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Abstract

The Extended Kalman Filter is a bayesian state estimation used for nonlinear

models or systems. This filter may however fail to produce accurate results de-

pending on the degree of nonlinearity of the system. The Unscented Kalman Filter

on the other hand can be applied to highly nonlinear systems or models. Compar-

isons between the two filters are made using two systems. The first system is a four

degrees of freedom shear building with time-varying system parameters and the

second is a nonlinear hysteric damping system with unknown system parameters.

The results indicated that the latter provides consistent as well as more accu-

rate state and parameter estimates than the extended kalman filter for nonlinear

systems.
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Chapter 1

Introduction

State and parameter estimation has been a subject of research for over four

decades. One of the ways of simultaneously estimating the state and parame-

ters of dynamical systems is Data Assimilation (DA), where observations from

measurements are combined with the dynamic principles (model) governing the

system under discussion. It also adds value to the observations by filling in the

observational gaps and to the model by constraining it with observations.

There are two main categories of data assimilation, the Sequential Data As-

similation where observations are incorporated into the model at each time they

are available and a best estimate is produced and used to predict future states

and the Variational Data Assimilation which seeks an optimal fit of the model

solution to observations over a period by adjusting the estimation states in this

period simultaneously and also the estimated states are somehow influenced by all

the observations distributed in time. The Kalman filter (KF) which is a sequential

data assimilation method is believed to be an optimal technique for estimating

linear dynamical systems. This filter is basically a set of mathematical equations

used to estimate the state of a dynamical system and at the same time minimizing

the mean of the squared error.
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Most real-life problems are in fact nonlinear and so the Kalman filter is unable

to predict or estimate the state of these nonlinear systems or models accurately.

An improvement of the Kalman filter known as the Extended Kalman filter (EKF)

is the most popular method used to estimate the state as well as parameters of

nonlinear systems. The Extended Kalman Filter can sometimes be very difficult

to implement because of the calculation of Jacobians used for the linearizaiton and

also the filter sometimes diverge if the dynamical model is highly nonlinear. The

Unscented Kalman filer (UKF) and its variations is an alternative method to the

EKF for the estimation of nonlinear dynamical systems.

1.1 Background

Knowledge of the dynamic loads is crucial to design purposes as far as civil engi-

neering is concerned. Very often these dynamic loads are not well known or cannot

be measured directly. In these cases, inverse identification techniques may be used

for identifying the unknown excitation forces from the measured responses.

State as well as parameter estimations have been applied in civil engineering

for a few decades. For instance, it can be used in structural health monitoring to

detect changes of dynamical properties of structural systems during earthquakes

and, more generally, it can be used for system identification to better understand

the nonlinear behavior of structures subject to seismic loading (earthquake). The

ability to estimate system states in real time may help to accomplish an efficient

control strategy as considered in structural control. Again in performance-based

earthquake engineering, state estimation can provide some crucial information to

assess the seismic performance of an instrumented structure in terms of repair

costs, casualties and repair duration shortly after the cessation of strong motion

(e.g. after an earthquake). Various studies have been carried out because of the
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wide applicability of state and parameter estimation in civil engineering.

1.2 Problem Statement

The Unscented Kalman Filter is an alternative to the Extended Kalman Filter

for estimating nonlinear system states and parameters which involves the use of

sigma points and the nonlinear function to obtain the required statistics (mean

and covariance).

The performance and accuracy of this filter is investigated using two structural

systems. The first is a planar four degrees of freedom shear building with time

varying system parameters and the second is a single degree-of-freedom (SDOF)

Bouc-Wen hysteretic damping system.

1.3 Objectives

The objectives of this study are to

• Test the feasibility of the Unscented Kalman filter in simultaneously esti-

mating state and parameters.

• Compare the performance of the Unscented and Extended Kalman filters on

two structural systems.

1.4 Methodology

This research involves the state and parameter estimation of two structural dy-

namical systems (a linear system and a nonlinear system) using the Unscented

Kalman filter. The first system is a planar four-story shear building with time

varying system parameters and the second system is a single degree-of-freedom
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(SDOF) damping system. The models used for this two systems are initially differ-

ential equations and as a result numerical methods for solving ordinary differential

equations are also used in this research.

The simulations for this research were performed using MATLAB (version

7.8.0.347, R2009a). It is also appropriate to mention that, the two structural

systems considered in this thesis were obtained from Ching et al. (2006) and the

matlab codes used with some modifications were obtained from Jianye Ching. In-

formation as well as references needed for this research were obtained from the the

KNUST library and the internet.

1.5 Justification of Problem

Most researchers in the Civil and Structural Engineering fields have studied the

state and parameter estimation using the the popular Extended Kalman filter

due to the fact that most of these estimation problems are nonlinear. On the

other hand, a lot of work has been carried out in other scientific areas using the

Unscented Kalman filter and its variations. Much work has not not be done in

civil engineering using the Unscented Kalman filter (most people used the well-

known Extended Kalman filter). This research focuses on the application of the

Unscented Kalman filter in civil engineering which has not seen much work there.

1.6 Structure of the Thesis

This thesis is written in five chapters. The first chapter introduces the thesis. That

is, the general overview of state and parameter estimation and its application in

structural engineering. It also talks about the problem statement, objectives of

the thesis, methods used and then the justification of the problem. Chapter two
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deals with the review of the literature related to the thesis followed by the third

chapter which focuses on the methods used in the thesis as well as a numerical

example. Chapter four talks about the results and discussion and the final chapter

deals with the conclusion and recommendations drawn from the thesis.
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Chapter 2

Literature Review

2.1 Introduction

The main challenges to society, for example, climate change, impact of extreme

weather, environmental degradation and ozone loss, require information for an

intelligent response, including making choices on future action. Regardless of its

source, we wish to be able to use this information to make predictions for the future,

test hypotheses, and attribute cause and effect. In this way, we are able to take

action according to information provided on the future behaviour of the system of

interest, and in particular future events (prediction); test our understanding of the

system, and adjust this understanding according to new information (hypothesis

testing); and understand the cause of events, and obtain information on possible

ways of changing, mitigating or adjusting to the course of events (attribute cause

and effect)(Lahoz et al., 2010).

However, we still need two ingredients: a means of gathering information, and

methods to build on this information gathered. Roughly speaking, observations

(measurements) provide the first ingredient, and models (conceptual, numerical or

otherwise) provide the second ingredient. Lahoz et al. (2010) went on to ask a very
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important question. “What combination of the model and observation information

is said to be optimal?”. Mathematics provides an answer to this question as well

as an estimate of the errors of the “optimum” or “best” estimate. This method is

known as data assimilation. The data assimilation adds value to the observa-

tions by filling in the observational gaps and to the model by constraining it with

observations. Accurate inferences are then made from the observations. Bouttier

and Courtier (1999) also described data assimilation as an analysis technique in

which observed information is accumulated into the model state by taking advan-

tage of consistency constraints with laws of time evolution and physical properties.

2.2 Data Assimilation

There are two main categories of data assimilation, namely Sequential data as-

similation which considers observation made in the past until the time of analysis,

which is the case of real-time assimilation systems and Variational data assimila-

tion where observation from the future can be used, for instance in a reanalysis

exercise (Bouttier and Courtier, 1999).

This research only deals with the sequential data assimilation. The most well

known Sequential data assimilation or bayesian state estimation algorithm is the

Kalman filter (KF) named after Rudolph E. Kalman who published is famous

paper in 1960 describing a recursive solution to the discrete-data linear filtering

problem (Kalman, 1960; Kalman and Bucy, 1961).

Welch and Bishop (2006) describes Kalman filter as a set of mathematical

equations that provides an efficient computational (recursive) means to estimate

the state of a process, in a way that minimizes the mean of the squared error. The

filter is very powerful in several aspects: it supports estimations of past, present,

and even future states, and it can do so even when the precise nature of the
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modeled system is unknown.

The Kalman filter however has limitations, one of such is the fact that it is

unable to predict or estimate the state vector of nonlinear model. That is, the

Kalman filter breaks down when applied to nonlinear systems. Most of real world

problems are nonlinear systems and so the Kalman filter is unable to predict the

state or parameters or even both for such systems (Julier et al., 1995; Julier and

Uhlmann, 1996, 1997; van der Merwe et al., 2000; van der Merwe and Wan, 2003;

Ching et al., 2006).

Fortunately, there are improved forms of the Kalman filter used for nonlinear

state equations. The famous of such algorithms is the Extended Kalman Filter

(Jazwinski, 1970) which extends the kalman filtering through a procedure of lin-

earization by making use of the taylor series expansion of the the nonlinear model.

Once a linear model is obtained the kalman filter equations are then applied to

obtain the estimate. This filter has become a standard technique used in state and

parameter estimation.

Again the Extended Kalman Filter has a couple of limitations. One of such is

the fact that it is not always possible to calculate the Jacobian and also it does

not produce accurate results if the nonlinear function is not well approximated

by a linear model or function. That is, this model works well when the nonlinear

model is close to a linear model.

Julier et al. (1995) pointed out that although the EKF is conceptually simple

it has, in practice, three well-known drawbacks:

1. Linearization can produce highly unstable filter performance if the time step

intervals are not sufficiently small.

2. The derivation of the Jacobian matrices are nontrivial in most applications

and often lead to significant implementation difficulties and finally,
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3. Sufficiently small time step intervals usually imply high computational over-

head as the number of calculations demanded for the generation of the Ja-

cobian and the predictions of state estimate and covariance are large.

Although the EKF (in its many forms) is a widely used filtering strategy, over

thirty years of experience with it has led to a general consensus within the tracking

and control community that it is difficult to implement, difficult to tune, and

only reliable for systems which are almost linear on the time scale of the update

intervals and many of these difficulties arise from its use of linearization (Julier and

Uhlmann, 1997; Julier et al., 2000; Julier and Uhlmann, 2004). A central and vital

operation performed in the Kalman Filter is the propagation of a Gaussian random

variable (GRV) through the system dynamics. In the EKF, the state distribution

is approximated by a GRV, which is then propagated analytically through the

first-order linearization of the nonlinear system. This can introduce large errors

in the true posterior mean and covariance of the transformed GRV, which may

lead to sub-optimal performance and sometimes divergence of the filter (Wan and

van der Merwe, 2000).

Another improved form of the Kalman filter used for the estimation of nonlinear

systems is the Unscented Kalman Filter. This method was first introduced by

Julier et al. (1995); Julier and Uhlmann (1996, 1997) and further improved by

Wan et al. (2000); Wan and van der Merwe (2000) which is obtained from the

basic idea of the Unscented Transform.

This method is used for calculating the statistics (mean and covariance) of

a random variable which undergoes a nonlinear transformation. It is based on

the fact that, it is easier to approximate a Gaussian distribution than it is to

approximate a nonlinear function. The idea of this transform is to obtain a set

of points known as Sigma points so that the sample mean and sample covariance

are x̄ and Px respectively. The nonlinear function is applied to these set of points
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to produce a set of transformed sigma points whose statistics are ȳ and Py (Julier

and Uhlmann, 1997).

2.3 State Estimation in Civil Engineering

For civil engineering structures, knowledge of the dynamical loads is crucial to

design purposes. Very often these dynamical loads are not well known or cannot

be measured directly. In these cases, inverse identification techniques may be used

for identifying the unknown excitation forces from the measured responses.

State as well as parameter estimations have been applied to civil engineering

for some time now. For instance, it can be used in structural health monitoring to

detect changes of dynamical properties of structural systems during earthquakes

and, more generally, it can be used for system identification to better understand

the nonlinear behavior of structures subject to seismic loading (earthquake). The

ability to estimate system states in real time may help to accomplish an efficient

control strategy is considered in structural control. Again in performance-based

earthquake engineering, state estimation can provide some crucial information to

assess the seismic performance of an instrumented structure in terms of repair

costs, casualties and repair duration shortly after the cessation of strong mo-

tion(e.g. after an earthquake). Various studies have been carried out because

of the wide applicability of state and parameter estimation in civil engineering.

Distefano and Rath (1975) reported the sequential identification methods of

control and optimization theory and the way in which the parameters can be

identified other than the natural circular frequency of a bilinear system. Since their

approach is generally a sequential processing, the same problem can be accessed

by the use of Kalman filter.

Carmichael (1979) incorporated the model parameter estimation by the ex-
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tended Kalman filter within the state estimation problem by suitably augmenting

the state vector of dynamic behavior of the model. However, his problem is based

on a single degree-of-freedom system, and the adaptability of the reference state

vector is not markedly stable due to the finite difference approximation.

Yun and Shinozuka (1980) used an extended Kalman filter to study nonlinear

fluid-structure interaction and to identify the hydrodynamic coefficient matrices

associated with nonlinear drag and linear inertia forces appearing in the equations

of motion of offshore structures subjected to wave forces. They reported a multiple

degree-of-freedom linear model of an offshore tower in which the response of each

mass was observed.

Loh and Tsaur (1988) also applied the extended Kalman to a system identi-

fication problem of seismic structural systems which presented an identification

method for an equivalent linear system, a bilinear hysteric restoring system and

a bilinear hysteretic restoring system with stiffness degradation effect. For the

accuracy of their proposal, the justification of the method was investigated on

numerically simulated data on response of a known system as well as a known

degrading system. It was then applied to identify the hysteresis behaviour of

two buildings which were subjected to earthquake loads. They showed that good

estimates of the test-response time history and reliable values of the structural

parameters can be obtained.

In order to obtain the stable and convergent solutions (i.e. for stable estima-

tion), Hoshiya and Saito (1984) proposed a weighted global iteration procedure

with an objective function which was incorporated into the extended Kalman fil-

ter algorithm. For the effectiveness of the proposal, the identification problems

were investigated for multiple degree-of-freedom linear systems, bilinear hysteretic

systems, and equivalent linearization of bilinear hysteretic systems. The simu-

lated results showed that the weighted global iteration procedure may be useful to
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identification problems for structural system identification.

It is generally recognized that damage will result in degradation of system

characteristics, such as stiffness or damping. Iemura and Jennings (1973) and

Udwadia and Jerath (1980) have observed that a degradation of the stiffness from

50% to 70% can occur, based on data obtained from the Millikan Library Building,

located on the campus of the California Institute of Technology, during the 1971

San Fernando earthquake. It was found that the ratio of the time-dependent

natural frequency to the original value was a smooth time-varying function, which

dropped to about half its value during the strong motion part of the excitation.

Several authors (Chen et al., 1977; Foutch and Housner, 1977; Meyer and Roufaiel,

1984; Mihai et al., 1980; Vasilescu and Diaconu, 1980) have also indicated that

stiffness degrades in both full-scale structures and small-scale models as a result

of seismic damage.

Ogawa and Abe (1980) and Carydis and Mouzakis (1986) attempted to corre-

late stiffness degradation to the severity of damage. Based on all these observa-

tions, structures under strong environmental loads are thus expected to undergo

nonlinear and time-dependent degrading behavior. Hence, time-varying behavior

of system parameters can occur, and on-line identification becomes a real issue

under these conditions to permit real-time corrective action, repair, and control to

minimize the possibility of further damage.

Lin et al. (1990) developed a general, real time-domain technique to identify

the time-varying system parameters for better understanding of the degrading

behavior of structures subject to dynamic loads. They tested their identification

methodology on two numerical examples to demonstrate the use and efficiency of

the method. The formulation of the identification procedure and the simulated

results from the two numerical examples indicated that the proposed technique

which identifies time-varying physical system parameters (e.g., stiffness, damping)
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rather than the modal parameters (e.g., modal stiffness, natural frequency), can

be effective in detecting the damage of the structure as to its occurrence and

location. Since current system state is updated at each identification time instant,

no identification error is accumulated and for that matter, the knowledge of the

initial system parameters is not so critical to the accuracy of their identification.

The numerical results in the second example also demonstrated that if the response

is sensitive to a particular system parameter, that parameter will be estimated with

higher accuracy.

Hoshiya and Sutoh (1993) investigated the extended Kalman filter - weighted

local iteration procedure with an objective function (EK-WLI procedure) for sys-

tem identification in geotechnical engineering problems. They incorporated the

EK-WLI procedure with the finite element method in order to identify unknown

parameters. For the effectiveness of this procedure, parameter identification prob-

lems were numerically analyzed for an elastic plane strain field represented by the

finite element models under several conditions. The results from numerical ex-

amples proved that a weighted local iteration procedure of Kalman filter with an

objective function is found to be effective for stable estimation of state vector and

also showed the usefulness of this method in parameter identification.

Koh and See (1994) developed an improved version of the commonly used

extended Kalman filter (EKF) by incorporating an adaptive filter procedure. The

system noise covariance is updated in time segments in order to ensure statistical

consistency between the predicted error covariance and the mean square of actual

residuals. Comprising two stages in a cycle, the adaptive EKF method not only

identifies the parameter values but also gives a useful estimate of uncertainties.

They tested the method on two numerical examples of simulation with noise.

The first example illustrated the superior statistical performance of the proposed

method over the conventional EKF method. The second example demonstrated
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the numerical accuracy and efficiency of this method, with and without modeling

error, in comparison with the recursive least-squares approach.

Ghanem and Shinozuka (1995a) presented and reviewed several structural-

identification algorithms which included the extended kalman filter, maximum

likelihood technique, recursive least squares method and recursive instrumental

variable method. They applied these algorithms to experimental data obtained in

controlled laboratory conditions. The data pertained to the acceleration records

from two building models subjected to various loading conditions. The perfor-

mance of the various identification algorithms was critically assessed, and guide-

lines were obtained regarding their suitability to various engineering applications

(Ghanem and Shinozuka, 1995b).

Glaser (1996) used the Kalman filter to identify the time-varying natural fre-

quency and damping of a liquefied soil to get insight into the liquefaction phe-

nomenon. They investigated the Wildlife Site in California, subject to two large

earthquakes (Elmore Ranch and Superstition Hills) on November 24, 1987 as the

associated data were the only publicly available record of buried and surface mo-

tions.

Sato and Qi (1998) derived an adaptive H+
∞ filter and applied it to time-varying

linear and nonlinear structural systems in which displacements and velocities of

the floors are measured.

Smyth et al. (1999) formulated an adaptive least-squares algorithm for identi-

fying multi-degree-of-freedom nonlinear hysteretic systems for control and moni-

toring.

Ching et al. (2004) presented a real-time Bayesian state-estimation algorithm

that employs a stochastic simulation approach called the particle filter (PF) as well

as introduced and discussed some techniques that improve the convergence of the

particle filter simulations. They made comparisons between the particle filter and
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the extended Kalman filter using several numerical examples of nonlinear systems.

The results indicated that the particle filter provides consistent state and parame-

ter estimates for highly nonlinear systems, while the extended Kalman filter does

not. They also applied the particle filter to strong motion data recorded in the

1994 Northridge earthquake in a seven-story hotel (The Van Nuys hotel) whose

structural system consisted of non ductile reinforced-concrete moment frames, two

of which were severely damaged during the earthquake. The particle filter once

again provided consistent state and parameter estimates, in contrast to the ex-

tended Kalman filter, which provided inconsistent estimates. They concluded that

for a state estimation procedure to be successful, at least two factors are essential:

an appropriate estimation algorithm and a suitable identification model. Finally,

recorded motions from the 1994 Northridge earthquake were used to illustrate how

to do real-time performance evaluation by computing estimates of the repair costs

and probability of component damage for the hotel.

During the review of literature, it was observed that the Unscented Kalman

filter has not been applied much to civil or structural engineering. Most researchers

rather used the Extended Kalman filter. It is of this view that the Unscented

Kalman filter was applied to dynamical structural systems and the performance

of this filter was compared with that of the Extended Kalman filter.
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Chapter 3

Methodology

3.1 Introduction

This chapter discusses the methods used in this thesis. They are the Numerical

Methods for Ordinary Differential Equations and Data Assimilation using Un-

scented Kalman Filter. The models used to estimate the state as well as the pa-

rameter of the system under discussion are ordinary differential equations. These

equations are solved using numerical methods and then the unscented kalman filter

is used to estimate the state and parameters of the system.

3.2 Numerical Methods for Ordinary Differen-

tial Equations (ODE)

3.2.1 Introduction

A lot of mathematical models that arise in many branches of science, engineering,

economics, etc are differential equations. The equations unfortunately rarely have

solutions which can be expressed in closed form or have analytical solutions, so it
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is common to seek approximate solutions by means of numerical methods. Nowa-

days this can usually be achieved very inexpensively to high accuracy and with

a reliable bound on the error between the analytical solution and its numerical

approximation.

An Ordinary differential equation (ODE) is an equation that specifies a rela-

tionship between a function of a single independent variable and the total deriva-

tives of this function with respect to the independent variable or a differential

equation in which the unknown function (also known as the dependent variable)

is a function of a single independent variable. The variable y is actually used as a

generic dependent variable is this thesis. The independent variable is either time t

or space x in most problems in engineering and science. Usually, if more than one

independent variable exists, then partial derivatives occur, and partial differential

equations (PDE) are obtained which are not covered in this thesis.

The order of an ODE is the highest derivative of the dependent variable with

respect to the independent variable appearing in the equation. The general first-

order ODE is
dy

dt
= f(t, y) (3.1)

where f(t, y) is called the derivative function. Also the general nth-order ODE for

y(t) has the form

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′

+ a1y
′
+ a0y = F (t) (3.2)

A linear ODE is one in which all of the derivatives appear in linear form and

none of the coefficients depends on the dependent variable or an ODE in which

there are no products of the unknown function y(t) and its derivatives and neither

the function or its derivatives occur to any power other than the first power. For

example

y′ + 2y = F (t) (3.3)
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is a linear, constant-coefficient first-order ODE but

y′ + αty = F (t) (3.4)

is a linear, variable-coefficient first-order ODE. If the coefficients depend on the

dependent variable, or the derivatives have powers more than one, then the ODE

is nonlinear. For example, the following equations;

yy′ + αy = 0 (3.5)

(y′)2 + αy = 0 (3.6)

are nonlinear first-order ODEs.

A homogeneous differential equation is differential equation (or DE) in which

each term involves only the dependent variable and one of its derivatives but a

nonhomogeneous differential equation contains additional terms known as source,

force or nonhomogeneous terms which do not involve the dependent variable. For

example

y′ + αty = 0 (3.7)

is a linear, first-order homogeneous ODE and

y′ + αty = F (t) (3.8)

is a linear, first-order nonhomogeneous ODE with the nonhomogeneous term being

F (t).

Unfortunately, many practical problems are not as simple as the equations

described above but rather involve several dependent variables, each of which is a

function of the same single independent variable and one or more of the dependent

variables, and each of which is governed by an ordinary differential equation. These

sets of ODE are called systems of differential equations. The general solution of a

differential equation is usually a family of solutions due to the fact that it contains
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one or more constants of integration. A particular member of that family which is

of interest is obtained by auxiliary conditions. The number of auxiliary conditions

must equal the number of constants of integration, which is the same as the order

of the differential equation.

There are two distinct classes of ordinary differential equations depending on

the type of auxiliary conditions specified. If all the auxiliary conditions are speci-

fied at the same value of the independent variable and the solution is to be marched

forward from that initial point, the differential equation is an initial-value ODE

but if the auxiliary conditions are specified at two different values of the indepen-

dent variable, usually the end points or boundaries of the domain of interest, the

differential equation is a boundary-value ODE.

The differential equations used in the thesis are initial-value ODEs so the sub-

sequent subsections talks about some of the methods used in solving initial value

ODEs.

3.2.2 The Explicit Euler Method

Consider the general nonlinear first-order ODE:

y′ = f(t, y) y(t0) = y0 (3.9)

Choosing point n as the base point and developing a finite difference approximation

for eqn. (3.9), the first-order forward-difference finite difference approximation of

y′ is written as

y′|n =
yn+1 − yn

∆t
− 1

2
y′′(τn)∆t (3.10)

Substituting eqn. (3.10) into eqn. (3.9), evaluating f(t, y) at point n and finally

solving for yn+1 which also includes truncating the remainder term, which isO(∆t2)

(Hoffman, 2001) yields the explicit Euler finite difference equation (FDE):

yn+1 = yn + ∆tfn O(∆t2) (3.11)
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where O(∆t2) is the order of the local truncation error.

A few points to note about this equation is as follows:

• The FDE is clearly explicit, since the function fn, does not depend on yn+1.

• The FDE is a single point method since it requires only one know point as

well as one derivative function evaluation per step.

• The error in calculating yn+1 for a single step, the local truncation error,

is O(∆t2) whiles the global (i.e., total) error accumulated after N steps is

O(∆t).

The last point indicates that this FDE is of first order since the global error is of

order one. Finally, the algorithm based on the repetitive application of the explicit

Euler FDE to solve initial-value ODEs is called the explicit Euler method.

3.2.3 The Implicit Euler Method

Consider the general nonlinear first-order ODE:

y′ = f(t, y) y(t0) = y0 (3.12)

Choosing point n as the base point and developing a finite difference approximation

for eqn. (3.12), the first-order backward-difference finite difference approximation

of y′ is given by

y′|n+1 =
yn+1 − yn

∆t
− 1

2
y′′(τn+1)∆t (3.13)

Substituting eqn. (3.13) into eqn. (3.12), evaluating f(t, y) at point n+ 1 and

finally solving for yn+1 which also includes trancating the remainder term, which

is O(∆t2) (Hoffman, 2001) yields the implicit Euler FDE :

yn+1 = yn + ∆tfn+1 O(∆t2) (3.14)
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where O(∆t2) is the order of the local truncation error.

It can be observed that:

• Since fn+1 depends on yn+1, it implies that the FDE above is implicit. If

f(t, y) is linear in y, then fn+1 is linear in yn+1, and eqn. (3.14) is a linear

FDE which can be solved directly for yn+1. If f(t, y) is nonlinear in y, then

eqn. (3.14) is a nonlinear FDE, and additional effort is required to solve for

yn+1.

• Again the FDE is a single point method since it requires only one know point

as well as one derivative function evaluation per step.

• Only one derivative function evaluation is needed per step if f(t, y) is linear

in y but several evaluations of the derivative function may be required to

solve the nonlinear FDE if it is nonlinear and eqn. (3.14) is nonlinear for

that matter.

• Similar to the explicit euler FDE, its implicit form also has a single truncation

error of O(∆t2) and its global error is O(∆t).

The algorithm based on the repetitive application of the implicit Euler FDE to

solve initial-value ODEs is called the implicit Euler method.

3.2.4 Consistency, Order, Stability and Convergence

An FDE is consistent with an ODE if the difference between them (i.e., the trun-

cation error) vanishes as ∆t → 0 or simply put, the FDE approaches the ODE.

The rate at which the global error decreases as the grid size approaches zero is

the order of the FDE. An FDE is stable if it produces a bounded solution for

a stable ODE and is unstable if it produces an unbounded solution for a stable
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ODE. A finite difference method is convergent if the numerical solution of the FDE

approaches the exact solution of the ODE as O(∆t) approaches zero.

3.2.5 Consistency and Order

Consistency analysis is done by changing all terms in the FDE to a Taylor series

having the same base point as the FDE which results in an infinite-order differential

equation known as the modified differential equation (MDE). Making ∆t → 0

in the MDE results in a finite-order differential equation and if this equation is

identical to the exact differential equation whose solution is desired, then the FDE

is consistent. The order of a FDE is the order of the lowest-order terms in the

MDE.

3.2.6 Consistency and Order Analysis for the Explicit Eu-

ler FDE

Using this first-order ODE

y′ + αy = F (t) (3.15)

The MDE is obtained by first substituting eqn. (3.15) into eqn. (3.11). The taylor

series for yn+1 is also substituted into the resulting equation. Finally cancelling

the yn terms, dividing by ∆t and rearranging terms yields the modified differential

equation (MDE):

y′|n + αyn = Fn −
1

2
∆ty′′|n −

1

6
(∆t)2y′′′|n − · · · (3.16)

Let ∆t → 0 in eqn. (3.16) it can easily be proved that the explicit euler FDE is

consistent. The order of the FDE is the order of the lowest-order term in eqn.(3.16).

This results in

y′|n + αyn = Fn +O(h) + · · · (3.17)
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The conclusion is that the explicit euler FDE is of order O(h).

3.2.7 Stability Analysis

The exact solution of the FDE can be expressed as

yn+1 = Gyn (3.18)

where G is known as the amplification factor of the FDE and its generally a

complex number. The general solution for the FDE at T = N∆t is

yN = GNy0 (3.19)

For yn to remain bounded as N →∞

|G| ≤ 1 (3.20)

Therefore, stability analysis reduces to first of all determining the amplification

factor G of the FDE and then determining the conditions to ensure that |G| ≤ 1.

Consider the explicit Euler method in eqn. (3.11) the amplification factor G is

given by

G = (1− α∆t)

For stability, |G| ≤ 1 and so −1 ≤ (1 − α∆t) ≤ 1. The left-hand inequality is

only satisfied if ∆t ≤ 2/α and that of the right-hand side if ∆t ≥ 0. Therefore the

explicit Euler method is conditionally stable.

Consider the implicit Euler method in eqn. (3.14) the amplification factor G is

given by

G =
1

1− α∆t

For stability, |G| ≤ 1 is true for all values of α∆t. Therefore the implicit Euler

method is unconditionally stable.
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3.2.8 Second-Order Single-Point Methods

Again consider eqn. (3.9), expressing yn+1 and yn in Taylor series about the point

n + 1/2, subtracting the equation involving yn from that of yn+1 and solving for

y|n+1/2 gives

y|n+1/2 =
yn+1 − yn

∆t
− 1

24
y′′′(τ)∆t2 (3.21)

where tn ≤ τ ≤ tn−1. Substituting eqn. (3.21) into eqn. (3.9) and solving for yn+1

results in the implicit midpoint FDE :

yn+1 = yn + ∆tfn+1/2 O(∆t3) (3.22)

However yn+1 is obtained by first predicting yn+1/2 using the first-order explicit

Euler method and fn+1/2 is evaluated using the value of yn+1/2 obtained earlier.

Therefore two equations are needed which are called the modified midpoint FDEs

and given as:

yn+1/2 = yn +
∆t

2
fn (3.23)

yn+1 = yn + ∆tfn+1/2 (3.24)

The single-step FDE corresponding to the midpoint needed for the amplifica-

tion factor G is given as

yn+1 =

[
1− α∆t+

(α∆t)2

2

]
yn

and so amplification factor is

G = 1− α∆t+
(α∆t)2

2

. |G| ≤ 1 if only α∆t ≤ 2

The algorithm based on the repetitive application of the modified midpoint

FDEs is called the modified midpoint method. The modified midpoint method has

the following features
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• This method is an explicit predictor-corrector set of FDEs which requires

two derivative function evaluations per step.

• This method is consistent, O(∆t3) locally and O(∆t2) globally.

• This method is conditionally state (i.e., α∆t ≤ 2)

• Finally, this method is convergent since its consistent and conditionally sta-

ble.

3.2.9 Runge-Kutta Methods

Runge-Kutta methods are a group of single-point methods which evaluate the

difference between two solutions at points n and n+1 denoted by ∆y = (yn+1−yn)

as the weighted sum of several ∆yi (for i = 1, 2, . . .), where each ∆yi is evaluated

as ∆t multiplied by the derivative function f(t, y), evaluated at some point in the

range tn ≤ t ≤ tn+1, and the Ci (for i = 1, 2, . . .) are the weighting factors. That

is,

yn+1 = yn +
v∑
i=1

Ci∆yi (3.25)

When ∆y is a weighted of two ∆y’s, The second-order Runge-Kutta method is

obtained

yn+1 = yn + C1∆y1 + C2∆y2

where ∆y1 is given by the explicit Euler FDE

∆y1 = ∆tf(tn, yn) = ∆tfn (3.26)

and ∆y2 is based on f(t, y) evaluated somewhere in the interval tn ≤ t ≤ tn+1:

∆y2 = ∆tf [tn + (α∆t), yn + (β∆y1)] (3.27)
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Substituting ∆y1 and ∆y1 into yn+1 above and letting ∆t = h results in

yn+1 = yn + C1(hfn) + C2hf [tn + (αh), yn + (β∆y1)] (3.28)

There are infinite number of possibilities depending on the values of C1, C2,

α and β. The modified Euler method is obtained if C1 = 1
2
, C2 = 1

2
, α = 1 and

β = 1. Assuming C1 = 0, C2 = 1, α = 1
2

and β = 1
2

yields the modified midpoint

method.

If ki = ∆yi, then the Second-Order Runge-Kutta method is given by

yn+1 = yn +
1

2
(k1 + k2) (3.29)

where

k1 = hf(tn, yn) = hfn

and

k2 = hf(tn + h, yn + k1) = hf(tn + h, yn + hf(tn, yn))

The Classical Fourth-Order Runge-Kutta popularly known as the RK4 is given

by

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (3.30)

where

k1 = hf(tn, yn) = hfn

k2 = hf(tn +
h

2
, yn +

1

2
k1)

k3 = hf(tn +
h

2
, yn +

1

2
k2)

and

k4 = hf(tn + h, yn + k3)

Rk4 is consistent with an order of O(∆t4). The amplification factor G needed

for the stability analysis is given by

G = 1− (αh) +
1

2
(αh)2 +

1

6
(αh)3 +

1

24
(αh)4
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Finally |G| ≤ 1 if (αh) ≤ 2.785 which makes this method conditionally stable.

Therefore the conclusion is that the Classical Fourth-Order Runge-Kutta method

is convergent.

3.3 Data Assimilation

3.3.1 Introduction

Information is always needed as far as the challenges to the environment are con-

cerned. Most at times, this information is used to make predictions for the future,

test hypotheses, and attribute cause and effect. This enables us to take action ac-

cording to information provided on the future behaviour of the system of interest,

and in particular future events (prediction), then test our understanding of the

system, and adjust this understanding according to new information (hypothesis

testing) and also understand the cause of events, and obtain information on pos-

sible ways of changing, mitigating or adjusting to the course of events (attribute

cause and effect) irrespective of the origin of the information used.

However, we need to address some important issues. These are, a means of

gathering information, and methods to build on this information gathered. The

former is catered for by observations (measurements) whiles models (conceptual,

numerical or otherwise) provide help us with the latter. The means of obtaining

this information actually distinguishes observations from models, otherwise, the

two are not distinct. In other words, observations have a roughly direct link with

the system of interest via the measurement process whereas models have a roughly

indirect link with the system of interest, being an embodiment of information

received from measurements, experience and theory.

One very important and logical question to ask is; “What combination of the

model and observation information is said to be optimal?”. Mathematics provides
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an answer to this question as well as an estimate of the errors of the “optimum” or

“best” estimate. This method is known as data assimilation. Data assimilation

adds value to the observations by filling in the observational gaps and to the

model by constraining it with observations. Accurate inferences are then made

from the observations. In other words, data assimilation is the technique whereby

observational data are combined with output from a numerical model to produce

an optimal estimate of the evolving state of the system as a result of the need to

improve the output of our models.

Data assimilation has strong links to several mathematical disciplines, including

control theory and Bayesian statistics. Scientists are aware of the impossibility to

create models that would reproduce to the perfection the behaviour of nature.

Even though the computers become everyday more sofisticated, they still can-

not cope with the complexity of the world, and especially our inability to capture

all the details of the system we want to model. Model users have to deal with those

imperfections and try to correct them as efficiently as possible. In the simplest

cases, a review of the system to be modeled, combined with a thorough calibration

of the model lead to results that are acceptable.

In the most complex cases, real life data is incorporated to correct the model

behaviour. This is what data assimilation is about: combining model predictions

and real world data to make a better estimate of the state of the system we want

to model.

3.3.2 Types of Data Assimilation

There are basically two categories of data assimilation namely Variational Data

Assimilation and Sequential Data Assimilation.
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3.3.3 Sequential Data Assimilation

With sequential assimilation, a priori estimates for the initial states x0 are cho-

sen and the model is evolved forward to the time tk where the first observations

are available. The predicted states of the system at this time are known as the

background states and are denoted by xbk.

The difference between the predicted observation vector given by the back-

ground states and the measured observations vector at this time (Hxbk+1 − yk+1),

known as the innovation vector, is then used to correct the background state vec-

tor in order to obtain improved state estimates xak, known as the analysis states.

The model is then evolved forward again from the analysis states to the next time

where an observation is available and the process is repeated several times.

Some of the Sequential Data Assimilation methods include Kalman Filter, Ex-

tended Kalman Filter, Ensemble Kalman Filter and the Unscented Kalman Filter.

3.3.4 Variational Data Assimilation

The expression variational data assimilation designates a class of assimilation algo-

rithms in which the fields to be estimated are explicitly determined as minimizers

of a scalar function, called the objective function, that measures the misfit to the

available data.

The variational assimilation usually seeks an optimal fit of the model solution

to observations over a period by adjusting the estimation states in this period

simultaneously. The estimated states over this period are somehow influenced by

all the observations distributed in time. The information is propagated both from

the past into the future and also from the future into the past.

The variational approach has, however, been extensively used in data assimila-

tion for meteorological models and shows promising results for Numerical Weather
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Prediction (NWP). This approach includes Three-dimensional variational data as-

similation (3D-Var) and the four-dimensional variational data assimilation (4D-

Var). The 4D-Var searches for an optimal set of model parameters (e.g., optimal

initial state of the model) which minimizes the discrepancies between the model

forecast and time distributed observational data over the assimilation window.

Contrary to sequential data assimilation, which evolves the model one step at

a time and updates the estimated states each time an observation is available,

the four-dimensional assimilation schemes use all the observations available over a

given time window to provide improved estimates for all the states in that window.

3.3.5 Kalman Filter

The Kalman Filter is basically a systematic procedure or a set of mathematical

equations that uses the idea of predictor-corrector estimator where the estimator

is optimal. The estimator that is obtained is said to be optimal because the

filter minimizes the estimated error covariance. The Kalman filter is named after

Rudolph E. Kalman who published is famous paper in 1960 describing a recursive

solution to the discrete-data linear filtering problem (Kalman, 1960).

The filter is very powerful in several aspects. It supports estimations of past,

present, and even future states (recursive), and it can do so even when the precise

nature of the modeled system is unknown (Welch and Bishop, 2006).

3.3.6 The Process to be Estimated

The Kalman filter addresses the general problem of trying to estimate the state

xk ∈ Rn of a discrete-time controlled process that is governed by the linear stochas-

tic difference equation at time k

xk = Axk−1 +Buk−1 + ωk−1, (3.31)
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with a measurement z ∈ Rm that is

zk = Hxk + νk. (3.32)

The random variables ωk and νk cater for the process and measurement noise (re-

spectively) which are assumed to be independent, white, and with normal proba-

bility distributions

p(ωk) ∼ N(0, Qk), (3.33)

p(νk) ∼ N(0, Rk). (3.34)

The matrix in the difference equation (3.31) relates the state at the previous

time step k − 1 to the state at the current step, in the absence of either a driving

function or process noise. Note that in practice A might change with each time

step, but here we assume it is constant. The n × l matrix B relates the optional

control input u ∈ Rl to the state x. The m × n matrix H in the measurement

equation (3.32) relates the state to the measurement zk. In practice H might

change with each time step or measurement, but here we assume it is constant.

3.3.7 The Computational Essence of the Filter

We define x̂−k ∈ Rn to be our a priori state estimate at step k given knowledge of

the process prior to step k, and x̂k ∈ Rn to be our a posteriori state estimate at

step k given measurement zk. Defining a priori and a posteriori estimate errors

respectively as

e−k ≡ xk − x̂−k

and

ek ≡ xk − x̂k

The a priori estimate error covariance is then given by

P−k = E[e−k e
−T
k ], (3.35)
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and the a posteriori estimate error covariance is

Pk = E[eke
T
k ]. (3.36)

In deriving the equations for the Kalman filter, we begin with the goal of finding an

equation that computes an a posteriori state estimate x̂k as a linear combination of

an a priori estimate x̂−k and a weighted difference between an actual measurement

zk and a measurement prediction Hx̂−k as shown below in (3.37).

x̂k = x̂−k +K(zk −Hx̂−k ) (3.37)

The difference (zk −Hx̂−k ) in (3.37) is called the measurement innovation, or the

residual. The residual reflects the discrepancy between the predicted measurement

Hx̂−k and the actual measurement zk.

The n × m matrix K in (3.37) is chosen to be the gain or correcting factor

that minimizes the a posteriori error covariance (3.36). This minimization can be

accomplished by first substituting (3.37) into the above definition for ek, substitut-

ing that into (3.36), performing the indicated expectations, taking the derivative

of the trace of the result with respect to K, setting that result equal to zero, and

then solving for K. (Maybeck, 1979; Brown and Hwang, 1992; Jacobs, 1993). One

form of the resulting K that minimizes (3.36) is given by

Kk = P−k H
T (HP−k H

T +Rk)
−1

=
P−k H

T

HP−k H
T +Rk

(3.38)

From (3.38), as the measurement error covariance approaches zero, the gain K

weights the residual more heavily. Specifically,

lim
Rk→0

Kk = H−1

On the other hand, as the a priori estimate error covariance P−k approaches zero,

the gain K weights the residual less heavily. That is,

lim
P−k →0

Kk = 0
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Alternatively, as the measurement error covariance Rk approaches zero, the

actual measurement zk is “preferred” more and more, while the predicted mea-

surement Hx̂−k is trusted less and less. On the other hand, as the a priori estimate

error covariance P−k approaches zero the actual measurement zk is trusted less and

less, while the predicted measurement Hx̂−k is trusted more and more.

3.3.8 The Probabilistic Essence of the Filter

The justification for (3.37) is rooted in the probability of the a priori estimate

x−k conditioned on all prior measurements zk (Bayes’ rule). For now let it suffice

to point out that the Kalman filter maintains the first two moments of the state

distribution,

E[xk] = x̂k

E[(xk − x̂k)(xk − x̂k)T ] = Pk.

The a posteriori state estimate (3.37) reflects the mean (the first moment) of the

state distribution. It is normally distributed if the conditions of (3.33) and (3.34)

are met. The a posteriori estimate error covariance (3.36) reflects the variance of

the state distribution. In other words,

p(xk|zk) ∼ N(E[xk], E[(xk − x̂k)(xk − x̂k)T ])

= N(x̂k, Pk)

Maybeck (1979), Brown and Hwang (1992) and Jacobs (1993) provide more infor-

mation.

3.3.9 The Discrete Kalman Filter Algorithm

This part of the thesis begins with a broad overview, covering the operation of one

form of the discrete Kalman filter after which the focus is narrowed to the specific

equations and their use in this version of the filter.
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The filter estimates the process state at some time and then obtains information

in the form of (noisy) measurements. As such, the equations for the Kalman filter

fall behaves like a predictor-corrector process which are the time update equations

and measurement update equations. The former are responsible for projecting

forward (in time) the current state and error covariance estimates to obtain the a

priori estimates for the next time step whereas the latter are responsible for the

correction - i.e. for incorporating a new measurement into the a priori estimate

to obtain an improved a posteriori estimate as shown below in figure 3.1.

Figure 3.1: The ongoing discrete Kalman filter cycle. The time update projects

the current state estimate ahead in time. The measurement update adjusts the

projected estimate by an actual measurement in time (source: Welch and Bishop

(2006))

The first task during the measurement update is to compute the Kalman gain,

Kk. The next step is to actually measure the process to obtain zk, and then to

generate an a posteriori state estimate by incorporating the measurement. The

last step is to obtain an a posteriori error covariance estimate.

After each time and measurement update pair, the process is repeated with

the previous a posteriori estimates used to project or predict the new a priori

estimates. This recursive nature is one of the very appealing features of the Kalman
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Algorithm 1 Kalman Filter

1. Set initial estimates for x̂0 and P0

2. For k = 1 to maximum number of iterations

3. For i = 1 to n

Time Update

Project the state forward

x̂−k = Ax̂k−1 +Buk−1

Project the error covariance forward

P−k = APk−1A
T +Qk

4. End of loop for i

Measurement Update

Compute the Kalman gain

Kk = P−k H
T (HP−k H

T +Rk)
−1

Update state estimate with measurement yk

x̂k = x̂−k +Kk(zk −Hx̂−k )

Update the error covariance

Pk = (I −KkH)P−k

5. End of loop for k
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filter. It makes practical implementations much more feasible than (for example)

an implementation of a Wiener filter (Brown and Hwang, 1992) which is designed

to operate on all of the data directly for each estimate. The Kalman filter instead

recursively conditions the current estimate on all of the past measurements. Figure

3.2 offers a complete picture of the operation of the filter.

Figure 3.2: A complete picture of the operation of the Kalman filter (source: Welch

and Bishop (2006))

Under conditions where Qk and Rk are in fact constant, both the estimation

error covariance Pk and Kk the Kalman gain will stabilize quickly and then remain

constant. If this is the case, these parameters can be pre-computed by either

running the filter off-line, or for example by determining the steady-state value of

Pk as described in Grewal and Andrews (1993).

The Kalman filter is the most well known sequential data assimilation scheme.

It has been developed in the sixties by R. E. Kalman to try to solve the Wiener

problem in a generally easier way. The filter has the advantage to be sequential.

It needs only the system variables of the previous time step and the forcing terms

and observations of the current time step.
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The Kalman filter however has limitations, one of such is the fact that it is

unable to predict or estimate the state vector of nonlinear model accurately. That

is the Kalman filter breaks down. Fortunately, there are improved forms of the

Kalman filter used for nonlinear state equations.

The most famous of such methods is the Extended Kalman Filter. This method

extends the kalman filtering through a procedure of linearization by making use

of the taylor series expansion of the the nonlinear model. Once a linear model is

obtained the kalman filter equations are then applied to obtain the estimate.

3.3.10 The Extended Kalman Filter

This method extends the kalman filtering through a procedure of linearization by

making use of the taylor series expansion of the the nonlinear model. Once a

linear model is obtained the kalman filter equations are then applied to obtain the

estimate.

Assuming the process has a state vector x ∈ Rn, but the process is now governed

by the nonlinear stochastic difference equation

xk = f(xk−1, uk−1, ωk−1) (3.39)

with a measurement z ∈ Rm whose equation is given by

zk = h(xk, νk) (3.40)

The random variable ωk and νk again represent the process and measurement noises

respectively which are still white Gaussian. Their covariances are respectively Qk

and Rk.

The function f is used to compute the a priori state from the previous estimate

and similarly the function h is also used to compute the predicted measurement

from the predicted state. The two functions cannot be applied to the covariance
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directly. Instead a matrix of partial derivatives (the Jacobian) is computed due to

the linearization using taylor series.

Defining the state transition and observation matrices by the following jaco-

bians:

Fk−1 =
∂f

∂x

∣∣∣∣
x+k−1

Hk =
∂h

∂x

∣∣∣∣
x−k

. The extended kalman filter has its time update equations given by

x̂−k = f(x̂k−1, uk−1) (3.41)

P−k = Fk−1Pk−1F
T
k−1 +Qk−1 (3.42)

and that of the measurement update are

Kk = P−k Hk(HkP
−
k H

T
k +Rk)

−1 (3.43)

x̂k = x̂−k +Kk(zk − h(x−k )) (3.44)

Pk = (I −KkHk)P
−
k (3.45)

The entire EKF process is described below in algorithm 2;

Again the Extended Kalman filter has a couple of short-falls. One of such is

the fact that it is not always possible to calculate the jacobian and also it does

not produce accurate results if the nonlinear function is not well approximated by

a linear model or functions. That is, this model works well when the nonlinear

model is close to a linear model. Another improved form of the Kalman filter used

for the estimation of nonlinear model is the Unscented Kalman Filter.
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Algorithm 2 Extended Kalman Filter

1. Set initial estimates for x̂0 and P0

2. For k = 1 to maximum number of iterations

3. For i = 1 to n

Time Update

Project the state forward

x̂−k = f(x̂k−1, uk−1)

Linearize the process equation by computing the jacobian

Fk−1 = ∂f
∂x

∣∣
x+k−1

Project the error covariance forward

P−k = Fk−1Pk−1F
T
k−1 +Qk−1

4. End of loop for i

Measurement Update

Linearizing the measurement equation

Hk = ∂h
∂x

∣∣
x−k

Compute the Kalman gain

Kk = P−k Hk(HkP
−
k H

T
k +Rk)

−1

Update state estimate with measurement yk

x̂k = x̂−k +Kk(zk − h(x−k ))

Update the error covariance

Pk = (I −KkHk)P
−
k

5. End of loop for k
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3.3.11 The Unscented Kalman Filter

The Unscented Kalman Filter was first introduced by Julier et al. (1995); Julier

and Uhlmann (1996, 1997) and further improved by Wan et al. (2000); Wan and

van der Merwe (2000). This filter is obtained from the basic idea of the Unscented

Transform

3.3.12 Unscented Transformation

The Unscented transformation is a method used for calculating the statistics (mean

and covariance) of a random variable which undergoes a nonlinear transformation.

It is based on the fact that it is easier to approximate a Gaussian distribution

than it is to approximate a nonlinear function. The idea of this transform is to

obtain a set of points known as Sigma points so that the sample mean and sample

covariance are x̄ and Px respectively. The nonlinear function is applied to these

set of points to produce a set of transformed sigma points whose statistics are ȳ

and Py.

The n-dimensional random variable with statistics, x̄ and Px representing the

mean and covariance respectively is approximated by 2L+ 1 points given by

χ0 = x̄

χi = x̄+ (
√

(L+ λ) + Px)i i = 1, . . . , L

χi = x̄− (
√

(L+ λ) + Px)i−L i = L+ 1, . . . , 2L

where λ ∈ R, λ = α2(L+κ)−L is a scaling parameter. The constant α determines

the spread of the sigma points around x̄ and is usually set to a small positive value

(e.g., 1e-3). The constant κ is a secondary scaling parameter which is usually set

to 0 or 3 − L and β is used to incorporate prior knowledge of the distribution

of x (for Gaussian distributions, β = 2 is optional). (
√

(L+ λ) + Px)i is the ith

row or column of the matrix square root of (L + λ) + Px. A numerically efficient
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and stable method such as the Cholesky decomposition method should be used to

calculate the matrix square root. The nonlinear function is applied to these set of

points obtained above to yield the transformed sigma points given by

Yi = f [χi] i = 0, . . . , 2L

whose mean and covariance are respectively

ȳ =
2L∑
i=0

W
(m)
i Yi and Py =

2L∑
i=0

W
(c)
i {Yi − ȳ}{Yi − ȳ}T

where the weights Wi are given as

W
(m)
0 = λ/(L+ λ)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β)

W
(m)
i = W

(c)
i = 1/{2(L+ λ)} i = 0, . . . , 2L

See algorithm 3 below for the entire UKF process.

3.4 Numerical Example of Data Assimilation Meth-

ods in State Estimation

The purpose of this section is to reconstruct the trajectories and dynamics of the

scaler state-space problem described below using UKF and compare its perfor-

mance with that of the EKF.

State Equation

xk =
1

2
xk−1 +

25xk−1
1 + x2k−1

+ 8 cos(1.2(k − 1)) + ωk (3.46)

Measurement Equation

yk =
1

20
x2k + νk (3.47)
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Algorithm 3 Unscented Kalman Filter

1. Set initial estimates for x̂0 and P0

2. For k = 1 to maximum number of iterations

3. For j = 1 to n

Time Update

Compute sigma points

χk−1 =
[
x̂k−1 x̂k−1 +

√
(L+ λ) + Pk−1 x̂k−1 −

√
(L+ λ) + Pk−1

]
Compute transformed sigma points

χ∗k = F [χk−1, uk−1]

Project the state forward and error covariance forward

x̂−k =
∑2L

i=0W
(m)
i χ∗i,k and P−k =

∑2L
i=0W

(c)
i {χ∗i,k − x̂

−
i,k}{χ

∗
i,k − x̂

−
i,k}

T

4. End of loop for j

Measurement Update

Compute sigma points

χk−1 =
[
x̂−k x̂−k +

√
(L+ λ) + P−k x̂−k −

√
(L+ λ) + P−k

]
Compute transformed sigma points

Zk−1 = H[χk−1]

Compute the mean and covariance of Zk−1

ẑ−k =
∑2L

i=0W
(m)
i Zi,k−1 and Pzkzk =

∑2L
i=0W

(c)
i {Zi,k−1 − ẑ

−
i,k}{Zi,k−1 − ẑ

−
i,k}

T

Compute the cross covariance of χ∗k and Zk−1

Pxkzk =
∑2L

i=0W
(c)
i {χi,k−1 − x̂

−
i,k}{Zi,k−1 − ẑ

−
i,k}

T

Compute the Kalman gain

K = PxkzkP
−1
zkzk

Update state estimate with measurement yk

x̂k = x̂−k +Kk(zk − ẑ−k )

Update the error covariance

Pk = P−k −KkPzkzkK
T
k

5. End of loop for k
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where ωk and νk are both Gaussian white noise sequences. A synthetic truth data

is generated by adding white Gaussian noise to the initial mean and covariance

using the process model. This truth data is also perturbed with white Gaussian

noise and the help of the measurement model to obtain the observations (also

synthetic). The simulation length used is one hundred (100) time period. The

Kalman filter cannot accurately estimate the above system due to the high degree

of nonlinearity in the process as well as the measurement equations.

A couple of experiments are performed to estimate the state of the system above

using EKF and UKF and most importantly compare their performances. The first

experiment performed is to estimate the state using EKF and UKF with the initial

values described below. The process and measurement noises and the initial error

covariance are also varied to investigate their effects on the performance of the two

filters in subsequent experiments.

The first experiment was carried out with an initial state estimate and covari-

ance of x0 = 0.1 and P+
0 = 1 respectively and also the variances of both the state

and the measurement noises were one. A plot of the noisy observations and the

true state is given in figure 3.3. Figure 3.4 shows the plot of the EKF and UKF for

this experiment. This plot also contains the noisy observations and the true state.

It can be seen clearly that the UKF estimates the state better than the EKF. The

performance can also be compared by using the mean and variance of the root

mean square error (RMSE) of the two filters in table 3.1. This table indicates that

the RMSE of UKF is smaller than that of EKF. A better performance of the UKF

can also be seen in the plot of the RMSE of the two filters in figure 3.5.

The second experiment is to establish the effect of the process noise on the

two filters. The variance of the process noise is varied for the estimation of the

state using the two filters whiles keeping other parameters constant. The result

of this experiment is shown in table 3.2. The experiment showed that the RMSE
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Figure 3.3: Time series of the noisy observations and the true state for the first

experiment

Figure 3.4: EKF and UKF estimates for the first experiment
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Table 3.1: Mean and Variance of RMSE for state estimate of the two filters

RMSE

Algorithm Mean Variance

Extended Kalman Filter (EKF) 2.9269 19.6201

Unscented Kalman Filter (UKF) 0.9021 0.6872

Figure 3.5: RMSE of EKF and UKF for the first experiment

Table 3.2: Compare effect of different process noise variance Q on the performance

of the various filters holding other parameters fixed

Q = 10−2 Q = 10−1 Q = 101 Q = 102

Filters Mean Var Mean Var Mean Var Mean Var

EKF 0.6987 3.9352 0.9949 2.3690 6.1988 51.5068 9.5933 142.2488

UKF 0.2039 0.2127 0.5332 0.4119 1.5985 0.9806 3.0093 2.3602
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increased with increase in the variance of the process noise but of course, the UKF

performed better than the EKF.

The next experiment is to establish the effect of the measurement noise on the

two filters. That is, the variance of the measurement noise R is varied whiles keep-

ing the other parameters constant. The result of this experiment is summarized

in table 3.3. It was observed that the performance of the filters was not affected

much by the variance of the measurement covariance since the mean of the RMSE

of EKF was between 2 and 4 and that of UKF was between 1 and 2 even though

it increased steadily with increase in the measurement variance. This result also

showed that the UKF performed better than the EKF. The final experiment is to

find the effect of the initial estimation covariance P0 on the two filters. The result

of the experiment shown in table 3.4 revealed that the filters slightly deteriorated

with increase in the initial estimation covariance. A further test summarized in

table 3.5 also showed that the performance of the two filters was not much affected

by the value of the initial estimation covariance. The performance of the two fil-

ters increased slowly for higher values of P0. The UKF breaks down for values of

P0 ≥ 10160.

Table 3.3: Compare effect of different observation noise R on the performance of

the various filters holding other parameters fixed

R = 10−2 R = 10−1 R = 101 R = 102

Filters Mean Var Mean Var Mean Var Mean Var

EKF 3.2160 14.3793 3.5132 32.4918 2.3519 8.4098 2.5222 6.1755

UKF 1.0385 1.7343 1.2049 1.0691 1.2367 0.5034 1.6283 0.8508
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Table 3.4: Compare effect of different initial error covariance P0 on the performance

of the various filters holding other parameters fixed

Po = 10−2 P0 = 10−1 P0 = 101 P0 = 102

Filters Mean Var Mean Var Mean Var Mean Var

EKF 2.5802 14.6112 2.7513 14.9827 2.9719 44.974 3.2867 23.7786

UKF 0.97259 0.65879 1.0393 1.10832 0.87909 0.5737 1.27415 0.59991

Table 3.5: Compare effect of different initial error covariance P0 further on the

performance of the various filters holding other parameters fixed

Po = 10−160 P0 = 10−50 P0 = 1050 P0 = 10160

Filters Mean Var Mean Var Mean Var Mean Var

EKF 2.2052 9.2556 2.6689 9.7787 3.2928 25.3028 3.3867 23.7786

UKF 0.76574 0.38944 0.79011 0.52138 1.6292 1.1591 NaN NaN
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The trajectories and dynamics of the state-space problem above have been

reconstructed using the UKF. Further experiments performed revealed that the

UKF estimated the state better than the EKF for the above nonlinear problem.
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Chapter 4

Results and Discussion

4.1 Introduction

Two systems are discussed in this chapter, a linear system and a non-linear system.

The first is a planar four-story shear building with time varying system parameters

and the second is a single degree-of-freedom (SDOF) system. Data contaminated

with noise is generated for these dynamical systems. With these simulated data,

identification models are derived for these dynamical system which are then used

for the state and parameter estimation using the Unscented Kalman filter. Finally,

the performance of the UKF is compared with that of the EKF and inferences are

made on the results obtained from the two filtering techniques.

4.2 Planer Four-Story Shear Building

4.2.1 Data

An idealized planer four degrees of freedom (four-story) shear building is con-

sidered. The four floors of this building have equal masses of 250,000kg. That
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is m1 = m2 = m3 = m4 (where the subscript denote the floor number). The

time-variant inter-story viscous damping coefficients are c1, c2, c3 and c4 while the

inter-story stiffness are k1, k2, k3 and k4 and they also change as far as time is

concerned. It is very important to mention here that the time evolutions of the

inter-story viscous damping coefficients and the inter-story stiffness with the ex-

ception of k2 are brownian motions with coefficient of variation equal to 2% which

is clearly seen in figure 4.1.

Figure 4.1: Time series of the inter-story stiffness and viscous damping coefficients

The state or process for this system subject to base excitation is given by

Mẍt + Ctẋt +Ktxt = Fut (4.1)
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where

x =


x4,t

x3,t

x2,t

x1,t

 F =


−m4

−m3

−m2

−m1

 M =


m4 0 0 0

0 m3 0 0

0 0 m2 0

0 0 0 m1



Ct =


c4,t −c4,t 0 0

−c4,t c4,t + c3,t −c3,t 0

0 −c3,t c3,t + c2,t −c2,t
0 0 −c2,t c2,t + c1,t



Kt =


k4,t −k4,t 0 0

−k4,t k4,t + k3,t −k3,t 0

0 −k3,t k3,t + k2,t −k2,t
0 0 −k2,t k2,t + k1,t



(4.2)

xi,t is the (i+1)-th floor relative to the ground where the fifth floor is the

taken as the roof. ut is the acceleration at the first floor of the building. with

i representing the i-th floor, ci,t and ki,t are respectively the inter-story damping

coefficient and the inter-story stiffness.

Data is generated using white gaussian noise for the excitation ut. The observed

output or observation yt is the absolute accelaration time at the four stories given

by:

yt =


ẍ1,t + ut

ẍ2,t + ut

ẍ3,t + ut

ẍ4,t + ut

+ Γ.νt

= −M−1[Ctẋt +Ktxt] + Γ.νt

(4.3)

where νt ∈ R4 ∼ N(0, I) are the measurement uncertainties for yt which are

stationary. Γ = diag(γ1, . . . γ4) is such that the overall signal/noise root mean

51



square amplitude ratios for each channel is roughly equal to ten (10). With the

observation yt : t = 1, . . . , t and excitation ut : t = 1, . . . , 4 of the system which are

both sampled at an interval of 0.02s (see figure 4.2), the ultimate is to estimate

the system states ( i.e. displacements xt and velocities ẋ4) and also the system

parameters (i.e inter-story damping coefficients ci,t and inter-story stiffness ki,t) in

real time with the help of an identification model.

Figure 4.2: Time series of the simulated observation and excitation data

Equation (4.1) is initially transformed into a system of first-order differential

equations. Let

w1 = xt
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w2 = ẇ1 = ẋt

and finally

ẇ2 = ẅ1 = ẍt

Equation (4.1) is then written as:

ẇ1 = w2

ẇ2 = −M−1Ctw2 −M−1Ktw1 +M−1Fut

(4.4)

Changing the w’s back to xt results in

d

dt

xt
ẋt

 =

 ẋt

−M−1Ctẋt −M−1Ktxt

+

 0

M−1F

ut (4.5)

or better still:

d

dt

xt
ẋt

 =

 0 1

−M−1Kt −M−1Ct

xt
ẋt

+

 0

M−1F

ut (4.6)

An identification model helps us to include the system parameters to our exist-

ing model described earlier. Using a brownian motion prior PDF for the parameter

evolution, that is governed by the following equation;

θ̇t = G.ωt (4.7)

the identification model that is used for this system is given by:

d

dt


xt

ẋt

θt

 =


0 I 0

−M−1Kt −M−1Ct 0

0 0 0



xt

ẋt

θt

+


0

M−1F

0

ut +


0

0

G

ωt
yt = −M−1Ktxt −M−1Ctẋt + νt

(4.8)

where ωt ∼ N(0, I), G ∈ R8×8 is a diagonal matrix whose diagonals must be

specified and θt ∈ R8 is made up of the system’s parameters (i.e. four inter-story

damping coefficients and four inter-story stiffness).
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The dimension of the augmented state of the model in (4.8) is sixteen (16)

since it includes four displacements xt, four velocities ẋt, four damping coefficients

ct and four stiffness kt and the dimension for the observed output yt is four (4).

4.2.2 Results

The linear system described above was estimated using EKF and UKF and the

results shown in figures 4.3 - 4.8. The system’s states (i.e. displacements xt and

velocities ẋt) were very well estimated using the two filters in figures 4.3 and 4.4

respectively. The two filters again successfully tracked the system parameters.

The inter-story stiffness k(2,t) was well estimated along with the other inter-story

stiffness by both EKF and UKF even though it was not brownian (see figure 4.5).

The estimates of the damping coefficients ct in figure 4.6 is worse compared to the

accuracy of the inter-story stiffness.

Figure 4.3: Estimation of displacements xt
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Figure 4.4: Estimation of velocities ẋt

The performance of the two filters was also compared using the RMSE for the

states and parameters of the system. Figure 4.7 showed that the RMSE for the

system states are close, indicating the same level of accuracy for the two filters.

This observation is however not the same with the system parameters where UKF

recorded lower rmse values than EKF for some parameters and vice versa (see

figure 4.8).

The state as well as parameters of the planer four-story shear building were

successfully estimated using the Unscented Kalman filter and its performance was

compared with the Extended Kalman filter. The results obtained indicated an

approximately equal performance for the two filters.
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Figure 4.5: Estimation of inter-story stiffness kt
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Figure 4.6: Estimation of damping coefficients ct

4.3 Nonlinear SDOF System

4.3.1 Data

The system used to generate the synthetic data for the SDOF is given by;

d

dt


xt

ẋt

rt

 =


ẋt

−1/m · rt + 1/m · ut
θ1,t · ẋt − θ2,t · |ẋt||rt|θ4,t−1rt + θ3,t · ẋt|rt|θ4,t


yt = −1/m · rt + 1/m · ut + νt

(4.9)

where m is the mass of the SDOF system, rt is the restoring force, ut is a white-

noise excitation force on the mass. yt is the acceleration measured on the mass,

νt is stationary such that the overall signal/noise amplitude ratio is ten (10).

The time-varying system parameters are θ1,t, θ2,t, θ3,t and θ4,t. These parameters
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Figure 4.7: RMSE of EKF and UKF for xt and ẋt

are brownian motions with drift coefficient of variance equal to 2% during each

sampling interval and they actually fine tune the shape of the hysteric loop. The

observation (or acceleration) yt and excitation ut are sampled at an interval of 0.5s

as shown in figure 4.9.
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Figure 4.8: RMSE of EKF and UKF for kt and ct

Figure 4.9: Time series of simulated acceleration and input force
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The identification model used for this system is given by

d

dt



xt

ẋt

rt

θ1,t

θ2,t

θ3,t

θ4,t

ht



=



ẋt

−1/m · rt + 1/m · ut
θ1,t · ẋt − θ2,t · |ẋt||rt|θ4,t−1rt + θ3,t · ẋt|rt|θ4,t

0

0

0

0

0



+


0

0

0

G

 · ωt

yt = −1/m · rt + 1/m · ut + ht · νt

(4.10)

where ωt ∈ R5 ∼ N(0, I), G ∈ R5×5 and νt ∈ R ∼ N(0, 1). G is a 5 × 5 diagonal

matrix given by

G =



G1,t 0 0 0 0

0 G2,t 0 0 0

0 0 G3,t 0 0

0 0 0 G4,t 0

0 0 0 0 G5,t


and ωt is given by

ωt = [ω1,t, ω2,t, ω3,t, ω4,t, ω5,t]
T

.

The initial PDF of the states x0 and ẋ0 is taken to be zero-mean Gaussian with

large variances and that of the parameters θ1,0, θ2,0, θ3,0 and θ4,0 are also taken
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to be Gaussian. As mentioned earlier, each parameter is allowed to drift with a

coefficient of variation equal to 2% except for the uncertain parameter ht, whose

actual propagation is a constant instead of a brownian motion.

4.3.2 Results

Figures 4.10 - 4.12 show the results of the estimation of the state and the param-

eters of the above system using EKF and UKF. The estimations of the system

states (i.e. displacement xt, velocity ẋt and restoring force rt) are shown in figure

4.10. The performances of EKF and UKF with regards to the estimation of the

system’s states are at par since their estimations are almost the same. This how-

ever is not the same with the system parameters. The plot of the estimation of

the system parameters θ1,t, θ2,t, θ3,t and θ4,t in figure 4.11 revealed that the UKF

performed better than the EKF. UKF again performed better than the EKF in

estimating the uncertain parameter ht which is shown in figure 4.12.

The performances of the two filters are again compared using the root mean

squared error (RMSE). The plots of the RMSE of the two filters are shown in figure

4.13. The plots of the RMSE of EKF and UKF are similar for the system’s states

and θ1,t (i.e. the first four plots). UKF however had lower RMSE for the rest of

the parameters. Finally, the mean of the RMSE of the states and parameters for

two filters were calculated and shown in table 4.1. This table indicates a better

performance of UKF for the states and parameters except for the displacement

(xt) whose value was higher than that of the EKF.

The nonlinear SDOF system described above was successfully estimated using

the Unscented Kalman filter and its performance was compared with the Extended

Kalman filter. The results revealed that the UKF performed better than the EKF.
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Figure 4.10: Estimation of the states of the SDOF system

Figure 4.11: Estimation of the parameters of the SDOF system
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Figure 4.12: Estimation of the uncertain parameter ht

Figure 4.13: Time propagation of the RMSE of EKF and UKF

63



Table 4.1: Mean of the RMSE of the states and parameters

State / Parameter Algorithm Mean RMSE

xt EKF 0.0057104

UKF 0.0123760

ẋt EKF 0.0039881

UKF 0.0035723

rt EKF 0.0080489

UKF 0.0075815

θ1,t EKF 0.0194950

UKF 0.015327

θ2,t EKF 0.0077102

UKF 0.0048823

θ3,t EKF 0.0016484

UKF 0.0011671

θ4,t EKF 0.0103990

UKF 0.0068425

ht EKF 0.0014238

UKF 0.0011282
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Chapter 5

Conclusion and Recommendation

5.1 Conclusion

The trajectories and dynamics of a nonlinear state-space problem were successfully

reconstructed using the UKF in section 3.4 of chapter 3. Varying the initial error

covariance, process noise as well as measurement noise were further experiments

performed to compare the performance of the UKF and EKF. The outcomes of

these experiments revealed that the UKF estimated the state better than the EKF.

The next test performed was the feasibility of the Unscented Kalman filter

in simultaneously estimating state and parameters. The Unscented Kalman filter

successfully estimated the linear and the nonlinear systems considered in chapter 4.

Results from the estimation of the states and parameters of the linear planer four-

story shear building indicated that the performance of the UKF was approximately

equal to that of the EKF whereas the UKF performed better than the EKF in the

state and parameter estimation of the nonlinear SDOF system.

Results obtained from the estimation of the two nonlinear systems in this re-

search indicated that the Unscented Kalman filter is able to estimate the state

and parameters of nonlinear systems and actually produces better results than the
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famous Extended Kalman filter.

5.2 Recommendation

The Unscented Kalman filter is recommended as a more accurate and better

method as compared to the Extended Kalman filter for nonlinear systems. It

is also recommended that the process noise, measurement noise and the initial er-

ror covariance should be minimal when using these filters as they sometimes affect

their performances. Finally, it is recommended that other factors that may affect

the performance of the UKF and not considered in this thesis be investigated in

further research. An example is to investigate the effect of varying observation

frequency on the performance of the UKF.
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