.58142398583  0  1.1591  

1.5  3.49034295746  3.49034295746  3.43484275554  6.36 n  1.5901  

1.6  4.75882124514  4.75882124514  4.65936419770  3.73 n  2.0900  

  

Table 4.1: Comparison of the results of non-Newtonian (multiplicative) and ordinary second- 

order  Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  =2  
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Figure 4.1: Graphs of non-Newtonian (multiplicative) and ordinary second-order Runge-Kutta   

methods and the exact solution for  ∗ =  and  =2  

  

Figure 4.2: Approximation error containing the second-order non-Newtonian (multiplicative)  

and the ordinary Runge-Kutta methods of table 4.1    
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The comparison of the results presented in the table 4.1 shows that the non-Newtonian  

(multiplicative) second-order Runge-Kutta method gives better results compared to the ordinary  

second-order Runge-Kutta method. Since the error terms of non-Newtonian (multiplicative)  

Rung-Kutta method is smaller than that of the ordinary Runge-Kutta method. This is also  

represented in figure 4.2  

The following table gives us the numerical results and the relative errors in percentage  for the 

non-Newtonian(multiplicative) Runge-Kutta third-order method and the ordinary third- order 

Runge-Kutta method compared to the exact result. The graphs are also below.  

  

  

  

   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

? 

 ‘’,

B 

−a’AA=  

1  1  1  1  0  0  

1.1  1.23573590445  1.23367805996  1.23360666667  0.1668  0.0058  

1.2  1.55789154498  1.55270721851  1.55248247634  0.3339  0.0145  

1.3  2.00370907394  1.99371553324  1.99318050195  0.5013  0.0268  

1.4  2.62916595013  2.61169647342  2.61055354578  0.6689  0.0438  

1.5  3.51955067859  3.49034295746  3.48803020727  0.8368  0.0663  

1.6  4.80664819378  4.75882124514  4.75427818665  1.0050  0.0955  

  

Table 4.2a: Comparison of the results of non-Newtonian (multiplicative) and ordinary third-order 

Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  =2  
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Figure 4.3a: Graphs of non-Newtonian (multiplicative) and ordinary third-order Runge-Kutta   

methods and the exact solution for  ∗ =  and  =2  

  

Figure 4.4a: Approximation error containing the third-order non-Newtonian (multiplicative)  and 

the ordinary Runge-Kutta methods of table 4.2a  
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The comparison of the results presented in the table 4.2a shows that the ordinary third-order   

Runge-kutta method gives better results compared to the non-Newtonian (multiplicative)  

third-order Runge-Kutta method. Since the error terms of the ordinary Runge-Kutta method is 

smaller than that of the non-Newtonian (multiplicative) Rung-Kutta method. This is also  

represented in figure 4.4a.  

We now set our parameters in the case of the non-Newtonian (multiplicative) third-order Rung-  

Kutta method in equation (3.103) to  :=  , = , ==  , l=  , l =1,  m =−1, m =2,   
 o g o 

and m=  which is the parameters widely used for the third-order ordinary Runge-Kutta  method.  

Table 4.2b below gives us the comparison of the results for the parameters chosen and also  the 

graphs are shown in figures 4.3b and 4.4b.  

  

   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

? 

 ‘’,

B 

−a’AA=  

1  1  1  1  0  0  

1.1  1.23367805996  1.23367805996  1.23360666667  0  0.0058  

1.2  1.55270721851  1.55270721851  1.55248247634  0  0.0145  

1.3  1.99371553324  1.99371553324  1.99318050195  0  0.0268  

1.4  2.61169647342  2.61169647342  2.61055354578  0  0.0438  

1.5  3.49034295746  3.49034295746  3.48803020727  6.36 n  0.0663  

1.6  4.75882124514  4.75882124514  4.75427818665  3.73 n  0.0955  

  

Table 4.2b: Comparison of the results of non-Newtonian (multiplicative) and ordinary third- 

order Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  =2  
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Figure 4.3b: Graphs of non-Newtonian (multiplicative) and ordinary third-order Runge-Kutta   

methods and the exact solution for  ∗ =  and  =2  

  

Figure 4.4b: Approximation error containing the third-order non-Newtonian (multiplicative)  and 

the ordinary Runge-Kutta methods of table 4.2b  
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We observe that the comparison of results in table 4.2b shows that the non-Newtonian  

(multiplicative) third-order Runge-Kutta method gives us better results as compared to the  

ordinary third-order Runge-Kutta method for the same parameters. This can also be notice in  

figure 4.4b.  

The following table gives us the numerical results and the relative errors in percentage  for the 

non-Newtonian(multiplicative) Runge-Kutta fourth-order method and the ordinary fourth- order 

Runge-Kutta method compared to the exact result. The graphs are also below.  

  

  

  

  

  

   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

? 

 ‘’,

B 

−a’AA=  

1  1  1  1  0  0  

1.1  1.23367805996  1.23367805996  1.23367806171  0  1.62 ”  

1.2  1.55270721851  1.55270721851  1.55270731751  0  6.38 o  

1.3  1.99371553324  1.99371553324  1.99371555011  0  8.53 ”  

1.4  2.61169647342  2.61169647342  2.61169654914  0  2.91 o  

1.5  3.49034295746  3.49034295746  3.49034350924  2.22 g  1.58 q  

1.6  4.75882124514  4.75882124514  4.75882143391  1.78 g  3.95 o  

  

Table 4.3: Comparison of the results of non-Newtonian (multiplicative) and ordinary fourth- 

order Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  =2  
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Figure 4.5: Graphs of non-Newtonian (multiplicative) and ordinary fourth-order Runge-Kutta   

methods and the exact solution for  ∗ =  and  =2  

  

Figure 4.6: Approximation error containing the fourth-order non-Newtonian (multiplicative)  and 

the ordinary Runge-Kutta methods of table 4.3  
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Since the figure 4.5 do not tell us much, it can be observed from the table 4.3 that the error terms 

of the fourth-order non-Newtonian (multiplicative) Runge-Kutta method is much smaller as  

compared to that of the ordinary fourth- order Runge-Kutta method. We can therefore say that  

the non-Newtonian (multiplicative) fourth-order Runge-Kutta method gives us better solutions.  

  

We now consider the solution for non-Newtonian (multiplicative) initial value problem  

                                                ∗ = ,     0 =2                                                      (4.4)  

The ordinary differential equation corresponding to equation (4.4) is  

                                                 = − ,     0 =2                                                    (4.5)  

The exact solution for both equations (4.4) and (4.5) is   

                                                     = + +1                                                               (4.6)  

Let now check the difference between the non-Newtonian (multiplicative) and the ordinary  

Runge-Kutta method by comparing the results of the equations (4.4) and (4.5) for ,=8 points  and 

ℎ=0.5 (i.e., the step size). The results in tabular form for second-order non-Newtonian  

(multiplicative) Runge-Kutta method and the second-order ordinary Runge-Kutta method and the 

graphs are below.  

                                 

   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

?  ‘’,B  

−a’AA=  

0  2  2  2  0  0  

0.5  3.17478214527  3.14872127070     3.12500000000  0.8277  0.7534  

1.0  4.77881007482  4.71828182846  4.64062500000  1.2828  1.6459  

1.5  7.09246039743  6.98168907034  6.79101562500  1.5866  2.7311  

2.0  10.57646361810  10.38905609893  9.97290039063  1.8039  4.0057  

2.5  15.98994535541  15.68249396070  14.83096313477  1.9605  5.4298  

3.0  24.58436887273  24.08553692319  22.41281509399  2.0711  6.9449  



 

46  

  

3.5  38.42306811421  37.61545195869  34.42082452774  2.1470  8.4929  

4.0  60.90797140470  59.59815003314  53.62133985758  2.1978  10.0285  

  

Table 4.4: Comparison of the results of non-Newtonian (multiplicative) and ordinary second- 

order  Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  = −  

  

  

Figure 4.7: Graphs of non-Newtonian (multiplicative) and ordinary second-order Runge-Kutta   
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Figure 4.8: Approximation error containing the second-order non-Newtonian (multiplicative)  

and the ordinary Runge-Kutta methods of table 4.4  

  

The comparison of the results presented in the table 4.4 shows that the non-Newtonian   

(multiplicative) second-order Runge-Kutta method gives better results compared to the ordinary  

second-order Runge-Kutta method. Since the error terms of non-Newtonian (multiplicative)   

Rung-Kutta method is smaller than that of the ordinary Runge-Kutta method.  

The following table gives us the numerical results and the relative errors in percentage  for the 

non-Newtonian(multiplicative) Runge-Kutta third-order method and the ordinary third- order 

Runge-Kutta method compared to the exact result. The graphs are also below.  

  

   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

?  ‘’,B  

−a’AA=  

0  2  2  2  0  0  

0.5  3.06556077620  3.14872127070     3.14583333333  2.6411  0.0917  
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1.0  4.44201393774  4.71828182846  4.70876736111  5.8553  0.2017  

1.5  6.33263140475  6.98168907034  6.95817961516  9.2966  0.3367  

2.0  9.06347686742  10.38905609893  10.33742061662  12.7594  0.4970  

2.5  13.16852684291  15.68249396070  15.57617143152  16.0304  0.6780  

3.0  19.52766092692  24.08553692319  23.87536548104  18.9237  0.8726  

3.5  29.59335417801  37.61545195869  37.21153902089  21.3266  1.0738  

4.0  45.76350814946  59.59815003314  58.83774130521  23.2132  1.2759  

  

Table 4.5a: Comparison of the results of non-Newtonian (multiplicative) and ordinary third- 

order  Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  = −  

  

  

  

  

Figure 4.9a: Graphs of non-Newtonian (multiplicative) and ordinary third-order Runge-Kutta   
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Figure 4.10a: Approximation error containing the second-order non-Newtonian (multiplicative)  

and the ordinary Runge-Kutta methods of table 4.5a  

The comparison of the results in the table 4.5a shows that the ordinary third-order Runge-kutta  

method gives better results compared to the non-Newtonian (multiplicative) third-order Runge- 

Kutta method. Since the error terms of the ordinary Runge-Kutta methodis smaller than that of  

the non-Newtonian (multiplicative) Rung-Kutta method. This is also represented in figure 4.10a.  

We once again set our parameters in the case of the non-Newtonian (multiplicative) third-order   

Rung-Kutta method in equation (3.103) to  :=  , = , ==  , l=  , l =1,  m =−1,  o g o 

m =2, and m=   which is the parameters widely used for the third-order ordinary Runge-Kutta  

method.  

Table 4.5b below gives us the comparison of the results for the parameters chosen and also  the 

graphs are shown in figures 4.9b and 4.10b.  
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   *W* ‡Uˆ    U\H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

?  ‘’,B  

−a’AA=  

0  2  2  2  0  0  

0.5  3.14800558240  3.14872127070    3.14583333333  0.0227  0.0917  

1.0  4.71708394307  4.71828182846  4.70876736111  0.0254  0.2017  

1.5  6.97977792898  6.98168907034  6.95817961516  0.0274  0.3367  

2.0  10.38584525716  10.38905609893  10.33742061662  0.0309  0.4970  

2.5  15.67696794504  15.68249396070  15.57617143152  0.0352  0.6780  

3.0  24.07605221819  24.08553692319  23.87536548105  0.0394  0.8726  

3.5  37.59936285780  37.61545195869  37.21153902089  0.0428  1.0738  

4.0  59.57115847503  59.59815003314  58.83774130521  0.0453  1.2759  

  

Table 4.5b: Comparison of the results of non-Newtonian (multiplicative) and ordinary third- 

order  Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  = −  
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Figure 4.9b: Graphs of non-Newtonian (multiplicative) and ordinary third-order Runge-Kutta   

 

Figure 4.10b: Approximation error containing the third-order non-Newtonian (multiplicative)  

and the ordinary Runge-Kutta methods of table 4.5b  

We can observe that the comparison of results in table 4.5b shows that the non-Newtonian  

(multiplicative) third-order Runge-Kutta method gives us better results as compared to the  

ordinary third-order Runge-Kutta method for the same parameters. This we can also observe in  

figure 4.10b.  

The following table gives us the numerical results and the relative errors in percentage  for the 

non-Newtonian(multiplicative) Runge-Kutta fourth-order method and the ordinary fourth- order 

Runge-Kutta method compared to the exact result. The graphs are also below.  

  

   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\    ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

?  ‘’,B  

−a’AA=  
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0  2  2  2  0  0  

0.5  3.09766059727  3.14872127070     3.14843750000  1.6216  0.0090  

1.0  4.52486653575  4.71828182846  4.71734619141  4.0993  0.0198  

1.5  6.49779222100  6.98168907034  6.97937536240  6.9309  0.331  

2.0  9.36333319349  10.38905609893  10.38397032395  9.8731  0.0490  

2.5  13.68981076465  15.68249396070  15.67201358089  12.7064  0.0668  

3.0  20.41382059959  24.08553692319  24.06480363724  15.2445  0.0861  

3.5  31.08138908999  37.61545195869  37.57557474577  17.3707  0.1060  

4.0  48.24459155490  59.59815003314  59.52301774498  19.0502  0.1261  

  

Table 4.6a: Comparison of the results of non-Newtonian (multiplicative) and ordinary fourth- 

order  Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  = −  

  

  

  

Figure 4.11a: Graphs of non-Newtonian (multiplicative) and ordinary fourth-order Runge-Kutta   
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Figure 4.12a: Approximation error containing the fourth-order non-Newtonian (multiplicative)  

and the ordinary Runge-Kutta methods of table 4.6a  

We can see from table 4.6a that the ordinary fourth-order Runge-Kutta method gives us  better 

solutions than the non-Newtonian (multiplicative) Runge-Kutta method. This can also be  

clearly seen in figures 4.11a and 4.12a.  

We now choose the parameters …= , :=  , >= , ==  , l =1, l= , l =  , m =  
 o g g o 

m =mg =mn =0, mq =1 and m=  . Which is also the set of parameters widely used for the  ordinary 

Runge-Kutta method and substitute into equation (3.125).  

Table 4.6b below gives us the comparison of the results for the parameters chosen and also  the 

graphs are presented in figures 4.11b and 4.12b.  
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   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

?  ‘’,B  

−a’AA=  

0  2  2     2  0  0  

0.5  3.14878031996  3.14872127070     3.14843750000  0.0019  0.0090  

1.0  4.71842749578  4.71828182846  4.71734619141  0.0031  0.0198  

1.5  6.98197000266  6.98168907034  6.97937536240  0.0040  0.0331  

2.0  10.38954950716  10.38905609893  10.38397032395  0.0047  0.0490  

2.5  15.68332726836  15.68249396070  15.67201358089  0.0053  0.0668  

3.0  24.08692224948  24.085536923188  24.06480363724  0.0058  0.0861  

3.5  37.61774103632  37.61545195869  37.57557474577  0.0061  0.1060  

4.0  59.60192377380  59.59815003314  59.52301774498  0.0063  0.1261  

  

Table 4.6b: Comparison of the results of non-Newtonian (multiplicative) and ordinary fourth- 

order  Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and  = −  

  

  

Figure 4.11b: Graphs of non-Newtonian (multiplicative) and ordinary fourth-order Runge-Kutta   
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Figure 4.12b: Approximation error containing the fourth-order non-Newtonian (multiplicative)  

and the ordinary Runge-Kutta methods of table 4.6b  

From table 4.6b we observe that the change of the parameters for the non-Newtonian   

(multiplicative) Runge-Kutta method gave us better results as compared to the ordinary Runge-  

Kutta method for the same parameters. This can also be notice in figure 4.12b. Thus the non- 

Newtonian (multiplicative) method gives us better solutions than the ordinary Runge-Kutta  

method.  

  

We finally consider the solution for non-Newtonian (multiplicative) initial value problem  

                                               ∗ =,     0 =1                                                 (4.7)  

The ordinary differential equation corresponding to equation (4.7) is  

                                           = 1− ,        0 =1                                                (4.8)  
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The exact solution for both equations (4.7) and (4.8) is   

R 

 
                                                 = Q R S                                                                       (4.9)  

Using  ℎ=0.25 and ,=8, we now check the solutions of non-Newtonian (multiplicative) and  the 

ordinary Runge-Kutta method by comparing the results of the equations (4.7) and (4.8). The 

following table compares the results of the non-Newtonian (multiplicative) Runge-Kutta  

method and the ordinary Runge-Kutta method of  the second order. The graphs are also  

presented below.  

  

  

  

  

  

  

  

   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

?  ‘’,B  

−a’AA=  

0  1  1  1  0  0  

0.25  1.24452010777  1.24452010777  1.24609375000  0  0.1264  

0.50  1.45499141462  1.45499141464  1.45904922485  0  0.2789  

0.75  1.59799544995  1.59799544995  1.60438420624  0  0.3998  

1.00  1.64872127070  1.64872127070  1.65608799413  0  0.4468  

1.25  1.59799544995  1.59799544995  1.60433524434  0  0.3967  

1.50  1.45499141462  1.45499141462  1.458629016072  6.104 n  0.2500  

1.75  1.24452010777  1.24452010777  1.24496265630  0  0.0356  

2.00  1.00000000000  1.00000000000  0.99815853596  0  0.1841  
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Table 4.7: Comparison of the results of non-Newtonian (multiplicative) and ordinary second- 

order  Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and   = 1−   

  

Figure 4.13: Graphs of non-Newtonian (multiplicative) and ordinary second-order Runge-Kutta   

methods and the exact solution for  ∗ =  and   = 1−   
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Figure 4.14: Approximation error containing the second-order non-Newtonian (multiplicative)  

and the ordinary Runge-Kutta methods of table 4.7  

  

The comparison of the results presented in the table 4.7 shows that the non-Newtonian  

(multiplicative) second-order Runge-Kutta method gives better results compared to the ordinary  

second-order Runge-Kutta method. Since the error terms of non-Newtonian (multiplicative)   

Rung-Kutta method is smaller than that of the ordinary Runge-Kutta method.   

In the following table we compare the results of the non-Newtonian (multiplicative) and ordinary  

third-order Runge-Kutta methods. The results in tabular form and the graphs are as follows  
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   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\   ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

?  ‘’,B  

−a’AA=  

0  1  1  1  0  0  

0.25  1.24452010777  1.24452010777  1.24454752604  0  0.0022  

0.50  1.45499141462  1.45499141462  1.45516248213  0  0.0118  

0.75  1.59799544995  1.59799544995  1.59839319682  0  0.0249  

1.00  1.64872127070  1.64872127070  1.64938360479  0  0.0402  

1.25  1.59799544995  1.59799544995  1.59891418459  0  0.0575  

1.50  1.45499141462  1.45499141462  1.45610751812  0  0.0767  

1.75  1.24452010777  1.24452010777  1.24571372756  0  0.0959  

2.00  1.00000000000  1.00000000000  1.00109237139  0  0.1092  

  

Table 4.8: Comparison of the results of non-Newtonian (multiplicative) and ordinary third- order 

Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and   = 1−   

  

Figure 4.15: Graphs of non-Newtonian (multiplicative) and ordinary third-order Runge-Kutta   
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methods and the exact solution for  ∗ =  and   = 1−   

  

  

Figure 4.16: Approximation error containing the third-order non-Newtonian (multiplicative)  and 

the ordinary Runge-Kutta methods of table 4.8  

  

By comparing the error terms of the non-Newtonian (multiplicative) third-order Runge-Kutta  

method and the ordinary third-order Runge-Kutta method of table 4.8, we can observe that the  

non-Newtonian (multiplicative) Runge-Kutta method gives better results than the ordinary  

Runge-Kutta method.  

The following table compares the results of the non-Newtonian (multiplicative) and ordinary  

fourth-order Runge-Kutta methods. Below are the results in tabular form and the graphs.   
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   *W* ‡Uˆ    U \H%    ‰Š*PU 8Š%%\    ‹ Œ=Ad•   

‹‹ d,

 %  

?  ,?, 

−• •  

‹ Œ=Ad•  

‹‹ d,

 %  

?  ‘’,B  

−a’AA=  

0  1  1  1  0  0  

0.25  1.24452010777  1.24452010777  1.24451382955  0  5.045 n  

0.50  1.45499141462  1.45499141462  1.45498184673  0  6.576 n  

0.75  1.59799544995  1.59799544995  1.59798433214  0  6.957 n  

1.00  1.64872127070  1.64872127070  1.64870973608  0  6.996 n  

1.25  1.59799544995  1.59799544995  1.59798420510  0  7.037 n  

1.50  1.45499141462  1.45499141462  1.45498069954  0  7.364 n  

1.75  1.24452010777  1.24452010777  1.24451059773  0  7.642 n  

2.00  1.00000000000  1.00000000000  0.99999494634  0  5.054 n  

  

Table 4.9: Comparison of the results of non-Newtonian (multiplicative) and ordinary fourth- 

order Runge-Kutta methods with the exact values and their relative errors in percentage   

for  ∗ =  and   = 1−   

  

Figure 4.17: Graphs of non-Newtonian (multiplicative) and ordinary fourth-order Runge-Kutta   
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methods and the exact solution for  ∗ =  and   = 1−   

  

  

Figure 4.18: Approximation error containing the fourth-order non-Newtonian (multiplicative)  

and the ordinary Runge-Kutta methods of table 4.9  

  

Comparing the results and error terms of table 4.9, we see that the non-Newtonian  

(multiplicative) Runge-Kutta method gives us better solutions than the ordinary Runge-Kutta  

method.  
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CHAPTER FIVE  

  

CONCLUSION AND RECOMMENDATION  

5.1 Conclusion  

In this thesis, a new kind of calculus called the non-Newtonian (Multiplicative) calculus is  

discussed. The non-Newtonian (Multiplicative) derivative definition is given in terms of non- 

Newtonian (Multiplicative) calculus and on the basis of the definition of the derivative, the 

definition of both the non-Newtonian (Multiplicative) Taylor series and chain rule were defined. 

With the definitions, we derived the non-Newtonian (Multiplicative) Runge-Kutta methods of  

the 2nd order, 3rd order and 4th order for the solution of non-Newtonian (Multiplicative) initial  

value problems of the form  

                                           ∗ = , ,        = , where the starting point is   and the initial value is 

 . The derivation of the 2nd, 3rd and 4th   order ordinary Runge-Kutta methods were also 

discussed. The non-Newtonian (Multiplicative)  Runge-Kutta method and the ordinary Runge-

Kutta method were both tested on some differential  equations and the numerical results 

compared.  We observed that the error terms of the non- Newtonian (Multiplicative) Runge-Kutta 

method in most cases are significantly less compared to  the ones of the ordinary Runge-Kutta 

method. Furthermore, we also observed that different parameters were used depending on the 

problem to arrive at the desired results. At the end it  was observe that the non-Newtonian 

(Multiplicative) Runge-Kutta method gave better results  as compared to the ordinary Runge-

Kutta method.    

5.2 Recommendation  

It is recommend that, future project must be carried out on the family of problems where the non- 

Newtonian (Multiplicative) Runge-Kutta method gives better results to the ordinary Runge-Kutta  

method.  
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APPENDICES  

  

The following MATLAB codes make , steps from  to   to approximate a solution of the   

Initial value problem  = , ,   = and ∗ = , ,    = .  

For each ordinary differential and non-Newtonian (multiplicative) initial value problem, we  need 

only define the appropriate function  , in the file f.m [13], [14].  
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APPENDIX I: Second-Order Ordinary Runge-Kutta  

           % rungekutta2.m            function [X2,Y2] 

= rungekutta2(x, xf, y, n)  

             h = (xf – x) / n;                                                   

            X2 = x; Y2 = y;                            

           for  i = 1: n                                                                          

k1 = f(x,y);                  k2 = 

f(x+h/2, y+h*k1/2);                  k = 

k2;                  y = y+h*k;                  

x = x+h;  

                X2 = [X2; x];                                                             

Y2 = [Y2; y];                                                           end 

                                                    APPENDIX II: 

Third-Order Ordinary Runge-Kutta  

        % rungekutta3.m    

         function [X3,Y3] = rungekutta3(x, xf, y, n)              

h = (xf – x) / n;             X3 = x; Y3 = y;            

for  i = 1: n                  k1 = f(x,y);                  k2 

= f(x+h/2, y+h*k1/2);                  k3 = f(x+h, y-

h*k1+2*h*k2);                  k = (k1+4*k2+k3) / 

6;                  y = y+h*k;                  x = x+h;  

                X3 = [X3; x];                

Y3 = [Y3; y];  

           end     

         %%%%%%%%%%%%%%%%%%  
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            % f.m  

             function y(x)p = f(x,y)                 y(x)p 

= 2*x*y;     % ( )l = ( ) APPENDIX III: 

Fourth-Order Ordinary Runge-Kutta  

        % rungekutta4.m  

         Function [X4,Y4] = rungekutta4(x, xf, y, n)  

             h = (xf – x) / n;             X4 = x; 

Y4 = y;            for  i = 1: n                  

k1 = f(x,y);                  k2 = f(x+h/2, 

y+h*k1/2);                  k3 = f(x+h/2, 

y+h*k2/2);                  k4 = f(x+h, 

y+h*k3);                  k = 

(k1+2*k2+2*k3+k4) / 6;                  y = 

y+h*k;                  x = x+h;  

                X4 = [X4; x];                

Y4 = [Y4; y];            end  

         %%%%%%%%%%%%%%%%%%  

            % f.m  

             function y(x)p = f(x,y)                 y(x)p 

= y - x;     % ( )l = ( ) APPENDIX IV: 

Second-Order non-Newtonian 

(Multiplicative) Runge-Kutta  

          % nonnewrk2.m            function [X2,Y2] 

= nonnewrk2(x, xf, y, n)    
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             h = (xf – x) / n;             

X2 = x; Y2 = y;            for  i = 1: 

n                  k1 = f(x,y);                  

k2 = f(x+h, y*k1.^(h));  

                 k = (k1.^(1/2)*k2.^(1/2));  

  

                 y = y.*(k.^h);                  

x = x+h;  

                X2 = [X2; x];                

Y2 = [Y2; y];            end  

  

  

  

  

  

  

  

  

APPENDIX V: Third-Order non-Newtonian (Multiplicative) Runge-Kutta  

         % nonnewrk3.m            function [X3,Y3] = 

nonnewrk3(x, xf, y, n)    

             h = (xf – x) / n;             

X3 = x; Y3 = y;            for  

i = 1: n                  k1 = 

f(x,y);                  k2 = 

f(x+h/2, y);  
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                 k3=f(x+h,y);  

  

                 k = (k1.^(1/6)*k2.^(1/2)*k3.^(1/3));  

  

                 y = y.*(k.^h);                  

x = x+h;  

                X3 = [X3; x];                

Y3 = [Y3; y];  

           end    

%%%%%%%%%%%%%%%%%%  

            % f.m  

             function y(x)p = f(x,y)                 y(x)p = 

exp(2*x);     % ( )l = ∗( ) APPENDIX VI: Third-

Order non-Newtonian (Multiplicative) 

Runge-Kutta  

       % nonnewrk3.m       

function[X3,Y3]=nonnewrk3(x,xf,y,n)  

                 h=(xf-x)/n;                  X3=x; 

Y3=y;       for i=1:n                k1=f(x,y);             

k2=f(x+h/2,y.*(k1.^(h/2)));            

k3=f(x+h,y.*(k1.^(-h))*(k2.^(2.*h)));             

k=(k1.^(1/6)*k2.^(2/3)*k3.^(1/6));             

y=y.*(k.^h);               x=x+h;  

            X3=[X3;x];             

Y3=[Y3;y];         end  

%%%%%%%%%%%%%%%%%%  
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            % f.m  

             function y(x)p = f(x,y)                 y(x)p = 

exp(1-x);     % ( )l = ∗( ) APPENDIX VII: 

Fourth-Order non-Newtonian 

(Multiplicative) Runge-Kutta  

       % nonnewrk4.m            function [X4,Y4] = 

nonnewrk4(x, xf, y, n)    

             h = (xf – x) / n;             

X4 = x; Y4 = y;            for  

i = 1: n                  k1 = 

f(x,y);                  k2 = 

f(x+h/2, y);  

                 k3 = f(x+h/2,y);  

  

                 k4 = f(x+h,y);  

  

        k = (k1.^(1/4)*k2.^(1/6)*k3.^(1/3)*k4.^(1/4));  

  

                 y = y.*(k.^h);                  

x = x+h;  

                X4 = [X4; x];                

Y4 = [Y4; y];  

           end    

         %%%%%%%%%%%%%%%%%%  

            % f.m  

             function y(x)p = f(x,y)                  y(x)p = 

exp( (y - x) / y );     % ( )l = ∗( ) APPENDIX VIII: 
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Fourth-Order non-Newtonian (Multiplicative) 

Runge-Kutta  

        % nonnewrk4.m            function [X4,Y4] = 

nonnewrk4(x, xf, y, n)    

             h = (xf – x) / n;             

X4 = x; Y4 = y;            

for  i = 1: n                  

k1 = f(x,y);  

                 k2=f(x+h/2,y.*(k1.^(h/2)));  

  

                 k3=f(x+h/2,y.*(k2.^(h/2)));  

  

                 k4=f(x+h,y*(k3.^h));  

  

        k = (k1.^(1/6)*k2.^(1/3)*k3.^(1/3)*k4.^(1/6));  

                  y = 

y.*(k.^h);                  x = 

x+h;  

                X4 = [X4; x];                

Y4 = [Y4; y];            end  

%%%%%%%%%%%%%%%%%%  

            % f.m  

             function y(x)p = f(x,y)                  y(x)p = 

exp( (y - x) / y );     % ( )l = ∗( )  

  


