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ABSTRACT 

The aim of this thesis work is to provide effective method for solving Nurse Scheduling 

Problem (NSP) by satisfying the nurses, patients and hospital requirements. Nurse 

schedule problem is a major problem faced by many hospitals all over the world. That 

is a subclass of scheduling problems that are hard to solve. The work is difficult for the 

duty planner because the duty planner has to ensure that every scheduling decision 

made complies with a mixture of hard hospital rules and soft nurse preference rules. 

The thesis describes the design and implementation of a constraint-based nurse 

scheduling using graph colouring. A conflict graph was constructed and the vertices of 

the graph represented the different types of nurses. The vertices were then coloured 

using Greedy algorithm approach and this removed the various conflicts. The result 

was then used to create the nurses schedule. Results showed a feasible solution to the 

problem. 
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CHAPTER 1 

1.0 INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

One of the most exciting mathematical development of the twentieth century was the 

proof, in 1976, of The Four-Color Theorem, whose proof had remained unsolved since 

1852.While try to color a map of the counties of England, Francis Guthrie postulated 

the four colour conjecture, noting that four colours were sufficient to colour the map so 

that no regions sharing a common border received the same colour. For well over 100 

years a vast amount of work and theories were developed to prove it until finally in 

1976 Kenneth Appel and Wolfgang Haken found it’s prove. 

 

There are several interesting practical and feasible problems that can be modeled by 

graph colouring. The surge in recent times has resulted in countless real world problem 

applications, which includes; Time tabling Scheduling problems, Frequency 

Assignment, Register allocation, Register Allocation, Analysis of Biological and 

Archaeological Data and pattern Matching 

 

In any Organization that operates continuously, daily work is divided into shifts to 

minimize the complexity and to carry on the work in an easy manner. In such a context, 

the scheduling problem consists in assigning a schedule to each worker, which involves 

building a timetable for a specified period. Scheduling can be thought of as a decision 

making process which involves the allocation of limited resources to tasks over time. 

One of the definitions of scheduling is given by Wren1, who stated that “Scheduling is 

the arrangement of objects into pattern in time or space in such a way that some goals 
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are achieved, or nearly achieved”. Wren has been described about the rostering problem 

also. Rostering is the placing of resources into slots in a pattern.  

 

Hospital is one example for above mentioned type of organization. In a hospital there 

are various kinds of employers like doctors, nurses, attendants, etc. and they must be 

assigned to shifts to do their work. This study mainly considered about the nurse shifts 

which is given for nurses named as nurse roster. 

Hospital care units must provide twenty four hour nursing coverage at levels to match 

patient demand while adhering to organizational policies designed to protect the health 

and welfare of patients and staff. The already difficult scheduling problem is further 

compounded by a shortage of nurses. The schedule has to determine the day-to-day 

shift assignments of each nurse for a specified period of time in a way that satisfies the 

given requirements as much as possible, taking into account the wishes of nurses as 

closely as possible. 

 

 

 

 

 

 

 

 

 

 

 



3 
 

1.2 STATEMENT OF THE PROBLEM 

Juaso Districts Hospital is a multi-discipline hospital in AsantiAkim South of Ghana. It 

consists of a number of operation wards and the Female / Paediatric ward is one of 

them. The female/ Paediatric ward provides 24-hour services to the general public 

seven days a week. Scheduling nurses to staff shift is usually made by a head nurse 

(matron) manually. Manually created timetable has created a lot of conflict and 

problems despite the great effort required to form a duty roaster (timetable).  

The allocation of nursing staff is a critical task in hospital management.   The allocation 

of the right number and skill mix of staff to each shift becomes crucial.  Nurse schedule 

policies can have a direct impact on nurse satisfaction and hence on turnover. Schedule 

requiring nurses to work difficult and tiring combinations of shifts can again impact on 

the quality and safety of patient care. Hospital management is therefore further 

concerned with providing rosters that minimise nurse dissatisfaction 

 

1.3 OBJECTIVE OF THE STUDY 

The purpose of this thesis work is to apply graph colouring technique to generate 

efficient and reliable nurses’ schedule. This research work seeks  to: 

1. Produce the right combination of nurses for each shift 

2. Remove various conflicts which  normally  course problems in the nurses 

schedule 

3. Produce the right number of nurses for each shift. 

Base on the prepared schedule, nurses will be assigned for working shift with 

consideration of time, requirement, along with experience and nurse skills. 
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1.4 METHODOLOGY               

As described in above, to solve nurse scheduling problem (NSP), nurses needed to be 

assigned into shifts. In the proposed solution for the NSP, nurses were divided into shift 

groups and then nurses in one shift group were assigned to one shift. When creating the 

shifts, nurses from those different shift groups were not jointly used for a one shift. 

This is a kind of scheduling problem. Major problem of scheduling problem is 

allocation of resources in an effective way. Graph coloring was used in creating the 

shift groups. This was done with matgraph a tool box matlab software. 

 

Because the NSP is a Constraint Satisfaction Problem (CSP), constraints analysis is 

very important in solving this problem. During the requirements analysis several 

constraints were identified. After analyzing those constraints, it was divided into two 

groups according to the effect of those constraints to the final solution. Violating of 

some constraints will affect the solution directly and violating of some constraints will 

be affecting the quality of the solution. 

 

Similar to other studies which were carried out to solve NSP, the two groups were 

named as Hard Constraints and Soft Constraint. Hard constraints are the constraints, 

which must be satisfied to get feasible solution for use in practice and Soft constraints 

the constraints, which are used to evaluate the quality of the solution. So soft 

constraints are not compulsory but are desired to be satisfied as much as possible. 
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1.5 JUSTIFICATION OF THE STUDY  

Making sure that each shift is properly staffed is one of the hardest challenges that head 

nurse faces. In general, staff members prefer to have more input and flexibility in their 

scheduling, but the more flexible scheduling is, the harder it is for a head nurse to 

supervise scheduling and make sure that the ward is correctly staffed.  In view of this, 

manual way of making the nurse schedule is really a trouble for the head nurse since 

the results of the schedule is highly affecting nurses as well as the patients. Since 

people need healthcare throughout 24 hours, it is important to design effective 

automated nurse scheduling software to manage nurse duty activities. 

 

1.6 SCOPE AND LIMITATIONS OF THE STUDY 

Specifically, this thesis work considers nurse scheduling system focusing primarily on 

the shift structure for the Juaso District Hospital. Even within this hospital the work is 

limited to the female and padeatric ward of the hospital with the hope that the work can 

be replicated to other wards, district, municipal and general hospital in Ghana. There is 

more room for using this work as basis or reference for further studies to investigate 

other schedule problems in other sectors of our economy.  

 

1.7 ORGANISATION OF THE STUDY  

This thesis work has been organized into five chapters, chapter one gives a brief 

account of the history of graph colouring and its application in nurse scheduling and 

other fields. It discusses the statement of problem, objectives, methodology, 

justification and the scope and limitation of the study. Chapter two also gives some 

related literature works on the thesis work. Chapter three presents an overview of graph 

theory involving graph colouring. Definitions of some basic terms and lemmas to help 
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in our study are presented and proved. Collection of data and modeling of nurse 

schedule was discussed in chapter four. Chapter five studies the results obtained and the 

necessary conclusion made. Recommendations were also included in the chapter five. 
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CHAPTER 2 

 

2.1 LITERATURE REVIEW 

Existing research works has been proposed diverse models and methodologies to 

improve nurse scheduling problems. Most of the current proposed solutions either 

make use of random based optimization algorithms which won’t be efficient or 

applicable. 

Tao et al., (2011) has done much research work related to Medical informatics and had 

deep discussions about the role of data warehouse management system to handle 

hospital and nurse management information. Multidimensional analysis techniques 

under different angles were used to extract the required data and information. 

 

Silver et al., used data mining technique for data warehouse and published their 

findings under the title “Case study: How to apply data mining techniques in a 

Healthcare Data warehouse”. This approach has been implemented successfully  in 

many of the American hospitals. Two numerous data mining techniques called; patient 

rule introduction method (PRMI) and weighted items sets (WLS) were used to analyse 

large quantities of data. 

 

Villiers et al., (1998)  applied data mining  techniques for solving  clinical data 

warehouse functionality and proposed Flexible clinical data mining system (CDMS) 

using SAS statistical software. In addition, research is carried out in two stages. In first 

stage, controlled environment were provided for CDMS access based systems and 

transformed it into analytical clinical data. In the later stage, operations were tested 
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with the row data operations with same data. Peter Villiers proposes genomic based 

data for further performance enhancements. 

 

Cheng et al., describes the design and implementation of a constraint-based nurse 

rostering system using a redundant modeling approach. To reduce search time, they 

proposed redundant modeling, an effective way to increase constraint propagation 

through cooperation among different models for the same problem. Their problem 

domain involved around twenty-five to twenty-eight nurses and eleven shift types. 

 

Kundu et al., (2008) described the use of Genetic Algorithm (GA)  for solving nursing 

schedule problem (NSP). They used two different models, Simulated Annealing and 

Genetic Algorithm to solve this problem. Compare nurse performance at different 

levels. They have considered soft and hard constraints. 

 

Juhos et al., (2004) described a novel representation and ordering model that, aided by 

an evolutionary algorithm, was used in solving the graph k-coloring problem. Its 

strength lies in reducing the number of neighbours that need to be checked for validity. 

An empirical comparison was made with two other algorithms on a popular selection of 

problem instances and on a suite of instances in the phase transition. The new 

representation in combination with a heuristic mutation operator showed promising 

results 

Culberson and Gent (2001) denned the ‘frozen development’ of colouring random 

graphs and identified two nodes in a graph as frozen if they were the same colour in all 

legal colourings. This was analogous to studies of the development of a backbone or 

spine in SAT (the Satis ability problem). The authors described in detail the algorithmic 
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techniques used to study frozen development and presented strong empirical evidence 

that freezing in 3-colouring is sudden. A single edge typically caused the size of the 

graph to collapse in size by 28% and used the frozen development to calculate unbiased 

estimates of probability of colourability in random graphs, even where this probability 

was low. The links between frozen development and the solution cost of graph 

colouring was investigated. In SAT, a discontinuity in the order parameter was 

correlated with the hardness of SAT instances; data for colouring was suggestive of an 

asymptotic discontinuity. The uncolourability threshold was known to give rise to hard 

test instances for graph-colouring. Evidence  that the cost of colouring threshold graphs 

grows exponentially, when using either a specialist colouring program, or encoding into 

SAT, or even when using the best of both techniques were presented. Theoretical and 

empirical evidence showed that the size of the smallest uncolourable sub graphs of 

threshold graphs became large as the number of nodes in graphs increases. The 

application of their work to the statistical mechanics analysis of colouring was 

discussed extensively. 

 

The graph-theoritic parameter that has probably received the most attention over the 

years in the chromatic number.  As is well-known, the colouring problem is an NP-

Complete problem. Lie et al., (2002) solved by means of molecular biology technique 

to this effect. The algorithm was highly parallel and has satisfactory fidelity. Their 

work showed further evidence for ability of DNA computing to solve NP-Complete 

problems. (Graph colouring problem). The ever number of wireless communications 

systems deployed around the globe have made the optimal assignment of a limited 

radio frequency spectrum a problem of primary importance, at issue are planning 

models for permanent spectrum allocation, licensing, regulation, and network design. 
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Further as issue are on-line algorithms for dynamically assigning frequencies to users 

within an established network. Applications include aeronautical mobile, land mobile, 

maritime mobile, broadcast, land fixed (pointto-point), and satellite systems. 

 

Murphy et al., (1999) surveyed researches conducted by theoreticians, engineers, and 

computer scientists regarding the frequency assignment problem (FAP) in all of its 

guises. Their paper began by defining some to the more common types of FAPs. It 

continued with a discussion on measures of optimality relating to the use of spectrum, 

models of interference, and mathematical representations of many FAPs, both in graph 

theoretic terms, and as mathematical programs. Graph theory and, in particular, graph 

colouring play an important role in the FAP since, in many instances, the FAP in cast in 

a form which closely resembles a graph colouring. Theoretical results that bound 

optimal solutions for special FAP structures were presented. Exact algorithms for 

general FAPs were explained, and since many FAP instances are computationally hard, 

much space was devoted to approximate algorithms. Their paper concluded with a 

review of evaluation methods for FAP algorithms, test problem generators, and a 

discussion of the underling engineering issues that was considered when generating test 

problem. 

 

Hedetniemi et al., (2003) proposed two new self-stabilizing distributed algorithms for 

proper i (i is the maximum degree of node in the graph) colouring of arbitrary system 

graphs. Both algorithms were capable of working with multiple types of demons 

(schedulers). 

The first algorithm converges in Ç Ň moves while the second coverages in at most Ò 

moves (Ò is the number of nodes and Ň is the number of edges in the graph). The 
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second improvement was that neither of the proposed algorithms requires each node to 

have knowledge of i. Further, the colouring produced by their first algorithm provided 

an interesting special case of colouring e.g., Grundy Colouring. 

The problem of properly colouring the vertices (or edges) of a graph using for each 

vertex (or edge) a colour from a prescribed list of permissible colours, received a 

considerable amount of attention. Alon (1993) described the techniques applied in his 

study of this subject, which combined combinatorial, algebraic and probabilistic 

methods, and discussed several intriguing conjectures and open problems. This was 

mainly a survey of recent and less results in the area, but it contained several new 

results as well. 

Simulated annealing is also a very successful heuristic for various problems in 

combinatorial optimization. An application of simulated annealing to the 3-colouring 

problem was considered by Nolte and Schrader (1999). In contrast ot many good 

empirical results they showed for a certain class of graphs that the expect first hitting 

time of a proper colouring, given an arbitrary cooling scheme, was of an exponential 

size and proved the convergence of simulated annealing to an optimal solution in an 

exponential time. 

 

D’Hondt (2008) investigated quantum algorithms for graph colouring problems, in 

particular for 2- and 3- colouring of graphs. The main goal was to establish a set of 

quantum representations and operations suitable for the problem at hand and proposed a 

unitary-as well as measurement based quantum computations, also taking inspiration 

from answer set programming, a form of declarative programming close to traditional 

logic programming. The approach used was one in which he first generate arbitrary 

solutions to the problem, then constraining those according to the problem’s input. 
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Though he did not achieve fundamental speed-ups, his algorithms showed quantum 

concepts could be used for programming and moreover exhibit structural differernces. 

For example, the computations of all possible colourings at the same time. Comparing, 

his algorithms with classical ones, highlighting how the same type of difficulties gave a 

rise to NP-complete behavior, and proposed possible improvements. 

 

Graph-colouring register allocation is an elegant and extremely popular optimization 

for modem machines. But as currently formulated, it does not handle two 

characteristics commonly found in commercial architectures. First, a single name may 

appear in  multiple register classes, where a class is set of register names that are 

interchangeable in a particular role. Second  multiple register names may be aliases for 

single hardware register. Holloway et al., (1993) represented a generalization of graph-

colouring register allocation that handle these problematic characteristics while 

preserving the elegance and practicality of traditional graph colouring. Their 

generalization adapts easily to a new target machines, requiring only the set of names in 

the register classes and a map of the register aliases. It also drops easily into a well-

known graph-colouring allocator, is efficient at compile time, and produces high-

quality code. 

 

Duffy el al., (2006) analysed the complexity of decentralized colouring algorithm that 

had recently been proposed for channel selection in wireless computer networks. 

Colouring  a graph with its chromatic number of colours is known to be NP-hard. 

Identify an algorithm in which decisions are made locally with no information about 

the graph’s global structure is particularly challenging. 
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Koyuneu and Secir (2004) used graph colouring algorithm to generate the student 

weekly time table in a typical university department. Their problem was a Hode-point 

problem and it could not be solved in the polynomial domain. Various constraints in 

weekly scheduling such as lecture demands, course hours and laboratory allocations 

were confronted and weekly time tables were generated for first, second, third and 

fourth year students in a typical semester. 

 

Burke el al., (1995) developed a general system able to cope with the ever changing 

requirements of large educational institutions. They presented the methods and 

techniques behind such a system. Graph Colouring and room allocation algorithms 

were also presented and it was shown in their basis of a flexible and widely applicable 

timetabling system. 

They intended to overcome the problem of intractability by producing spreadsheet type 

system that the user could be guided in an informed and useful way. That gives the user 

control of the search and the possibility of backtracking where no reasonable solution is 

found, while still letting the heuristic algorithms to the hard work. Their approach 

cannot guarantee an optimal solution but it can guarantee a solution the user is happy 

with. 

 

Griesmer (1993) reported a successful application involving 32 nurses. Although the 

approach is appealing, it is quite difficult to implement in practice because of the 

impracticality of holding meetings to resolve conflicts, especially for large units. 

Moreover, the results may not necessarily be perceived as fair. Those who are savvy 

enough to game the system will always have an advantage over the procrastinators. 

Controlling the sign-up order and rotatingit over the year is a partial solution. 
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Burns (1978) studied the case of 10 days on in a 14-day planning horizon with every 

second weekend off and up to six consecutive days on. Although easy to implement, 

cyclical schedules have become the bane of the profession because of the rigidity they 

impose. Many nurses view flexibility as an entitlement that comes with the job. 

Warner (1976) was the first to develop a methodology for solving the set covering 

model for the case in which all nurses work 8-hour shifts. To overcome the 

unmanageable size of the full IP, only 50 good schedules obtained by a greedy method 

were included in the model for each nurse. A block pivoting strategy was used to find 

feasible solutions, which were then improved with a post-processor. The methodology 

was implemented at two hospitals with staff sizes ranging from 19 to 47 nurses. 

 

Jaumard et al. (1998) extended the basic IP model to include both 8- and 12-hour shifts, 

and different levels of nursing skills. This extension adopted the concept of demand 

periods, a unit time bucket that alleviates the problem of overlapping working hours in 

two different shifts. The modified problem was then solved using Dantzig–Wolfe 

decomposition with the necessary adjustments for integrality restrictions. Columns 

were generated at each iteration by solving a resource-constrained shortest path 

subproblem, one for each nurse. 

 

Miller et al. (1976) used a simplified version of a rotation heuristic for a 4-week 

problem. The objective function was a weighted combination of personnel costs and 

preference penalties. A greedy heuristic with feasible neighborhood swaps was 

adoptedto solve a real instances with up to 12 nurses. 
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Dowsland (1998) developed a tabu search approach with strategic oscillation. The 

algorithm starts with an initial roster obtained with a greedy heuristic that ignores the 

minimum coverage requirement and treats each nurse separately. In the next phase, 

three swap moves are used to try to satisfy the coverage constraints: shift swaps for a 

single nurse, two-nurse chain swaps, and rotation swaps. The quality of each schedule 

produced512 J.F. Bard, H.W. Purnomo / European Journal of Operational Research 

164 (2005) 510–534 by the algorithm is measured by a weighted sum of the penalty 

coefficients associated with the preference violations. 

 

Arthur and Ravindran (1981) were the first to apply goal programming to the 

preference scheduling problem. They considered the following four goals: contractual 

requirements, preferences, requests, and staffing requirements. In the first phase of their 

two-phase approach, a small IP is solved to decide the day on which each nurse is to 

work. Shift assignments are made in the second phase. 

 

 In a similar vein, Berrada et al. (1996) proposed a constraint satisfaction model that 

viewed demand coverage and the number of working days as the hard constraints and 

compliance to shift patterns, daily requirementsfor supervisory personnel, and the 

grouping of days off and weekends off as the soft constraints. 

For the same problem,  

 

Ferland et al. (2001) developed a tabu search methodology that included a 

diversification strategy and an adaptive memory structure. Similarly, Burke et al. 

(1999) used tabu search to schedule nurses at several Belgium hospitals using a code 

implemented in the Plane software system. 
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Subsequent refinements allowed for multiple objectives and more equitable weekend 

assignments. 
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CHAPTER 3 

3.1 INTRODUCTION 

In this chapter some theories and definitions of graph theory were enunciated. Also the 

algorithm used in colouring the graph was also considered in this chapter. 

 

3.2 OVERVIEW OF GRAPH THEORY 

DEFINITION: A graph is a non-empty finite set of vertices V along with a set E of 

two-element subsets of V. 

                             Let V be a finite set, and denote by 

E(V) = {{u, v} | u, v∈V, u=v} . 

the2-sets of V, i.e., subsets of two distinct elements. 

 

A pair G = (V, E) with E⊆E (V) is called a graph (onV). The elements of V are the 

vertices of G, and those of E the edges of G. The vertex set of a graph G  is denoted by 

VGand its edge set by EG. Therefore G = (VG, EG). 

 

In literature, graphs are also called simple graphs; vertices are called nodes or points; 

edges are called lines or links. The list of alternatives is long (but still finite). 

A pair {u, v} is usually written simply as uv. Notice that then uv = vu. In order to 

simplify notations, we also write v∈G and e∈G instead of v∈VGande∈EG. 

 

DEFINITION. For a graph G, we denote 

ΝG  = |VG|  and   εG= |EG| . 

The number νGof the vertices is called the order of G, and εGis the size of G.  

For an edge e = uv∈G, the vertices u and v are its ends. Vertices u and v are 
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adjacentorneighbours, if uv∈ G.  

Two edges e1 = uv and e2 = uw having a common end, are adjacent with each other. 

A graph G can be represented as a plane figure by drawing a line (or a curve) between 

the points uand  v (representing vertices) if          e  =  uv is an edge of  G. 

The figures below are geometric representation of the graph G with  

VG= {v1, v2, v3, v4, v5, v6} and 

EG= {v1v2, v1v3, v2v3, v2v4, v5v6}. 

 

V1                            V3                                        V6 

 

 

 

          V2                          V4                               V5 

 

Figure 3.1  A simple graph   Figure 3.2 A simple graph  

 

3.3.1  Multigraph 

Graphs can be generalized by allowing loopsvv and parallel (or multiple) edges 

between vertices to obtain a multigraphG = (V, E, ψ), where E = {e1, e2, . . . ,em} is a 

set (of symbols), and 

ψ :E → E(V) ∪ {vv | v∈V} is a function that attaches an unordered pair of vertices to 

each e∈E: ψ(e) = uv. 

Note that we can have ψ(e1) = ψ(e2 ). This is drawn in the figure of G by placing two 

(parallel) edges that connect the common ends. On the right there is (a drawing of) a 

multigraph G with vertices V = {a, b ,c} 
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and edges ψ(e1) = aa,  ψ(e2) = ab, ψ(e3) = bc,   and    ψ(e4) = bc. 

b 

  

 

 

  a     c 

   Figure 3.3  Multigraph 

 

3.2.2 Directed Graphs OrDigraphs 

 

DEFINITION. 

D = (V, E), where the edges have a direction, that is, the edges are ordered:  

E⊆V × V. In this case, uv = vu. 

The directed graphs have representations, where the edges are drawn as arrows. 

A digraph can contain edges uv and vu of opposite directions. 

Graphs and digraphs can also be coloured, labelled, and weighted: 

 

 

 

 

 

 

 

 

   Figure 3.4 A directed graph 
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DEFINITION. A function α: VG→ K is a vertex colouring of G by a set K of colours. 

A function α :EG→ K is an edge colouring of G. Usually, K = [1, k] for some k ≥ 1. 

If K⊆R (often K⊆N), then α is a weight function or a distance function. 

 

3.2.3 Isomorphism of graphs 

DEFINITION. Two graphs G and H are isomorphic, denoted by G∼= H, if there exists 

abijectionα : VG→ VH such that 

uv∈EG⇐⇒α(u)α(v) ∈EH 

for all u, v∈G. 

Hence G and H are isomorphic if the vertices of H arerenamings of those of G. 

Two isomorphic graphs enjoy the same graph theoretical properties, and they are 

oftenidentified. In particular, all isomorphic graphs have the same plane figures 

(excepting the identities of the vertices). This shows in the figures, where we tend to 

replace the vertices by small circles, and talk of ‘the graph’ although there are, in fact, 

infinitely many such graphs. 

 

The following graphs are isomorphic. Indeed, the required iso-morphism is given by  

V1 → 1, V2 → 3,    V3 → 4, V4 → 2, V5 → 5. 

 

 

 

 

                    Figure 3.5                     Figure 3.6 

    Isomorphic graphs 

 

V2 

v1 

V3 

V5 

V4 

1 

2 4 

3 5 
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3.3 Other Representations 

Plane figures catch graphs for our eyes, but if a problem on graphs is to be 

programmed, then these figures are, to say the least, unsuitable. Integer matrices are 

ideal for computers, since every respectable programming language has array structures 

for these, and computers are good in crunching numbers. 

 

3.3.1 Adjacency matrix 

Let VG= {v1, . . . ,vn} be ordered. The adjacency matrix of G is the n × n-matrix M with 

entries Mij= 1 or Mij= 0 according to whether vivj∈G or vivj∈/ G. 

For instance, the graph below has an adjacency matrix on the right. Notice that the 

adjacency matrix is always symmetric (with respect to its diagonal consisting of zeros). 

       

a                                                     b 

 

 

 

 

 

    c                                                   d 

      

                Figure 3.7   G 
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Table 3.1  Adjacency matrix of graph G 

 a d c d 

a 0 1 1 1 

b 1 0 0 0 

c 1 0 0 1 

d 1 0 1 0 

 

 

A graph has usually many different adjacency matrices, one for each ordering of its set 

VG of vertices. The following result is obvious from the definitions. 

Theorem 3.1.Two graphs G and H are isomorphic if and only if they have a common 

adjacency matrix. Moreover, two isomorphic graphs have exactly the same set of 

adjacency matrices. 

Graphs can also be represented by sets. For this, let X  =  {X1, X2, . . . , Xn} be a family 

of subsets of a set X, and define the intersection graphGXas the graph with vertices X1, . 

. . , Xn, and edges XiXjfor all i and j (i = j) with Xi∩ Xj6= ∅. 

Theorem 3.2.Every graph is an intersection graph of some family of subsets. 

Proof. Let G be a graph, and define, for all v∈G, a set 

                                  Xv = {{v, u} | vu∈G}. 

Then Xu∩ Xv6= ∅ if and only if uv∈G. 

Let s (G) be the smallest size of a base set X such that G can be represented as an 

intersection graph of a family of subsets of X, that is, 

s(G) = min{|X| |  G∼=GX  for some X ⊆ 2
X
} . 

How small can s(G) be compared to the order νG(or the size εG) of the graph? It was 

shown by Kou, S Tockmeyer And Wong (1976) that it is algorithmically difficult to 
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determine the number s(G) – the problem is NP-complete. 

 

3.3.2 Degrees of vertices 

DEFINITION. Let v∈G be a vertex a graph G. The neighbourhood of v is the set 

NG(v) = {u∈G | vu∈G} . 

The degree of v is the number of its neighbours or the number of edges that come out 

from a vertex: 

dG(v) = |NG(v)| . 

If dG(v) = 0, then v is said to be isolated in G, and if dG(v) = 1, then v is a leaf of the 

graph. The minimum degree and the maximum degree of G are defined as 

δ(G) = min{dG(v) | v∈G} and ∆(G) = max{dG(v) | 

v∈G} . 

The following lemma, due to Euler (1736), tells that if several people shake hands, then 

the number of hands shaken is even. 

 

Lemma 3.2 (Handshaking lemma).For each graph G, 

                                                          ∑ dG(v) = 2εG. 

       v∈G 

Moreover, the number of vertices of odd degree is even. 

Proof.  

Every edge e∈EGhas two ends. The second claim follows immediately from the first 

one. Lemma 3.1 holds equally well for multigraphs, when dG(v) is defined as the 

number of edges that have v as an end, and when each loop vv is counted twice. 

Note that the degrees of a graph G do not determine G. Indeed, there are graphs 

G = (V, EG) and H = (V, EH) on the same set of vertices that are not isomorphic, but for 
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which dG(v) = dH (v) for all v∈V. 

 

3.3.3 Subgraphs 

DEFINITION. A graph H is a subgraph of a graph G, denoted by H⊆G, if VH⊆VG 

andEH⊆EG.  

A subgraphH⊆GspansG (and H is a spanning subgraph of G), if every vertex of G is in 

H, i.e., VH= VG. 

Also, a subgraphH⊆G   is an induced subgraph, if   EH= EG∩ E(VH). In this case, H is 

induced by its set VHof vertices. 

In an induced subgraphH⊆G, the set EHof edges consists of all e∈EGsuch that 

e∈E(VH). To each nonempty subset  A⊆VG, there corresponds a unique induced 

subgraph 

G[A] = (A, EG∩ E(A)) . 

To each subset F⊆EG of edges there corresponds a unique spanning subgraph of G, 

G[F] = (VG, F) . 

 

 

 

 

        Figure 3.8 G     Figure 3.9A subgraph 
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    Figure 3.10A spanning    Figure 3.11Induced graph 

 

 

For a set F⊆EGof edges, let 

 

G−F = G[EG\ F] 

be the subgraph of G obtained by removing (only) the edges e∈F from G. In particular, 

G−e is obtained from G by removing e∈G. 

Similarly, we write G + F, if each e∈F (for F⊆E(VG)) is added to G. 

For a subset A⊆VG  of vertices, we let G− A ⊆G be the subgraph 

induced by  VG\ A, that is, 

G−A = G[VG\ A] , 

and, e.g., G−v is obtained from G by removing the vertex v together with the edges that 

have v as their end. 

 

DEFINITION. A graph G = (V, E) is trivial, if it has only one vertex, i.e., νG= 1; 

otherwise G is nontrivial. 

The graph  G = KV  is the complete graph on V, if every two vertices are adjacent:  

E = E(V). All complete graphs of order n are isomorphic with each other, and they will 

be denoted by Kn. 
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3.3.4    Discrete and Regular graph  

The complement of G is the graph G on VG, where EG= {e∈E(V) | e∈/ EG}. The 

complements G = KVof the complete graphs are called discrete graphs. In a discrete 

graph EG= ∅. Clearly, all discrete graphs of order n are isomorphic with each other. 

A graph G is said to be regular, if every vertex of G has the same degree. If this degree 

is equal to r, then G is r-regular or regular of degree. 

  

 

 

 

 

Figure 3.12A regular graph 

 

3.3.5 Planer graph 

A planar graph will be a graph that can be drawn in the plane so that no two edges 

intersect with each other. Such graphs are used, e.g., in the design of electrical  

(orsimilar) circuits, where one tries to (or has to) avoid crossing the wires or laser 

beams. Planar graphs come into use also in some parts of mathematics, especially in  

group theory and topology 

 

 

 

 

 

                      Figure 3.13A planer graph  Figure 3.14 A planer graph 
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Figure 3.15 Not a planer graph 

 

3.4 Vertex colouring 

The vertices of a graph G can also be classified using colourings. These colourings tell 

that certain vertices have a common property (or that they are similar in some respect), 

if they share the same colour. In this section, we shall concentrate on proper vertex 

colourings, where adjacent vertices get different colours. 

 

3.5  The chromatic number 

DEFINITION. A k-colouring (or a k-vertex colouring) of a graph G is a mapping 

α: VG→ [1, k]. The colouringα is proper, if adjacent vertices obtain a different colour: 

for all uv∈G, we have α(u)6 = α(v). A colouri∈ [1, k] is said to be available for a vertex 

v, if no neighbour of v is coloured by i. 

A graph G is k-colourable, if there is a proper k-colouring for G. The (vertex) chromatic 

numberχ(G) of G is defines as χ(G) = min{k |  there exists a proper k-colouring of G} . 

If χ(G) = k, then G is k-chromatic. 

Each proper vertex colouringα :VG→ [1, k] provides a partition {V1, V2, . . . , Vk} of the 

vertex set VG, where Vi= {v | α(v) = i}. 
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The graph below, which is often called a wheel (of order 7), is 3-chromatic. 

 

 

 

 

 

 

  Figure 3.16Wheel 

Lemma 3.1:Letαbe a proper k-colouring of G, and letπbe any permutation of the 

colours.Then the colouringβ = παis a proper k-colouring of G. 

Proof.Indeed, if α :VG→ [1, k] is proper, and if π : [1, k] → [1, k] is a bijection, then 

uv∈G implies that α(u)6 = α(v), and hence also that πα(u)6 = πα(v).  

It follows that πα is a proper colouring. 

 

3.6 Special graphs 

DEFINITION. A graph G = (V, E) is trivial, if it has only one vertex, i.e.,νG = 1; 

otherwise G is nontrivial.  

The graph G = KV is the complete graph on V, if every two vertices are adjacent: 

 E =E(V ). All complete graphs of order n are isomorphic with each other, and they will 

be denoted by Kn. 

The complement of G is the graph G on VG, where EG = {e∈E(V ) | e∈ EG}. The 

complements G = KV of the complete graphs are called discrete graphs. In a discrete 

graph EG = ∅. Clearly, all discrete graphs of order n are isomorphic with each other. 

A graph G is said to be regular, if every vertex of G has the same degree. If this degree 

is equal to r, then G is r-regular or regular of degree r. 
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Theorem 3.2Each connected graph has a spanning tree, that is, a spanning graph that 

is a tree. 

Proof. Let T⊆ G be a maximum order subtree of G (i.e., subgraph that is a tree). If 

VT = VG, there exists an edgeuv∈ EG such that u∈ T and v∈ T. But then T is not 

maximal; a contradiction.                                              ⊔ 

 

Corollary 3.1.For each connected graph G, ε G ≥νG − 1. Moreover, a connectedgraph 

G is a tree if and only if ε G =νG − 1. 

Proof. LetT be a spanning tree of G. Then ε G ≥ ε T =νT − 1 =νG − 1. The second claim 

is also clear.                                                     

 

Example. In Shannon’s switching game a positive player P and a negative player 

N play on a graph G with two special vertices: a source s and a sink r. P and N al- 

ternate turns so that P designates an edge by +, and N by −. Each edge can be des-

ignated at most once. It is P’s purpose to designate a path s −⋆→ r (that is, to designate 

all edges in one such path), and N tries to block all paths s −⋆→ r (that is, to designate 

at least one edge in each such path). We say that game (G, s, r) is 

 

3.7 Computational Complexity of Algorithms 

The complexity of a problem is related to the resources required to compute a solution 

as a 

function of the size of the problem. The size of a problem is measured by the size of the 

input N ,and the resources required are usually measured by time (number of steps) and 

space (maximum amount of memory measured appropriately). Decision problems or 

yes-or-no questions are very common. Read HOPCROFT & ULLMAN for classical 
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complexity theory. 

To make computational complexities comparable, we need to agree on some specific 

mathematical models for algorithms. For example, consider computing with Turing 

Machines and refer to courses in Theoretical Computer Science and Mathematical 

Logic. We have deterministic and nondeterministic version of algorithm models. In the 

deterministic version, there are no choices to be made. In the nondeterministic version, 

there is a choice to be made somewhere on the way. For a nondeterministic algorithm, 

we have to make the following assumptions so that we can actually solve problems: 

1. The algorithm terminates at some point no matter how we choose the steps. 

2. The algorithm can terminate without yielding a solution. 

3. When the algorithm terminates and yields a solution, the solution is correct (it is 

possible to have more than one solution). 

4. For decision problems, if the algorithm fails to give a positive answer (yes), then the 

answer is interpreted to be negative (no). 

5. If the problem is to compute a value, then the nondeterministic algorithm has to give 

a solution for every input (value of the function). 

 

Nondeterministic algorithms are best treated as verification procedures for problems 

rather than procedures for producing answers. 

Computational complexity is considered asymptotically, that is for large problems, time 

or space complexities that differ by constant coefficients are not distinguished because 

linear acceleration and compression of space are easy to perform in any kind of 

algorithm model. 

Although the choice of an algorithm model has a clear impact on the complexity, it is 

not an essential characteristic, i.e. it does not change the complexity class. Often, we 
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use the big-O notation for complexities. O(f (N )) refers to the class of functions g(N ) 

such that if N ≥ N0 holds, then |g(N )| ≤ Cf (N ) holds, where C is a constant. 

 

Without exploring algorithm models any further, we define a couple of important 

complexity classes. The time complexity class P (deterministic polynomial time 

problems) consists of problems of (input) size N where it takes at most p(N ) steps to 

solve the problem using deterministic algorithms. p(N ) is some problem dependent 

polynomial of N . The time complexity class N P (nondeterministic polynomial time 

problems) consists of problems of size N where it takes at most p(N ) steps to solve the 

problem using nondeterministic algorithms. Once again, 

p(N ) is some problem dependent polynomial of N . 

 Time complexity class co−N P (complements of nondeterministic polynomial 

time problems) consists of decision problems whose complements are in N P . (The 

complement of aproblem is obtained by swapping the positive and the negative 

answer.) 

Obviously, P ⊆ N P and (for decision problems) P ⊆ co−N P . Whether or not the 

inclusion is proper is an open problem, actually quite a famous problem. It is widely 

believed that both of the inclusions are proper. It is not known if the following holds for 

decision problems: 

N P = co−N P 

or 

P = N P ∩ co−N P 

 

Most researchers believe that they do not hold. 

The space complexity class PSPACE (deterministic polynomial space problems) 
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consists 

of problems of (input) size N where it takes at most p(N ) memory units to solve the 

problem using deterministic algorithms. p(N ) is some problem dependent polynomial 

of N . The space complexity class N PSPACE (nondeterministic polynomial space 

problems) consists of problems of size N where it takes at most p(N ) memory units to 

solve the problem using non-deterministic algorithms. Once again, p(N ) is some 

problem dependent polynomial of N . It is known that 

N P ⊆ PSPACE = N PSPACE ,but it is not known whether the inclusion is proper or 

not. 

An algorithm may include some ideally generated random numbers. The algorithm is 

then called probabilistic or stochastic. The corresponding polynomial time complexity 

class is BPP 

(random polynomial time problems or bounded-error probabilistic polynomial time 

problems). 

Some stochastic algorithms may fail occasionally, that is, they produce no results and 

terminate prematurely. These algorithms are called Las Vegas algorithms. Some 

stochastic algorithms may also produce wrong answers (ideally with a small 

probability). These kind of algorithms are called Monte Carlo algorithms. Some 

stochastic algorithms seldom yield exact solutions. 

Nevertheless, they give accurate approximate solutions with high probability. These 

kind of algorithms are called approximation algorithms. 

The task of an algorithm may be to convert a problem to another. This is known as 

reduction. 

If problem A can be reduced to another problem B by using a (deterministic) 

polynomial time algorithm, then we can get a polynomial time algorithm for problem A 
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from a polynomial time algorithm for B. A problem is N P -hard if every problem in N 

P can be reduced to it by a polynomial time algorithm. N P -hard problems are N P -

complete if they are actually in N P . 

N P -complete problems are the ”worst kind”. If any problem in N P could be shown to 

be deterministic polynomial time, then every problem in N P would be in P and P = N P 

.Over one thousand N P -complete problems are known currently. 

The old division of problems into tractable and intractable means that P problems are 

tractable and others are not. Because we believe that P = N P in general, N P –complete 

problems are intractable. In the following, graph algorithms are either in P or they are 

approximations of some more demanding problems. The size of an input can be for 

example thenumber of nonzero elements in an incidence matrix, the number of vertices 

n or the number of edges m or some combination of n and m. 

 

 

3.7.1 Reachability: Warshall’s Algorithm 

We only deal with directed graphs in this section. The results also hold for ”undirected” 

graphs 

if we interpret an edge as a pair of arcs in opposite directions. 

 

Problem. We are given an adjacency matrix of the digraph G = (V, E). We are to 

construct 

the reachability matrix R = (rij ) of G, where 

1 if G has a directed vi–vj path 0 otherwise. 

(Note that V = {v1, . . . ,vn}.) In particular, we should note that ifrii = 1, thenvi is in a 

directed circuit. 
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Warshall’s Algorithm constructs a series of n × n matrices E1, . . . , En where 

1. elements of Ei are either zero or one. 

2. Ei ≤ Ei+1 (i = 

3. E0 is obtained from the adjacency matrix D by replacing the positive elements with 

ones. 

4. En = R. 

 

In this case, the maximizing operation is sometimes called the Boolean sum:Let us 

show that Warshall’s Algorithm gives us the desired results. Let Ei denote the value 

of E after i steps. 

Statement. (i) If there is a directed path fromvs tovt such that apart fromvs andvt, the 

path 

only includes vertices in the set {v1, . . . , vi}, then (Ei)st = 1. 

(ii) If vertexvs belongs to a directed circuit whose other vertices are in the set {v1, . . . , 

vi}, 

then (Ei)ss = 1 

Proof. We will use induction on i. 

Induction Basis: i = 1. (E1)st = 1 if (E0)st = 1, or (E0)s1 = 1 and (E0)1t = 1. We have 

one of the following cases: 

Induction Hypothesis: The statement is true for i < ℓ. (ℓ ≥ 2) 

Induction Statement: The statement is true for i = ℓ. 

Induction Statement Proof: Let us handle both statements together. The proof for (ii) is 

given in square brackets. We have two cases: · vℓ belongs to the directed path [resp. 

directed circuit] but ℓ = s, t [resp. ℓ = s]. Then, we 

use the Induction Hypothesis:(Eℓ−1)sℓ = 1 
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and (Eℓ−1)ℓt = 1 [resp. 

(Eℓ−1)sℓ = 1 and 

(Eℓ−1)ℓs = 1], 

so (Eℓ)st = 1 [resp. (Eℓ)ss = 1]. 

· vℓ is either vs or vt [resp. vℓ is vs] or it does not belong to the directed path [resp. 

directed 

circuit] at all. Then, by the Induction Hypothesis 

(Eℓ−1)st = 1 [resp. 

(Eℓ−1)ss = 1], 

 

so (Eℓ)st = 1 [resp. (Eℓ)ss = 1]. 

In Warshall’s Algorithm, the maximizing operation is performed at most n3 times. 

 

3.8 Greedy algorithm for vertex colouring 

Greedy algorithm is the most popular algorithm for vertex colouring in graph theory 

algorithm 

Start with a graph G and list colours say 1,2,3,4……….. 

Step 1  

Label the vertices say v1, v2, v3…… in any manner. 

Step 2 

Identify the uncoloured vertex labeled with the earliest letter in the vertices w1, w2, 

w3…. Colour it with the first colour in the list not used for any adjacent coloured 

vertex. Repeat step 2 until all the vertices are coloured, and then stop. 

Step 3 

A vertex colouring of graph G has been obtained. The number of colours used depends 
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on the labeling chosen for the vertices in step 1. By using the greedy algorithm we have 

drawn the graph and coloured the vertices based on the definition vertex colouring. 

After drawing the graph, adjacent vertices were coloured with different colours.  

 

3.9 Edge colourings 

Colourings of edges and vertices of a graph G are useful, when one is interested in 

classifying relations between objects. 

There are two sides of colourings. In the general case, a graph G with a colouring 

ais given, and we study the properties of this pair Ga= (G, a). This is the situation, 

e.g., in transportation networkswith bus and train links, where the colour (buss, train) 

of an edge tells the nature of a link. 

In the chromatic theory, G is first given and then we search for a colouring that the 

satisfies required properties.One of the important properties of colourings is 

‘properness’. 

In a proper colouring adjacent edges or vertices are coloured differently. 

 

3.9.1 Edge chromatic number 

DEFINITION. A k-edge colouringa :EG → [1, k] of a graph G is an assignment of k 

colours to its edges.We write Gato indicate that G has the edge colouringa. 

A vertex v ∈G and a colouri ∈[1, k] are incident with each other, if a(vu) = i for some 

vu ∈G. If v ∈G is not incident with a colouri, then i is available for v. 

The colouringa is proper, if no two adjacent edges obtain the same colour: a(e1) 6= 

a(e2) for adjacent e1 and e2. 

The edge chromatic number c′(G) of G is defined asc′(G) = min{k | there exists a 

proper k-edge colouring of G} . 
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A k-edge colouringa can be thought of as a partition {E1, E2, . . . ,Ek} of EG, where 

Ei= {e | a(e) = i}. Note that it is possible that Ei= Æ for some i. We adopt asimplified 

notation 

Ga[i1, i2, . . . , it] = G[Ei1 ∪Ei2 ∪ · · · ∪Eit] for the subgraph of G consisting of those 

edges that have a colouri1, i2, . . . , or it. That is, the edges having other colours are 

removed. 

Lemma. 3.3Each colour set Ei in a proper k-edge colouring is a matching.Moreover, 

for each 

graph G, D(G) ≤ c′(G) ≤ #G. 

Proof.This is clear.  

Example.The three numbers in Lemma 4.1 can be equal. This happens, for instance, 

whenG = K1,n is a star. But often the inequalities are strict. 

 

 

 

 

 

 

Figure 3.17 A star, and a graph with χ′(G) = 4. 

 

3.9.2 Optimal colourings 

We show that for bipartite graphs the lower bound is always optimal: c′(G) = D(G). 

Lemma 3.3Let G be a connected graph that is not an odd cycle. Then there exists a 2-

edgecolouring (that need not be proper), in which both colours are incident with each 

vertex v withdG(v) ≥ 2. 

d 
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Proof. Assume that G is nontrivial; otherwise, the claim is trivial. 

(1) Suppose first that G is eulerian. If G is an even cycle, then a 2-edge colouringexists 

as required. Otherwise, since now dG(v) is even for all v, G has a vertex v1 with dG(v1) 

≥ 4. Let e1e2 . . . etbe an Euler tour of G, where ei= vivi+1 (and vt+1 = v1). 

Define 

a(ei) = {
             
              

 

Hence the ends of the edges eifor i ∈[2, t − 1] are incident with both colours. 

Allvertices are among these ends. The condition dG(v1) ≥ 4 guarantees this for 

v1.Hencethe claim holds in the eulerian case. 

 

Suppose then that G is not eulerian. We define a new graph G0 by adding avertex v0 to 

G and connecting v0 to each v ∈G of odd degree.In G0 every vertex has even degree 

including v0 (bythe handshaking lemma), and hence G0 is eulerian.  

Lete0e1 . . . etbe an eulerian tour of G0, where ei= vivi+1. 

 

By the previous case, there is a required colouringa ofG0 as above. Now, a restricted to 

EG is a colouring of Gas required by the claim, since each vertex vi with odddegree 

dG(vi) ≥ 3 is entered and departed at least oncein the tour by an edge of the original 

graph G: ei−1ei. 
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  Figure 3.18 Edge 

 

DEFINITION. For a k-edge colouringa of G, let ca(v) = |{i | v is incident with i ∈[1, 

k]}| . 

A k-edge colouringb is an improvement of a, if 

∑  ( )  

 ∈ 

∑  ( )

 ∈ 

 

Also, a isoptimal, if it cannot be improved. 

Notice that we always have ca(v) ≤ dG(v), and if a is proper, then ca(v) = dG(v), 

and in this case a is optimal. Thus an improvement of a colouring is a change towards 

a proper colouring. Note also that a graph G always has an optimal k-edge 

colouring, 

but it need not have any proper k-edge colourings. 

The next lemma is obvious. 

Lemma 3.4.An edge colouring a of G is proper if and only if ca(v) = dG(v) for all 

vertices   v ∈G. 

vo 

2 

2 

2 

1 

1 

1 
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Lemma. 3.5Let a be an optimal k-edge colouring of G, and let v ∈G. Suppose that the 

colour i is available for v, and the colour j is incident with v at least twice. Then the 

connected component H of Ga[i, j] that contains v, is an odd cycle. 

 

Proof.Suppose the connected component H is not an odd cycle. By Lemma 4.2, H 

has a 2-edge colouringg: EH → {i, j}, in which both i and j are incident with each 

vertexx with dH(x) ≥ 2. (We have renamed the colours 1 and 2 to i and j.)We obtain 

arecolouringb of G as follows: 

   

 b(e) =  {
 ( )     ∈   

 ( )     ∈   
 

  Since dH(v) ≥ 2 (by the assumption on the colourj) and in b both colours 

i and j are now incident with v, cb(v) = ca(v) + 1. Furthermore, by the construction of 

b,we have cb(u) ≥ ca(u) for all u 6= v. Therefore åu∈Gcb(u) >åu∈Gca(u), which 

contradicts the optimality of a. Hence H is an odd cycle. ⊓⊔ 

Theorem 3.3; If G is bipartite, then c′(G) = D(G). 

Proof. Let a be an optimal D-edge colouring of a bipartite G, where D = D(G). If there 

were a v ∈G with ca(v) <dG(v), then by Lemma 4.4, G would contain an odd cycle. But 

a bipartite graph does not contain such cycles. Therefore, for all vertices v, 

ca(v) = dG(v). By Lemma 4.3, a is a proper colouring, and D = c′(G) as required.  

Vizing’s theorem 

In generalwe can have c′(G) > D(G) as one of our examples did show. The following 

important theorem, due to VIZING, shows that the edge chromatic number of a graph 

G misses D(G) by at most one colour. 

Theorem. 3.4 For any graph G, D(G) ≤  (G) ≤ D(G) + 1. 
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Proof. Let D = D(G). We need only to show that c′(G) ≤ D + 1. Suppose on the 

contrary that c′(G) > D + 1, and let a be an optimal (D + 1)-edge colouring of G. 

We have (trivially) dG(u) < D + 1 <c′(G) for all u ∈G, and so 

Claim 1.For each u ∈G, there exists an available colour b(u) for u. 

Moreover, by the counter hypothesis, a is not a proper colouring, and hence there 

exists a v ∈G with ca(v) <dG(v), and hence a colouri1 that is incident with v at least 

twice, say a(vu1) = i1 = a(vx) . (4.1) 

Claim 2.There is a sequence of vertices u1, u2, . . .such that 

a(vuj) = ij and ij+1 = b(uj) . 

Indeed, let u1 be as in (4.1). Assume we have already found the vertices u1, . . . ,uj, 

With j ≥ 1, such that the claim holds for these. Suppose, contrary to the claim, that v is 

not incident with b(uj) = ij+1. 

We can recolour the edges vuℓ by iℓ+1 for ℓ ∈[1, j], and obtain in this way an 

improvement of a. Here v gains a new colourij+1. Also, each uℓ gains a new colour 

iℓ+1 (and may loose the colouriℓ). Therefore, for each uℓ either its number of colours 

remains the same or it increases by one. This contradicts the optimality of a, and  

proof Claim 2. 

 

 

 

 

 

 

 

Figure 3.19 Graph of claim 1 
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Let t be the smallest index such that for some r <t, 

it+1 = ir. Such an index t exists, because dG(v) is finite. 

Let t be the smallest index such that for some r <t, it+1 = ir. Such an index t exists, 

because dG(v) is finite. 

Let then the colouringg be obtained from b by recolouring 

the edges vu jby ij+1 for r ≤ j ≤ t. Now, 

vutis recoloured by ir= it+1. 

 

 

 

 

 

 

 

 

Figure 3.20 Graph of Claim 3 

 

Claim 4.g is an optimal (D +1)-edge colouring of G. 

Indeed, the fact ir= it+1 ensures that iris a new colour incident with ut, and thus that 

cg(ut) ≥ cb(ut).  

For all other vertices, cg(u) ≥ cb(u) follows as for b. 
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Figure 3.21 Graph of claim 4 

 

 

By Claim 1, there is a colouri0 = b(v) that is available for v. By Lemma 4.4, the 

connected components H1 of Gb[i0, ir] and H2 of Gg[i0, ir] containing the vertex v are 

cycles, that is, H1 is a cycle (vur−1) P1(urv) and H2 is a cycle (vur−1)P2(utv), where 

bothP1 : ur−1 ⋆−→ ur and P2 : ur−1 ⋆−→ u tare paths. However, the edges of P1 and 

P2 have the same colours with respect to b and g (either i0 or ir). This is not possible, 

since P1 ends in ur while P2 ends in a different vertex ut. This contradiction proves the 

theorem.  

Example .We show that c′(G) = 4 for the Petersen graph. Indeed, by Vizing’ 

theorem, c′(G) = 3 or 4. Suppose 3 colours suffice. Let C: v1 −→ . . . −→ v5 −→ v1 be 

the outer cycle and C′ :u1 −→ . . . −→ u5 −→ u1 the inner cycle of G such that viui 

∈EG for all i. 

Observe that every vertex is adjacent to all colours 1, 2, 3. Now C uses one colour 

(say 1) once and the other two twice. This can be done uniquely (up to permutations): 
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However, this means that 1 cannot be a colour of any edge in C′. Since C′ needs three 

colours, the claim follows. 

Edge Colouring Problem.Vizing’stheorem (nor its present proof) does not offer any 

characterization for the graphs, for which c′(G) = D(G) + 1. In fact, it is one of the 

famous open problems of graph theory to find such a characterization. The answer is 

known (only) for some special classes of graphs. By HOLYER (1981), the problem 

whether c′(G) is D(G) or D(G) + 1 is NP-complete. 

The proof of Vizing’s theorem can be used to obtain a proper colouring of G with at 

most D(G)+1 colours, when the word ‘optimal’ is forgotten: colour first the edges as 

well as you can (if nothing better, then arbitrarily in two colours), and use the proof 

iteratively to improve the colouring until no improvement is possible – then the proof 

says that the result is a proper colouring. 

 

3.10 Critical graphs 

DEFINITION. A k-chromatic graph G is said to be k-critical,  

Ifc (H) <k for all H ⊆G 

With H 6= G. 

In a critical graph an elimination of any edge and of any vertex will reduce the 

chromatic number: c(G−e) <c(G) and c(G−v) <c(G) for e ∈G and v ∈G. Each 

Knis n-critical, since in Kn−(uv) the vertices u and v can gain the same colour. 

Example .The graph K2 = P2 is the only 2-critical graph. The 3-critical graphs are 

exactly the odd cycles C2n+1 for n ≥ 1, since a 3-chromatic G is not bipartite, and thus 

must have a cycle of odd length. 

Theorem 3.5.If G is k-critical for k ≥ 2, then it is connected, and d(G) ≥ k − 1. 

Proof. Note that for any graph G with the connected components G1, G2, . . . ,Gm, 
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c(G) = max{c(Gi) | i ∈[1,m]} . Connectivity claim follows from this observation. 

Let then G be k-critical, but d(G) = dG(v) ≤ k − 2 for v ∈G. Since G is critical, there is a 

proper (k − 1)-colouring of G−v. Now v is adjacent to only d(G) <k – 1 vertices. But 

there are k colours, and hence there is an available colouri for v. If we 

recolourv by i, then a proper (k −1)-colouring is obtained for G; a contradiction. ⊓⊔ 

The case (iii) of the next theorem is due to Szekeres And Wilf (1968). 

Theorem 3.6;.Let G be any graph with k = c(G). 

(i) G has a k-critical subgraph H. 

(ii) G has at least k vertices of degree ≥ k − 1. 

(iii) k≤ 1 +maxH⊆G d(H). 

Proof. For (i), we observe that a k-critical subgraph H ⊆G is obtained by removing 

vertices and edges from G as long as the chromatic number remains k. 

For (ii), let H ⊆G be k-critical. By Theorem 4.10, dH(v) ≥ k − 1 for every v ∈H. 

Of course, also dG(v) ≥ k − 1 for every v ∈H. The claim follows, because, clearly, 

Every k-critical graph H must have at least k vertices. 

For (iii), let H ⊆G be k-critical. By Theorem 4.10, c(G) − 1 ≤ d(H), which proves this 

claim.  

Lemma 3.6.Let v be a cut vertex of a connected graph G, and let Ai, for i ∈[1,m], be the 

connected components of G−v. Denote Gi= G[Ai ∪ {v}]. Then c(G) = max{c(Gi) | i 

∈[1,m]}. In particular, a critical graph does not have cut vertices. 

Proof; Suppose each Gihas a proper k-colouring ai. By Lemma 4.5, we may take 

ai(v) = 1 for all i. These k-colourings give a k-colouring of G. ⊓⊔ 

Brooks’ theorem 

For edge colourings we have Vizing’s theorem, but no such strong results are known 

for vertex colouring. 
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Lemma 3.7.For all graphs G, c(G) ≤ D(G) + 1. In fact, there exists a proper colouring 

a: VG → [1, D(G) + 1] such that a(v) ≤ dG(v) + 1 for all vertices v ∈G. 

Proof. We use greedy colouring to prove the claim. Let VG = {v1, . . . ,vn} be ordered 

in some way, and define a: VG → N inductively as follows: a(v1) = 1, and 

a(vi) = min{j | a(vt) 6= j for all t <i with vivt∈G} . 

Then a is proper, and a(vi) ≤ dG(vi) + 1 for all i. The claim follows from this. ⊓⊔ 

Although, we always have c(G) ≤ D(G) +1, the chromatic number c(G) usually takes 

much lower values – as seen in the bipartite case. Moreover, the maximum value D(G) 

+ 1 is obtained only in two special cases as was shown by Brooks in 1941. 

The next proof of Brook’s theorem is by LOVÁSZ (1975) as modified by BRYANT 

(1996). 

Lemma 3.8.Let G be a 2-connected graph. Then the following are equivalent: 

(i) G is a complete graph or a cycle. 

(ii) For all u, v ∈G, if uv/∈G, then {u, v} is a separating set. 

(iii) For all u, v ∈G, if dG(u, v) = 2, then {u, v} is a separating set. 

Since v is not a cut vertex, there exists a y ∈U such that uy∈G. Hence dG(x, y) = 2, and 

by (iii), {x, y} is a separating set. Thus VG = W1 ∪ {x, y} ∪U1, where all paths from 

W1 to U1 pass through x or y. Assume that w ∈W1, and hence that also u, v ∈W1. 

(Since uw, vw∈VG−{x, y}). 
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Figure 3.22 A connected graph 

There exists a vertex z ∈U1. Note that U1 ⊆W ∪U. If z ∈W (or z ∈U, respectively), 

then all paths from z to u must pass through x (or y, respectively), and x (or y, 

respectively) would be a cut vertex of G. This contradiction, proves the claim. ⊓⊔ 

Theorem 3.7.Let G be connected. 

 Then c(G) = D(G) + 1 if and only 

if either G is an odd cycle or a complete graph. 

 

Proof.(⇐=) Indeed, c(C2k+1) = 3, D(C2k+1) = 2, and c(Kn) = n, D(Kn) = n − 1. 

(=⇒) Assume that k = c(G).We may suppose that G is k-critical. Indeed, assume the 

claim holds for k-critical graphs. Let k = D(G) + 1, and let H ⊂G be a k-critical proper 

subgraph. Since c(H) = k = D(G) + 1 > D(H), we must have  

c(H) = D(H) + 1, and thus H is a complete graph or an odd cycle. Now G is connected, 

and therefore there exists an edge uv∈G with u ∈H and v /∈H.  

But then dG(u) >dH(u), and D(G) > D(H), since H = Knor H = Cn. 

u 

y 
x 

v 

w 



48 
 

Let then G be any k-critical graph for k ≥ 2. By Lemma 4.6, it is 2-connected. If G is an 

even cycle, then k = 2 = D(G). Suppose now that G is neither complete nor acycle (odd 

or even).We show that c(G) ≤ D(G). 

 

3.11 Colouring planar graphs 

A graph is embeddable on a surface Σ if its vertices can be mapped onto distincts points 

of Σ and its edges onto simple curves of Σ joining the points onto which its  end 

vertices are mapped, so that two edge curves do not intersect except in their common 

extremity. A face of an embedding ˜G of a graph G is a component of Σ \ ˜G. We 

denote by F(˜G) the set of faces of ˜G. A graph is planar if it can be embedded in the 

plane. 

Let ˜G be an embedding of a planar graph G. Its numbers of vertices, faces and edges 

are related by Euler’s Formula: 

|V(˜G)|+|F(˜G)|−|E(˜G)| = 1+comp(G) where comp(G) is the number of connected 

components of G. 

Proof. We prove of Euler’s Formula by induction on the number of edges of G. 

If G has no edges, then every vertex is a connected component and the graph has a 

unique face, the outer one. 

Suppose now that G is a planar graph on at least one edge and that the result holds for 

planar graphs with less edges. Let e be an edge of G. Then two cases may occur. 

Assume first that e is a bridge (i.e. G \ e has one more component than G). Then e is 

incident to a unique face in G. So G\ e has as many faces as G. By the induction 

hypothesis, |V(˜G \ e)|+|F(˜G \ e)|−|E(˜G \ e)| = 1+comp(G\ e). So 

|V(˜G)|+|F(˜G)|−(|E(˜G)|−1) = 1+comp(G)+1. 

Assume now that e is not a bridge. Then G \ e has the same number of components as 
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G. Then e is incident to two faces in G. Removing e transform these two faces into a 

single one (their union). So G \ e has as many faces as G. By the induction hypothesis, 

|V(˜G \ e)|+|F(˜G \ e)|−|E(˜G \ e)| = 2−comp(G\ e). So |V(˜G)|+(|F(˜G)|)−1−(|E(˜G)|−1) 

= 1+comp(G). 

 

Corollary. 3.1 If G is a planar graph, then 

|E(G)|≤3|V(G)|−6. 

Proof. Let ˜G be an embedding of G. Every face de ˜G contains at least three edges and 

every edge is in at most two faces. Hence, considering the number N of edge-face 

incidences, we have 2|E(G)|≥3|F(˜G)|. Putting this inequality into Euler’s Formula we 

obtain |V(G)|+ 2|E(G)|/3≥|E(G)|+2 so 3|V(G)|−6≥|E(G)|. 

Corollary. 3.2 Every planar graph has a vertex of degree at most 5. 

Proof. Let G be a planar graph. By Corollary 8.16, Σ{d(v) : v ∈G} = 2|E(G)|≤6|V(G)|− 

12. The minimum degree of G is less or equal to the average degree which is equal to 

6|V(G)|−12 |V(G)|< 6. Hence there is a vertex of degree less than 6. 

Corollary.3.3 Every planar graph is 6-colourable. 

Proof. Let G be a planar graph. Every subgraph of G is planar and so has minimum 

degree at most 5 by Corollary 8.17. Hence G is 5-degenerate. Thus, by Proposition 8.7, 

χ(G) ≤ 6. 

Theorem 3.8 Every planar graph is 5-colourable. 

Proof. By induction on the number of vertices of G, the result holding trivially if G has 

one vertex. By Corollary 8.17, there is a vertex v of degree at most 5 in G By the 

induction hypothesis, the graph G−v is 5-colourable. Let c be a proper 5-colouring of 

G−v. From c, we will construct a proper 5-colouring of G. 



50 
 

Assume first, that one of the colours, say i, is assigned to no neighbours of v. Then one 

can extend c by setting c(v) = i. (Note that this is the case if d(v) ≤ 4.) 

Hence we may assume that that v has five neighbours coloured differently. Let v1, v2, 

v3, v4 and v5 be these neighbours in counter-clockwise order around v. Free to permute 

the colours, we may suppose that c(vi) = i for all 1 ≤ i ≤ 5. 

Let C1,3 be the component of v1 in the subgraph G induced by the vertices coloured 1 

or 3. If v3 is not in C1,3, then interchanging the colours 1 and 3 in C1,3 and colouring v 

with 1, we obtain a proper 5-colouring of G. If v3 ∈C1,3, then there exists a path P 

linking v1 to v3 in 

C1. Together with vv1 and vv3 it forms cycle C which separates v2 and v4. Thus the 

component C2,4 of v2 in the subgraph of G induced by the vertices coloured 2 and 4 

does not contain v4, otherwise an edge of the path joining v2 to v4 inC2,4 would cross 

an edge of C. Hence on can interchange the colours 2 and 4 in C2,4 and colour v with 2 

to obtain a proper 5-colouring of G. 

Theorem 3.7 is not best possible: the celebrated Four Colour Theorem by Appel and 

Haken [1, 2, 3] states that every planar graph is 4-colourable. A simpler proof was 

presented by Robertson, Sanders, Seymour and Thomas [22, 23]. However it still uses 

complicated reductions to a huge number of configurations (more than six hundreds) 

which need to be solved by computer assistance. 

 

3.12 Graph colouring, an integer linear program. 

An integer program is a discrete optimization of the form 

Minimize (or Maximize) F (x1, x2, ….., xn) 

Subject to a set of m equality constraints 
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   gi (x1, x2, …., xn)  = b1 

   g2 (x1, x2, …., xn)  = b2 

   ‘  ‘   ‘ 

   ‘  ‘   ‘ 

   ‘  ‘   ‘ 

   gm (x1, x2, …. , xn)  = bm 

 

And K inequality constraints 

   h1(x1, x2, ….. , xn)     r1 

   h2 (x1, x2, …. , xn)    r2 

   ‘  ‘   ‘ 

   ‘  ‘   ‘ 

   ‘  ‘   ‘ 

   hk (x1, x2, …. , xn)    rk 

 

In addition, the value of the decision variable x1, x2, …… , xn must be integers. No 

fractional values of x1, x2, ….. , xn are permitted. In an integer program, the objective 

function F and the constraint function g1, g2, ……, gm and h1, h2, ….., hk may be linear 

or non linear. If we restrict the objective function F and the constraint function g1, g2, 

….., gm and h1, h2, ….. hk to be linear, then we have an integer linear program. 

Integer linear programming formalities are much more easily handled in computation 

than integer (non linear) programming formalities. We seek to an integer programming 

(IP) formalities of graph colouring which contains non linear constraint. In this 

formulation, G is the graph we wish to properly colour. The number of vertices in G is 

denoted by n and the number of edges in G is denoted by e. We use k to represent the 
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number of colour we wish to use to properly colour G. The value of n and k are known 

constraints which serve as parameters in the model. The formulation addresses the 

following two questions; 

Given a graph G and a number of colour K, is there a proper K – colouring of G? 

If such a K – colouring of G exist, what is an example of such colouring 

Integer programming formulation of Graph colouring: 

 

Minimise objective function 

Subject to: 

1. 1 Xi              

2.             for each edge      ( ) 

3. X1, X2, ...., Xn are integer – valued. 

The above formulation contains n integer variables x, x2, …,xn , each representing one 

of the n vertices of G. A feasible solution {x1, x2, …,xn} gives a proper K – colouring 

of G, if indeed one does exist. Three constraints define precisely what it means for a 

graph to exhibit a proper k-colouring . Constraint 1 maintains that each variable xi must 

receive a value between I and k. That is to say, each vertex of G must be coloured using 

a coloured using a colour from I to K. Constraint 2 further illustrates the definition of a 

proper colouring of G. For each edge of G, the vertices corresponding to that edge must 

be coloured using different colours. Finally, constraint 3 requires that the values of the 

variable be x1, x2, …, xn integers. 

Obviously this condition must hold since our k colours are numbered as integers 1, 2, 

…, k. If we obtain a solution {x1, x2, …, xn} that satisfies all of the above constraints 

for a particular graph G given k, then G has a proper k-colouring and {x1, x2, …, xn} is 

such a colouring. 
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CHAPTER 4 

 

DATA COLLECTION AND ANALYSIS  

In this chapter the data used for the generation of the nurse schedule was considered 

and how graph colouring was used to group the various types of nurses, taking into 

consideration the hospital hard rules and the soft nurses’ preferences.  

 

4.1 NURSES DATA 

There are fifteen nurses in the female and paediatrics ward. To solve the nurse schedule 

problem, all the fifteen nurses were considered. The types of nurses in the ward are 

Staff Nurse (SN), Principal Enrolled Nurse (PEN), Rotation Nurse (RN), Enrolled 

Nurse (EN), Senior Ward Assistant (SWA) and Health Extension Workers (HEW) 

They were named as SN1, SN2, SN3, SN4, PEN, RN1, RN2,EN1, EN2, SWA, HEW1, 

HEW2, HEW3, HEW4, HEW5. The table below show the names of the nurses 
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Table 4.1 Nurses data 

Names  of nurses Rank Ward 

Marian AsankomanOwoo SN1 W1 

Mariama Ahmed SN2 W1 

Yvonne O. Berko SN3 W1 

VeneciaBoateng SN4 W1 

Cecilia Millicent Aman PEN W1 

Isaac AntwiMireku RN1 W1 

QuinzyAmoh RN2 W1 

Constance Koramah EN1 W1 

Monica Bady EN2 W1 

Cecilia Appiah SWA W1 

Obed Atta Yeboah HEW1 W1 

Doris Owusu HEW2 W1 

Janet Appiah HEW3 W1 

FaustinaAcheampong HEW4 W1 

Sandra A. Garbrah HEW5 W1 

 

4.2 APPLYING GRAPH THEORY FOR THE NURSE SCHEDULE PROBLEM 

To solve most scheduling problem Graph Theory was used. In scheduling problem 

Graph coloring in Graph theory can use to avoid conflicts and to allocate resources 

effectively. 

In this problem when considering the constraints, nurses with different skills levels can 

be in same shift. But only the junior or senior nurses can’t be in same shift. And also 
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there are some nurses, who don’t like to work together. So they must put in to different 

groups. Sometimes hospital management also wants to put some nurses in to different 

shifts to create high quality roster. Also when creating the roster patients requirements 

also have to be considered. They also may ask to for some nurses to be put in to 

different shifts. 

 

Considering the different skills levels the nurses were put into groups. The Staff nurses 

were put in one group, group A and Rotation nurses were also put in another group, 

group C. Like that by considering nurse requirements, hospital management 

requirements, patients requirements, etc; nurses were grouped as following table 4.1 

given below. 

 

Table 4.2 Group of conflicting nurses. 

Group Nurses 

A SN1, SN2, SN4 

B SN4, EN2, EN3 

C RN1, RN2 

D EN2, HEW3 

E HEW2,HEW3,HEW4 

F RN1, EN1 

G EN1, EN2 

 

By using above data a matrix was created for the nurses. It is a 15 X 15 matrix. In that 

matrix nurse’s names take as i and j .Then ij-th entry is put according to the above table 

4.1, If any two nurses are in same group, then ij-th entry is put as ‘1’ otherwise put it as 
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‘0’. Following Figure 5.1 shows the relevant matrix. 
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Table 4.3 Adjacency matrix (conflict matrix) of nurse 

 SN1 SN2 SN3 SN4 PEN RN1 RN2 EN1 EN 2 SWA HEW1 HEW2 HEW3 HEW4 HEW5 

 

SN1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

SN2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

SN3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SN4 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 

PEM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RN1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

RN2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

EN1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

EN2 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 

SWA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HEW1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 

HEW2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 

HEW3 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 

HEW4 0 0 0 0 0 0 0 0 0 0 1 1 1 0  

HEW5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Using above matrix, a graph was constructed by taking nurses as vertices. If two nurses 

are in same group according to the above table 4.1 corresponding vertices are combine 

using edges. 

     SN3   SN4 

  SN2        PEN 

 

  

                  SN1          RN1 

 

 

              RN2                       

  

                             EN2         

   

                                                                                     

                                    HEW1

  SWA   

           

HEW2  

             HEW3 

     

                                                  HEW4                                           HEW5 

         

EN1 

Figure 4.1 A conflicting graph of nurse 
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As the next part vertices in graph were colored. If two vertices are adjacent, they were 

coloured using two different colors. Below is figure 4.2 showing the resulting graph after 

colouring. 

    

                                                                                                                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 A  coloured conflict graph of nurses 

SN2 

EN2 

RN2 

HEW5 

PEN 

S

S

SN3 SN4 

SN1 

RN1 

EN1 

HEW1 

HEW2 

HEW4 

SWA 

HEW3 



60 
 

Using vertices colours again nurses were grouped. In grouping, nurses with same colour 

were put in to one group. Normally in graph colouring if any vertices were not adjacent 

with other vertices, as an example here SN2 and PEN were to be coloured using existing 

colour. That is using another vertices colour in the graph that has already been coloured.  

But in this study those are also coloured using a new colour and were put into a different 

group called bench group (B). Following table 4.3 shows the group details after applying 

the graph colouring techniques. 

Table 4.4 Nurse’s group after applying graph colouring 

Group Nurses 

G1 SN3, RN2, EN1, HEW2 

G2 SN4, RN1, HEW3 

G3 SN1, EN2, HEW4 

Bench (B) SN2, PEN, SWA, HEW1 

 

According to the above table 4.2 Nurses in G1, G2 and G3 could be in same shift only if 

they are in same group. This means SN3, RN2, EN1 and HEW2 can be in same shift and 

can work together because they are all members of same group G1. But SN4 and EN1 

can’t work together because they are in different groups G1 and G2. To be presented in the 

same shift, nurses must be in same group otherwise some constraints may be violated. But 

there is a special group; Bench group or group B. Members in group B has special facility. 

They can work together with any group. There is no any restriction. So members in group 

B can work in any shift with anyone. 
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4.3 A NURSE SCHEDULE 

Below table 4.3is a part of nurse-roster that shows the continuation of the same shift. 

Columns are the days of the month and the rows are the names of the nurses. In this chart 

in front of the name head nurse has specify the ranks of the nurses whether the individual 

is a senior or junior nurse. ‘1’ is denoting morning shift, '2’ for afternoon shift, ‘3’ for 

night shift and ‘4’ for off day. 

 

The allocation below follows a format, which takes in into consideration some of the hard 

constraints of the hospital  and soft nurses preferences.  Some of which are: 

I. Only the principal nurse is entitled to Holiday off duty. 

II. Principal enrolled nurse  is scheduled for only morning shifts and has day off duties 

on both Saturday and Sundays 

III. Every nurse is entitled to at least one day-off  in the week where there is no night 

shift 

IV. Every nurse is entitled to four days off after three consecutive night shift 

V. Every night shift is taken continuously for three consecutive days 

VI. The minimum number of nurses for morning shift should not be less than three. 

That is A    

VII  The number of nurses for both Afternoon and Night should be at least two. That is  

 A    2   and  N  2 

VIII. Morning and afternoon shift alternate for the other remaining days. 
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IX.  Every nurse is entitled to only one shift a day.   
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CHAPTER 5 

RESULTS, CONCLUSION AND RECOMMENDATION 

This chapter deals with the results, conclusion and recommendation.  

5.1 RESULTS 

The result of the study was divided into two major parts. In the first the nurses were 

divided into shift groups using graph theory.  This was done after colouring the conflict 

graph thereby removing the various conflicting nurses. In the graph, vertices of the same 

colour were grouped as one. This indicates that, the vertices which were used to represent 

the nurses with the same colour can be together without creating any conflict.  

The shift groups were then used to create the nurses scheduling timetable in the second 

part. 

The following Table 5.1 shows the results of a portion of the scheduling table generated. In 

this table the first row represent the days of the month and in the first column the names of 

the nurse were listed. In the schedule ‘A’ represent morning shift, ‘M’ represent afternoon 

shift , ‘N’ represent night shift and ‘M’ represent off day. In  second table 5.2 also show 

how text characters were also used to represent the various schedules. In this table ‘M’ 

represent morning shift, ‘A’ represent afternoon shift,  ‘N’ represent night shift and ‘OFF’ 

represent off day. 
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Table 5.1 Schedule table using matlab 

JUASO DISTRICT HOSPITAL – ASANTE AKIM SOUTH 

NURSES DUTY ROSTER 

WARD: FEMALE / PAEDIATRICS 

Name 1 2 3 4 5 6 7 8 9 10 11 

 

 

1 

Marian  

Asankoman 

Owoo 

3 3 3 3 4 4 4 1 2 1 2 

2 Mariama Ahmed 1 2 1 4 3 3 3 3 4 4 4 

3 

 

Yvonne O.  

Berko 
1 2 1 4 3 3 3 3 4 4 4 

4 

 

Venecia 

Boateng 
3 3 3 3 4 4 4 1 2 1 2 

5 

 

Isaac Antwi 

Mireku 
2 1 2 1 2 1 2 4 3 3 3 

6 QuinzyAmoh 3 3 3 3 4 4 4 1 2 1 2 

7 

 

Constance  

Koramah 
2  1 2 1 2 1 2 4 3 3 3 

8 Monica Bady 4 4 4 2 1 2 1 2 1 2 1 

9 Cecilia Appiah 2 1 2 1 2 1 2 4 3 3 3 

             

10 

 

Obed Atta  

Yeboah 
1 2 1 4 3 3 3 3 4 4 4 

11 Doris Owusu 4 4 4 2 1 2 1 2 1 2 1 

12 Janet Appiah 3 3 3 3 4 4 4 1 2 1 2 

 

13 

Faustina 

Acheampong 
4 4 4 2 1 2 1 2 1 2 1 

14 

 

Sandra A.  

Garbrah 
4 4 4 2 1 2 1 2 1 2 1 
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Table 5.2 Schedule table 

JUASO DISTRICT HOSPITAL – ASANTE AKIM SOUTH 

NURSES DUTY ROSTER 

WARD: FEMALE / PAEDIATRICS 

Name 1 2 3 4 5 6 7 8 9 10 11 

 

 

1 

Marian  

Asankoman 

Owoo 

N N N N OFF OFF OFF M A M A 

2 
Mariama 

Ahmed 
M A M OFF N N N N OFF OFF OFF 

3 

 

Yvonne O.  

Berko 
M A M OFF N N N N OFF OFF OFF 

4 

 

Venecia 

Boateng 
N N N N OFF OFF OFF M A M A 

5 

 

Isaac Antwi 

Mireku 
A M A M A M A OFF N N N 

6 QuinzyAmoh N N N N OFF OFF OFF M A M A 

7 

 

Constance  

Koramah 
A M A M A M A OFF N N N 

8 Monica Bady OFF OFF OFF A M A M A M A M 

9 
Cecilia 

Appiah 
A M A M A M A OFF N N N 

             

10 

 

Obed Atta  

Yeboah 
M A M OFF N N N N OFF OFF OFF 

11 Doris Owusu OFF OFF OFF A M A M A M A M 

12 Janet Appiah N  N N N OFF OFF OFF M A M A 

 

13 

Faustina 

Acheampong 
OFF OFF OFF A M A M A M A M 

14 

 

Sandra A.  

Garbrah 
OFF OFF OFF A M A M A M A M 
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5.2 CONCLUSION 

Most of the hospitals in Ghana manually go through hard time in preparing the scheduling 

timetable. This indicates that the nurse schedule problem is a real world problem. Instead 

of consuming time in generating the roster, hospital officers can spare more time and effort 

on patients and other medical duties since the nurse scheduling problem  is a very complex 

problem with so many constrains. In solving the nurse schedule problem, the soft 

constraints were not the only constraints considered. All hard constraints were also 

considered. Results therefore show a feasible solution to the problem. This means that the 

study ends with a solution to be used in the real world. 

 

5.3 RECOMMENDATION  

In the development of the system, it was observed that the technique in solving some to the 

constraints were insufficient to cope with real-life problems. Particularly, soft constraints 

get a holiday off and weekend off. Also the program software could pick up the groups 

after taking away the conflicting schedules. 

A future direction of development is to improve upon the program software taking into 

consideration some of the constraints stated above. 
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APPENDIX 

 

MATLAB CODES FOR GROUPING THE NURSES 

function y = myself(x) 

g=graph 

n = input('number of nurses'); 

cycle(g,n) 

for k=1:n+1,  

delete(g,k,k+1) 

delete(g,1,n) 

end 

ndraw(g) 

 

v=input('number of conflict nurses') 

for i = 1:v 

xi=input('group of conflict nurses'); 

ui =combntns([xi],2); 

add(g,ui) 

ndraw(g) 

end 

label(g) 

label(g,1,'EN1') 

label(g,2,'RN1') 
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label(g,3,'SN4') 

label(g,4,'SN3') 

label(g,5,'SN1') 

label(g,6,'RN2') 

label(g,7,'EN2') 

label(g,8,'HEW2') 

label(g,9,'HEW4') 

label(g,10,'HEW3') 

ldraw(g) 

color(g) 

cdraw(g) 

 

 

MATLAB CODES FOR GENERATING THE SCHEDULE TABLE 

 

f = figure('Position',[200 200 3000 1500]); 

Morning = 1; 

Afternoon = 2; 

Night = 3; 

Offday = 4; 

% group of nurses for the various schedules  

a = [1 4 6 12]; 

b = [2 3 10]; 
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c = [5 7 9]; 

d = [8 11 13 14];  

dat = zeros(14,30); 

for w = 1:4 

for k = 1:3 

dat(a,w)= Night; 

dat(b,4+w)= Night; 

dat(c,8+w)= Night; 

dat(d,12+w)= Night; 

dat(a,16+w) = Night; 

dat(b,20+w) = Night; 

dat(c,24+w) = Night; 

dat(d,28+w) = Night; 

dat(b,4) = Offday; 

dat(c,8) = Offday; 

dat(d,12) = Offday; 

dat(a,16) = Offday; 

dat(b,20) = Offday; 

dat(c,24) = Offday; 

dat(d,28) = Offday; 

dat(a,4+k)= Offday; 

dat(b,8+k)= Offday; 

dat(c,12+k)= Offday; 
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dat(d,16+k)= Offday; 

dat(a,20+k)= Offday; 

dat(b,24+k)= Offday; 

dat(c,28+k)= Offday; 

dat(d,k)= Offday; 

end 

end 

y=8:15; 

tf=bitget(abs(y),1)~=0; 

oddd=y(tf); 

% odd = -3 -1 1 3 

evenn=y(~tf); 

% even = -4 -2 0 2 4 

xi=23:30; 

tf=bitget(abs(xi),1)~=0; 

odd=xi(tf); 

% odd = -3 -1 1 3 

even=xi(~tf); 

% even = -4 -2 0 2 4 

dat(a,evenn)=Morning; 

dat(a,oddd)=Afternoon; 

dat(a,odd)=Morning; 

dat(a,even)=Afternoon; 
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y=1:3; 

tf=bitget(abs(y),1)~=0; 

oddi=y(tf); 

% odd = -3 -1 1 3 

eveni=y(~tf); 

% even = -4 -2 0 2 4 

yi=12:19; 

tf=bitget(abs(yi),1)~=0; 

oddii=yi(tf); 

% odd = -3 -1 1 3 

evenii=yi(~tf); 

% even = -4 -2 0 2 4 

yii=27:30; 

tf=bitget(abs(yii),1)~=0; 

oddiii=yii(tf); 

% odd = -3 -1 1 3 

eveniii=yii(~tf); 

% even = -4 -2 0 2 4 

dat(b,oddi)=Morning; 

dat(b,eveni)=Afternoon; 

dat(b,evenii)=Afternoon; 

dat(b,oddii)=Morning; 

dat(b,oddiii)=Afternoon; 
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dat(b,eveniii)=Morning; 

q=1:7; 

tf=bitget(abs(q),1)~=0; 

oddq=q(tf); 

% odd = -3 -1 1 3 

evenq=q(~tf); 

% even = -4 -2 0 2 4 

dat(c,oddq)=Afternoon; 

dat(c,evenq)=Morning; 

qi=16:22; 

tf=bitget(abs(qi),1)~=0; 

oddqi=qi(tf); 

% odd = -3 -1 1 3 

evenqi=qi(~tf); 

% even = -4 -2 0 2 4 

dat(c,oddqi)=Afternoon; 

dat(c,evenqi)=Morning; 

r=4:11; 

tf=bitget(abs(r),1)~=0; 

oddr=r(tf); 

% odd = -3 -1 1 3 

evenr=r(~tf); 

% even = -4 -2 0 2 4 
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dat(d,oddr)=Morning; 

dat(d,evenr)=Afternoon; 

ri=20:26; 

tf=bitget(abs(ri),1)~=0; 

oddri=ri(tf); 

% odd = -3 -1 1 3 

evenri=ri(~tf); 

% even = -4 -2 0 2 4 

dat(d,evenri)=Afternoon; 

dat(d,oddri)=Morning; 

cnames = {'1','2','3','4','5','6','7','8','9','10',... 

'11','12','13','14','15','16','17','18','19','20','21',... 

'22','23','24','25','28','27','28','29','30'}; 

rnames = {'Maria ArankomahOwoo','MariamaAhmed','Yvonne O Berko',... 

'VeneciaBoateng','Isaac AntwiMireku',... 

'QuinzyAmoh','Constance Koramah','Monica Badu','CeciliaAppaiah',... 

'Obed Atta Yeboah','Doris Owusu','Janet Appiah',... 

'FaustinaAcheampong','Sandra A. Garbrah'}; 

t = uitable('Parent',f,'Data',dat,'ColumnName',cnames,... 

'RowName',rnames,'Position',[2 2 360 100]); 

Dat =get(t,'Data'); 

xlswrite(FileName,Dat); 

 


