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Abstract

This paper focuses on the study of a one dimensional topological dynamical system, the tent function. We
give a good background to the theory of dynamical systems while establishing the important asymptotic
properties of topological dynamical systems that distinguishes it from other fields by way of an example
- the tent function. A precise definition of the tent function is given and iterates are clearly shown using
the phase diagrams. By this same method, chaos in the tent map is shown as iterates become higher. We
also show that the tent map has infinitely many chaotic orbits and also express some important features
of chaos such as topological transitivity, boundedness and sensitivity to change in initial conditions from a
topological viewpoint.
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1. Introduction

This may be an elementary introduction to a very important concept in dynamical systems: chaos Henri
Poincare is regarded by many as the founder of topological dynamical systems [11]. A dynamical system is
a concept [20] in mathematics where a fixed rule describes the time dependence of a point in a geometrical
space in [14]. Examples include the mathematical models that describe the swinging of a clock pendulum
in Holm et al. 2001, the flow of water in a pipe in [17], the continuous striking of a function on a scientific
calculator in [5] and the number of fish each spring in a lake in [7]. A current definition of topological
Dynamics says that it is ’the study of transformation groups with respect to those topological properties
whose prototype occurred in classical dynamics [9].

At any given time a dynamical system has a state given by a set of real numbers, a vector that can be
represented by a point in an appropriate state space which is a geometrical manifold [15]. A phase space,
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which is interpreted as the set of all possible states of the system together with a rule of evolution (time-
evolution law) which describes how each state assumed by the system changes with time in [4]. The
evolution rule of the dynamical system is a fixed rule that describes what future states follow from the
current state in [16]. The rule is deterministic; in other words, for a given time interval [19]; only one future
state follows from the current state. The main aim of the study of dynamical systems is to understand the
long term behavior of states in a system for which there is a deterministic rule for how a state evolves. A
dynamical system is deterministic in the sense that the evolution of the system is described by a specific
map, so that the present (the initial state) completely determines the future (the forward orbit of the state).
At the same time, dynamical systems often appear to be chaotic in that they have sensitive dependence on
initial conditions, i.e., minor changes in the initial state lead to dramatically different long-term behavior [3].
In topological dynamics, qualitative long term (asymptotic) properties of dynamical systems are studied
from the viewpoint of general topology. The phase space in this theory is a topological space that is either
metrizable compact or locally compact. [12]. To determine the state for all future times requires iterating the
relation many times-each advancing time a small step. The iteration procedure is referred to as solving the
system or integrating the system in [18]. Once the system can be solved, given an initial point it is possible
to determine all its future points, a collection known as a trajectory or orbit in [21]. Some trajectories may be
periodic, whereas others may wander through many different states of the system. The classification of all
possible orbits has led to the qualitative study of dynamical systems [6], that is, properties that are invariant
under coordinate changes. A dynamical system as a continuous self-map of a compact metric space [22]. It
is noteworthy that topological dynamics studies the iterations of such a periodic map or equivalently the
trajectories/orbits of points of the phase space which in the case of this paper is the interval.

In this paper, we intend to extend the study of one dimensional dynamical systems by examining a specific
example, the tent map. The main objective is to establish that the tent map has chaotic orbits and show
this using the phase diagrams of the map as we successively perform higher iterations. A phase diagram
is a graphical representation of the different states of a system. It describes the different phases that the
system undergoes in its phase space. The phase diagram for every physical system is unique. Movement
along the lines of the phase diagram - orbits of the system describes and provides useful information about
the system. Typical examples include the simple pendulum, the simple harmonic oscillator, the Van der
Pol oscillator, the Duffing oscillator and the Bifurcation diagram. Phase diagrams can in many physical
systems enables us to predict the behavior of the system as time increases from the initial point. Familiarity
with concepts such as topological dynamical systems, topological conjugacy and transitivity, elements of
general topology are assumed. In a dynamical system, it is a geometric representation of the trajectories in
a phase plane. The phase diagram of the tent function is as the name implies in the form of a triangular tent
that is defined by a step function. The tent map has an identical behavior to the logistic map under iteration
and exhibits a dynamical behavior that ranges from predictable to chaotic and this is clearly shown in this
work by the phase diagrams. In the chaotic regime, small differences in initial conditions produce widely
diverging outcomes in [13]. Chaos theory largely studies the sensitive dependence of a system on initial
conditions even though these systems are deterministic - their future behavior can be fully determined by
their initial conditions.

2. Iterating functions

In this section, our focus is on dynamical systems defined by repeated application of a given function that
maps a space to itself.

Assume a topological space X , and
f : X −→ X

a function that maps X to itself. For every positive integer n , we define the composite function

f n(x) = f ◦ f ◦ f ◦ . . . ◦ f (x)
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where f n(x) is the composition of n copies of the function f . In effect, we start with x , then apply f to
x to get f (x) , then apply f to f (x) to obtain f 2(x) , then f 3(x) , f 4(x) in that order. This iterative process is
continued until we obtain f n(x) .

The dynamical system defined by f : X −→ X is the family of functions { f n}n∈Z+ with each f n mapping
X to X .

Example 2.1. Let f : R −→ R be given by f (x) = x/2 . The first iteration is given by

f ( f (x)) = f 2(x) =
x
2

2
=

x

22 =
x

4
.

Continuing the process for f 3(x), f 4(x), f 5(x), . . . the family of functions f describing the dynamical system
is given by f n(x) = x

2n .

For a dynamical system defined by an iterating a function f :−→ A , we look at f (a) as describing the new
state of the system a unit of time after it was at state a . A typical instance is easily identified in the modeling
of a bacteria population growing by the hour, we could have a function f (x) representing the population
size that results one hour after the population was x . Also, if we model the position and velocity of a
rocket, we may have a function f (x, v) representing the position and velocity of the rocket one second after
it had position and velocity (x, v) [1].

Example 2.2. Consider the following functions defined on R with their phase diagrams below:

(1) f : R −→ R defined by f (x) = −4x,
(2) 1 : R −→ R defined by 1(x) = 1

3 x,
(3) h : R −→ R defined by h(x) = −x,
(4) k : R −→ R defined by k(x) = 0.

Figure 1: Phase diagrams for f , 1, h and k [1].

It is important to note that each of these functions results in 0, upon evaluation at x = 0. Assume a particular
non-zero point xo. A continuous repeated application of f to itself gives f n(xo) = (−4)nxo.That is, a repeated
iteration of f on xo results in values that move further and further away from 0, bouncing between positive
and negative values as the iteration proceeds. The qualitative depiction of the iterative behavior of this
function f on R as well as 1, h and k is shown in the figure above. This qualitative depiction is obviously
called the phase diagram for the corresponding dynamical systems. The next function 1 has iteration on xo

resulting in values that move ever closer to 0, and eventually approaching 0 in the limit. h shows a different
dynamic picture, in that with any the resulting dynamics is one of oscillation between positive and negative
values of xo. The dynamics depicted by k is rather simple. All points go to 0 on application of k and this is
clearly depicted in the figure above.
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Phase diagrams can be produced for almost every physical phenomenon that is dynamic in nature. In the
fields of biology,chemistry, economics, business through engineering and so on, phase diagrams can be
used to describe effectively the dynamics of several activities. For instance, if an investor decides to invest
into a clothing line at a said compound interest say I, he would want to know how much money he would
be making at the end of n years. If we assume that the investor leaves his money untouched throughout
this period, we can generate a simple iterative process or a dynamical system to describe how his money
increases with time. Our aim is to determine An, the amount at the end of the nth-year considering Ao as
the initial amount invested. The dynamics of the ongoing can be described by the phase diagram below

Figure 2: The dynamics of the investment [1].

The dynamics of the investment as depicted by the phase diagram shows a continual increment in the
amount over the course of time as would be expected by the investor.

3. The Tent function

The most characteristic feature of the theory of dynamical systems that distinguishes it from other areas of
mathematics is the emphasis on asymptotic or long term behavior: properties related with the behavior of
the system as time goes to infinity. One of the most efficient ways of explaining what significant asymptotic
properties are is to examine specific examples of dynamical systems and to determine the most characteristic
features of their behavior, the behavior of which in our case is the behavior of the tent map.

Consider a function T : [0, 1] −→ [0, 1] defined by setting T(x) equal to the new position of a particle that
was initially at x. The tent map is defined as T(x) = 1− |2x− 1|. The interval [0, 1] is considered as the phase
space since the function maps the interval unto itself. It is important to note that the orbits of the tent map
are bounded(for positive k values) since the interval [0, 1] is positively invariant under T. The definition of
the Lyapunov exponent which uses the derivative of the function can only be for those orbits that avoid the
point 1

2 where T is not differentiable. The tent function is precisely defined as

T(x) =















2x, i f x ∈ [0, 1
2 ]

2 − 2x, i f x ∈ [ 1
2 , 1]

with diagram

Figure 3: The tent function.
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Now consider T2, the graph of which is shown in the figure below along with the graph of y = x.

Figure 4: The function T2.

Before going on to the dynamics of the successive iterates of T, it is important to establish a notion of
equivalence for dynamical systems defined by iterating functions.

Definition 3.1. [1] The functions f : X −→ X and 1 : Y −→ Y are said to be topologically conjugate if there
exists a homeomorphism h : X −→ Y such that 1 ◦ h = h ◦ f . The homeomorphism h is called a topological
conjugacy between f and 1.

Remark 3.2. (1) In some cases, h can be a diffeomorphism, in which case we have smooth conjugacy.
(2) Mappings which are topologically conjugate are completely equivalent in terms of their dynamics.

Example 3.3. The dynamics of the functions f (x) = 2x and 1(x) = 3x appear qualitatively the same. The
function h : R −→ R, defined by h(x) = xlog2 3 is a homeomorphism that satisfies 1 ◦ h = h ◦ f and hence the
two functions are topologically conjugate.

Remark 3.4. (1) From the example above, a topological conjugacy between two functions f and 1naturally
maps orbits of f to orbits of 1.

(2) An important observation is that there is a one-to-one correspondence between periodic orbits of two
conjugate maps.

4. Iterates of the Tent map

Higher-order iterates of the tent map, which are involved in the study of the asymptotic dynamics, are
piecewise-linear maps and are easy to compute as is shown for T3 and T4.
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Figure 5: The graph of T3.

Figure 6: The graph of T4.

The pattern for successive iterates is apparent, with the orbits appearing as uniformly distributed and
correlated. Further higher iterates are shown below.
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Figure 7: The graph of T5.

Figure 8: The graph of T6.

From the graphs of T1 right unto T6 we observe a regular periodicity of the orbits spanning over a long
time. We observe a regular duplication of the orbits of a previous iterate in a subsequent one and so forth.
In other physical phenomena this behaviour of a dynamical system can span over a very long time, so long
that the thought of irregularity is almost impossible.

We also observe from the phase diagrams of the various tents that much of the structure of the Tn tents
can be understood from T mapping linearly

[

k−1
2n−1 ,

k
2n−1

]

onto [0,1] which results in a tent over
[

k−1
2n−1 ,

k
2n−1

]

for

each k = 1, 2, . . . , 2n−1. That is, the graph of the restriction of T2 to each of the two components
[

k−1
2n−1 ,

k
2n−1

]

reproduces the graph of T on [0, 1]. This explains the two-tent structure of T2 and so on and so forth in that
order. Similarly, the relation

∀x ∈
[k − 1

2n−1
,

k

2n−1

]

, Tn(x) = T(Tn−1(x)) = Tn−1(T(x))

indicates that the graph of Tn consists of two copies of Tn−1.

As n gets larger and larger, the intervals
[

k−1
2n−1 ,

k
2n−1

]

partition [0, 1] into smaller and smaller intervals each of
which contains a replication of the orbits in the preceding iterate or tent (over a smaller interval).
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Figure 9: The graph of T7.

Figure 10: The graph of T8.

Figure 11: The graph of T9.
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Definition 4.1. [8] A map f : [0, 1] −→ [0, 1] is said to be topologically mixing if for each pair of open sets
U,V ⊂ [0, 1], n > p =⇒ f n(U) ∪ V ,Ø for p > 0

From T7,T8 and T9 , we observe from the phase diagrams that, smaller and smaller intervals are getting
spread out or mixed by Tn over the whole interval [0, 1], the phase space as increases. We can ascertain the
eventual spreading and mixing of orbits which were once in regular periodicity as the iteration continues.
The graph of T10 is shown below.

Figure 12: The graph of T10.

The graph of T10 shows a very different kind of behavior - non-periodicity or perhaps a different kind of
periodicity that is obviously not the same as the regular periodicity exhibited earlier in the lower iterates.

Definition 4.2. [2] A discrete dynamical system f : [0, 1] −→ [0, 1] is Devaney chaotic on an infinite subset
A ⊆ [0, 1] if:

(1) There exists some point xo ∈ A such that the orbit of xo is dense in A.
(2) The set of all periodic orbits is dense in A

From the phase diagram of T10 we see a total spreading out of the orbits into each other. There is an indication
of (regular) periodic behavior densely distributed in the phase space. The extreme (infinitesimal) closeness
of the orbits as observed in T8 and T9 and obviously as the iteration continues shows this dense distribution.
Topological transitivity also follows in that any given interval U we could find always an interval in the
form

[

k−1
2n−1 ,

k
2n−1

]

inside U for sufficiently large n. Tn maps U onto the whole phase space [0, 1]. Having
showed the main components of chaos by Definition 4.2, we conclude that the tent function has infinitely
many chaotic orbits. Further proof of chaos in the tent map is shown by the asymptotic non-periodicity of
the orbits as observed in the phase diagrams above. By topological conjugacy, chaos in the tent map can be
used to establish chaos in the logistic map by Proposition below.

Proposition 4.3. [10] Suppose f : I −→ I and 1 : J −→ J are conjugate via h where both I and J are closed
intervals in R of finite length. If f is chaotic on I , then 1 is chaotic on J.

Proof. Let U be an open subinterval of J and consider h1(U) ⊂ I. Since periodic points of f are dense in I ,
there is a periodic point x ∈ h1(U) for f . Say x has period n. Then

1
n(h(x)) = h( f n(x)) = h(x),

by the conjugacy equation. This gives a periodic point h(x) for 1 in U and shows that periodic points of
g are dense in J . If U and V are open subintervals of J , then h1(U) and h1(V) are open intervals in I. By
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transitivity of f , there exists x1 ∈ h1(U) such that f m(x1) ∈ h1(V) for some m. But then h(x1) ∈ Uand we
have 1m(h(x1)) = h( f m(x1)) ∈ V, so 1 is transitive also.

For sensitivity, suppose that f has sensitivity constant β. Let I = [αo, α1]. We may assume that β < α1 − αo.
For any x ∈ [αo, α1 − αo], consider the function |h(x + β) − h(x)|. This is a continuous function on [αo, α1 − β]
that is positive. Hence it has a minimum value β′. It follows that h takes intervals of length β in I to intervals
of length at least β′ in J . Then it is easy to check that β′ is a sensitivity constant for 1. This completes the
proof.
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